Properties of *P*₀ – Almost Distributive Lattices

Naveen Kumar Kakumanu

Associate Professor, Department of Mathematics, K.B.N. Degree and P.G. College, Vijayawada, Andhra Pradesh. *ramanawinmaths@gmail.com* G.C. Rao

Professor, Department of Mathematics Andhra University Visakhapatnam, India. gcraomaths@gmail.com

Abstract: Characterizations of an Almost Distributive Lattice with a maximal and least n-term chain base are derived.

Keywords: Almost Distributive Lattice(ADL); Birkhoff Center; Maximal element; Chain base; $P_0 - lattice; P_0 - Almost Distributive Lattice(P_0 - ADL).$

1. INTRODUCTION

The concept of an Almost Distributive Lattice (ADL) was introduced by U.M. Swamy and G.C. Rao[8] as a common abstraction of most of the existing ring theoretic and lattice theoretic generalizations of a Boolean algebra. The concept of Birkhoff center B of an ADL A was introduced in [9] and it was observed that B is a relatively complemented ADL.

G. Epstein and A. Horn introduced the concept of a P_0 – lattice in [5]. Later, T. Traczyk, Ph. Dwinger are studied and explored its properties. P_0 – lattice has good applications in computers and logic on the lines of G. Epstein and A. Horn [3,4]. For this reason, G.C. Rao extended this concept in to the class of ADLs as P_0 – Almost Distributive Lattices as a generalization of P_0 – lattice. In this paper, we derive some important properties of P_0 – Almost Distributive Lattice. These properties will help the further investigations of possible applications of P_1 – Almost Distributive Lattices, P_2 – Almost Distributive Lattices and Post Almost Distributive Lattice in logic and computer science on the lines of G. Epstein and A. Horn [3,4].

2. PRELIMINARIES

In this section, we give the necessary definitions and important properties of an ADL taken from [8] for ready reference.

Definition 1.1 [8] An algebra $(A, \lor, \land, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (ADL) if it satisfies the following axioms:

- i. $x \lor 0 = x$ ii. $0 \land x = 0$ iii. $(x \lor y) \land z = (x \land z) \lor (y \land z)$ iv. $x \land (y \lor z) = (x \land y) \lor (x \land z)$ v. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
- vi. $(x \lor y) \land y = y$, for all $x, y, z \in A$.

Theorem 1.2. [8] Let *m* be a maximal element in an ADL *A* and $x \in A$. Then the following are equivalent:

- i. *x* is a maximal element of (A, \leq) .
- ii. $x \wedge m = m$.
- iii. $x \wedge a = a$, for all $a \in A$.
- iv. $x \lor a = x$, for all $a \in A$.
- v. $a \lor x$ is maximal, for all $a \in A$.

Definition 1.3. [9] Let A be an ADL with a maximal element m and

 $B(A) = \{x \in A \mid x \land y = 0 \text{ and } x \lor y \text{ is maximal for some } y \in A\}$. Then $(B(A), \lor, \land)$ is a relatively complemented ADL and it is called the Birkhoff center of *A*. We use the symbol *B* instead of B(A) when there is no ambiguity.

For other properties of Birkhoff center of an ADL, we refer [9].

In our paper [7], we introduced the concept of Pseudo-supplemented Almost Distributive Lattices and derive its properties. The following definition was taken from [7].

Definition 1.4. [7] Let A be an ADL with a maximal element m and Birkhoff center B. A is called a Pseudo-supplemented Almost Distributive Lattice (or, simply a PSADL) if, for each $x \in A$, there exists $b \in B$ such that

$$P_1: x \wedge b = b$$

$$P_2: \text{ if } c \in B \text{ and } x \wedge c = c, \text{ then } b \wedge c = c.$$

Here $b \wedge m$ is uniquely determined by x and it is denoted by x!, the pseudo-supplement of x. Also, we observe that $x! \in B([0,m])$. For other properties of PSADL, we refer [7].

3. PROPERTIES OF P_0 – **ADLS**

The concept of P_0 – lattice was introduced by G. Epstein and A. Horn in [5]. The following definition is taken from [5].

Definition 2.1. [5] Let A be a bounded distributive lattice and let B be a Boolean subalgebra of the center of A. A chain base of A is a finite sequence $0 = e_0 \le e_1 \le e_2 \le \dots \le e_{n-1} = 1$ such that A is generated $B \cup \{e_0, e_1, e_2, \dots, e_{n-1}\}$. If A has a chain base, then A is called a P_0 – lattice.

The concept of P_0 – Almost Distributive Lattice (P_0 – ADL) was introduced by G.C. Rao and A. Meherat in [6] as follows.

Definition 2.2. [6] Let *A* be an ADL with a maximal element *m* and Birkhoff center *B*. Then *A* is a P_0 – Almost Distributive Lattice(or, simply a P_0 – ADL) if and only if there exist elements $0 = e_0, e_1, e_2, \dots, e_{n-1}$ in *A* such that:

- i. $e_{n-1} \wedge m = m$
- ii. $e_i \wedge e_{i-1} = e_{i-1}$, for $1 \le i \le n 1$
- iii. for any $x \in A$, there exist $b_i \in B$ such that $x \wedge m = \hat{\mathbf{C}} \prod_{i=1}^{n-1} (b_i \wedge e_i \wedge m)$.

A set $\{0 = e_0, e_1, e_2, \dots, e_{n-1}\}$ of elements in a P_0 – ADL *A* satisfying conditions (*i*), (*ii*) and (*iii*) is called a chain base of *A*.

Definition 2.3 [6] Let $(A; e_0, e_1, e_2, \dots, e_{n-1})$ is a P_0 – ADL and $x \in A$ such that $x \wedge m = \hat{\mathbf{e}} \stackrel{n-1}{\underset{i=1}{\overset{n-1}{\leftarrow}} (b_i \wedge e_i \wedge m) \dots (\mathbf{e})$ where $b_i \in B$.

- i. If $b_i \wedge b_{i+1} = b_{i+1}$ for $1 \le i \le n-2$, then (\blacklozenge) is called a monotone representation of x, or simply as mono. rep.
- ii. If $b_i \wedge b_j = 0$ for $i \neq j$, then (\blacklozenge) is called a disjoint representation of x, or simply as dis. rep.

We observed that every element in A has both a mono. and dis. representation. The following theorem is easily proved by induction.

Theorem 2.4. Let $(A, \lor, \land, 0, m)$ be and ADL with a maximal element m and Birkhoff center Let $b_i, e_i \in A$ for $0 \le i \le n-1$ such that $b_i = b_{i-1} \land b_i$ and $e_{i-1} = e_i \land e_{i-1}$. Then,

$$\hat{\mathbf{C}}_{i=0}^{n-1}(b_i \wedge e_i \wedge m) = b_0 \wedge e_{n-1} \wedge \hat{\mathbf{I}}_{i=1}^{n-1}(b_i \vee e_{i-1}) \wedge m.$$

Here afterwards, $(A; e_0, e_1, e_2, \dots, e_{n-1})$ stands for a $P_0 - ADL (A, \vee, \wedge, 0, m)$ with a chain base $\{0 = e_0, e_1, e_2, \dots, e_{n-1}\}$ and Birkhoff center *B*.

Now we prove the following.

Theorem 2.5. Let $(A; e_0, e_1, e_2, \dots, e_{n-1})$ be a P_0 – ADL. Then A has a maximal n – term chain base $\{0 = e_0 \le e_1 \le e_2 \le \dots \le e_{n-1}\}$ if and only if $b \land e_i \land m \le e_{i-1} \land m$ implies $b \land m \le e_{i-1} \land m$ for $b \in B$ and $1 \le i \le n - 1$.

Proof: Let *e* be the maximal chain base in P_0 – ADL *A*. Suppose $b \wedge e_i \wedge m \leq e_{i-1} \wedge m$ for $b \in B$ and $1 \leq i \leq n-1$.

Let $f_i \wedge m = (e_i \vee (b \wedge e_{i+1})) \wedge m$. Then

 $b^m \wedge f_i \wedge m = b^m \wedge (e_i \vee (b \wedge e_{i+1})) \wedge m$ where b^m is the complement of $b \wedge m$ in [0,m]

$$= (b^{m} \wedge e_{i} \wedge m) \vee (b^{m} \wedge e_{i+1} \wedge m)$$
$$= b^{m} \wedge e_{i} \wedge m.$$

Since $b \in B$, we have $e_i \wedge m = (b \vee b^m) \wedge e_i \wedge m$

$$= (b \land e_i \land m) \lor (b^m \land e_i \land m)$$

$$\leq (e_{i-1} \land m) \lor (b^m \land f_i \land m)$$

$$\leq (e_i \lor f_i) \land m$$

 $\leq f_i \wedge m$.

Since $e_i \wedge m \leq f_i \wedge m \leq e_{i+1} \wedge m$, we get

 $0 = e_0, e_1 \wedge m, e_2 \wedge m, \dots, e_{i-1} \wedge m \leq f_i \wedge m \leq e_{i+1} \wedge m, e_{i+2} \wedge m, \dots, e_{n-1} \wedge m$ is a chain base of *A*. Since $f_i \wedge m \geq e_i \wedge m$ and *e* is the maximal chain base of *A*, we conclude that $f_i \wedge m = e_i \wedge m$. Then $b \wedge e_i \wedge m \leq e_i \wedge m$ and hence $b \wedge e_{i+1} \wedge m \leq b \wedge e_i \wedge m \leq e_{i-1} \wedge m$. Repeating the above argumentation a finite number of times, we get $b \wedge e_{n-1} \wedge m \leq e_{i-1} \wedge m$ and hence $b \wedge m \leq e_{i-1} \wedge m$. Conversely, suppose that $b \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $b \wedge m \leq e_{i-1} \wedge m$ for $b \in B$ and $1 \leq i \leq n-1$. Suppose e and f are two n – term chain bases of A and $b \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $b \wedge m \leq e_{i-1} \wedge m$ for $b \in B$ and $1 \leq i \leq n-1$. By our assumption and Theorem 3.18[6], we get that A is a pseudo-complemented ADL and again, by Theorem 3.21[6], we get A has a chain base $\{g_0, g_1, g_2, \dots, g_{n-1}\}$ such that g_1 is the smallest dense element of A. It is enough to show that $f \leq e$ in the case f_1 is the smallest dense element of A. Consider

$$e_{1} = (a_{i1}f_{1} \lor a_{i2}f_{2} \lor a_{i3}f_{3} \lor \dots \lor a_{i,n-1}f_{n-1}) \land m$$

$$f_{1} = (b_{i1}f_{1} \lor b_{i2}f_{2} \lor b_{i3}f_{3} \lor \dots \lor b_{i,n-1}f_{n-1}) \land m \text{ for } i = 1, 2, \dots, n-1.$$

Then $a_{11}^m \wedge e_1 = 0$ where a_{11}^m is the complement of $a_{11} \wedge m$ in [0, m] and hence $a_{11} \wedge m = m$. Similarly, we get $b_{11} \wedge m = m$, being f_1 is the smallest dense element of A. Thus $e_1 \leq f_1$. Similarly, we get $f_1 \leq e_1$ and hence $e_1 = f_1$. Clearly $\{e_0, e_1, \dots, e_{n-1}\}$ and $\{f_0, f_1, \dots, f_{n-1}\}$ are chain bases in $[e_1, e_{n-1}]$ and members of the center of this interval are of the form $(e_1 \vee (b \wedge e_{n-1})) \wedge m$. Then, by the hypothesis, we get $(b \vee e_1) \wedge m \leq e_{i-1} \wedge m$ for $i \geq 2$. By applying the above argumentation may be applied to this case as well finite number of steps, we get that A has a maximal n – term chain base.

Theorem 2.6. Let $(A; e_0, e_1, e_2, \dots, e_{n-1})$ be a P_0 – ADL. Then the following are equivalent:

i. $b \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $b \wedge e_i = 0$ for every $b \in B$ and $1 \leq i \leq n-1$.

ii.
$$(b \lor e_{i-1}) \land m \ge e_i \land m$$
 implies $b \land m \ge e_i \land m$ for every $b \in B$ and $1 \le i \le n-1$.

Proof. Let $b \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $b \wedge e_i = 0$ for every $b \in B$ and $1 \leq i \leq n-1$.

Suppose $(b \lor e_{i-1}) \land m \ge e_i \land m$.

Then $b^m \wedge (b \vee e_{i-1}) \wedge m \ge b^m \wedge e_i \wedge m$ where b^m is complement of $b \wedge m$ in [0, m]

 $\Rightarrow b^{m} \wedge e_{i-1} \wedge m \ge b^{m} \wedge e_{i} \wedge m$ $\Rightarrow b^{m} \wedge e_{i} \wedge m \le e_{i-1} \wedge m \le e_{i} \wedge m$ $\Rightarrow (b \vee (b^{m} \wedge e_{i})) \wedge m \le b \wedge e_{i} \wedge m$ $\Rightarrow (b \vee e_{i}) \wedge m \le b \wedge m$ $\Rightarrow e_{i} \wedge m \le b \wedge m.$

Thus we get (i) \Rightarrow (ii). Similarly, we get (ii) \Rightarrow (i).

In the following theorem, we derive some important properties of a P_0 – ADL and using this theorem, we can replace $x \in B$ in the hypothesis of Theorem 3.5 by $x \in A$.

Theorem 2.7. Let $(A; e_0, e_1, \dots, e_{n-1})$ be a P_0 – ADL with a maximal element *m* and Birkhoff center *B*. Then the following are equivalent:

i. $b \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $b \wedge m \leq e_{i-1} \wedge m$ for every $b \in B, 1 \leq i \leq n-1$.

ii. $x \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $x \wedge m \leq e_{i-1} \wedge m$ for every $x \in A, 1 \leq i \leq n-1$.

Proof. Clearly (i) follows (ii). Now assume $x \wedge e_i \wedge m \leq e_{i-1} \wedge m$ implies $x \wedge m \leq e_{i-1} \wedge m$ for every $x \in A, 1 \leq i \leq n-1$. Suppose $x \in A$ and $x \wedge e_{i-1} \wedge m \leq e_i \wedge m$. Since $x \in A, x$ has a mono. representation. Let $x \wedge m = \hat{\mathbf{e}} \, \sum_{i=1}^{n-1} (x_i \wedge e_i \wedge m)$. Then $x_i \wedge e_i \wedge m \leq e_{i-1} \wedge m$ and hence $x \wedge e_i \wedge m \leq e_{i-1} \wedge m$ and hence $x_i \wedge m \leq e_{i-1} \wedge m$. By monotonicity gives $x_j \wedge m \leq e_{i-1} \wedge m$ for $j \leq i$. Therefore $x_j \wedge e_j \wedge m \leq e_{i-1} \wedge m$ for $j \leq i$. Similarly, we get $x_j \wedge e_j \wedge m \leq e_{i-1} \wedge m$ for $j \leq i$. Hence $x \wedge m \leq e_{i-1} \wedge m$.

Unlike in lattices, the dual of an ADL in not an ADL, in general. For this reason, we introduce the concept of a dual P_0 – Almost Distributive Lattice as a generalization of a dual P_0 – lattice.

Definition. 2.8. Let A be an ADL with a maximal element m and Birkhoff center B. Then A is said to be a dual P_0 – Almost Distributive Lattice (or, simply a dual P_0 – ADL) if and only if there exist elements $0 = e_0, e_1, e_2, \dots, e_{n-1} \in A$ such that:

- i. $e_{i-1} \wedge e_i = e_i$, for $1 \le i \le n 1$
- ii. for any $x \in A$, there exist $b_i \in B$ such that $x \wedge m = \mathbf{i} = \sum_{i=1}^{n-1} (b_i \vee e_i) \wedge m$.

We observed that if $(A; e_0, e_1, ..., e_{n-1})$ is a dual P_0 – ADL with a maximal element m and Birkhoff center B, then $b \land e_{i-1} \land m \le e_i \land m$ implies $b \land m \le e_i \land m$ for every $b \in B$ and $1 \le i \le n-1$. Finally, we conclude this paper with the following theorem and it is derive directly from Theorem 2.5 and Theorem 2.7.

Theorem 2.9. If $(A; e_0, e_1, ..., e_{n-1})$ be a dual P_0 – ADL with a maximal element *m* and Birkhoff center *B* is the least chain base of a P_0 – ADL, then e_i ! exists and equals to 0 for i = 1, 2, ..., n - 2.

REFERENCES

- [1] Birkhoff, G.: Lattice Theory., Amer. Math. Soc. Colloq. Publ. XXV, Providence(1967), U.S.A.
- [2] G. Epstein and A. Horn : Chain based lattices, Pacific Journal of Mathematics, Vol. 55, No. 1, 1974.
- [3] G. Epstein and A. Horn : A propositional calculus for affirmation and negation with linearly ordered matrix(abstract), J. Symb. Logic, 1972, Vol 37, 439.
- [4] G. Epstein and A. Horn : Propositional calculi based on sub-residuation(abstract), J. Symb. Logic, 1973, Vol 38, 546-547.
- [5] Epstein, G. and Horn, A.: P-algebras, an abstraction from Post algebras, Vol 4,Number 1,195-206,1974, Algebra Universalis.
- [6] Rao, G.C. and Meherat Alamneh: P0-Almost Distributive Lattices, Accepted for publication in Southeast Asian Bulletin of Mathematics.
- [7] Rao, G.C. and Naveen Kumar Kakumanu, Pseudo-Supplemented Almost Distributive Lattices, Southeast Asian Bulletin of Mathematics, Vol 37(2013),131 to 138.
- [8] Swamy, U.M. and Rao, G.C., Almost Distributive Lattices, J. Aust. Math. Soc. (SeriesA), Vol.31 (1981), 77-91.
- [9] Swamy, U.M. and Ramesh, S., Birkhoff center of ADL, Int. J. Algebra, Vol.3 (2009), 539-546.
- [10] T. Traczyk, Axioms and Properties of Post algebra, Coll. Math., Vol X, 1963, pp 193-200.

ACKNOWLEDGEMENTS

This paper is dedicated to my beloved wife Smt. K. Ramanawin.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page | 260

AUTHORS' BIOGRAPHY

Dr. Naveen Kumar Kakuman working in Kakaraparti Bavanarayana College Degree and P.G. College, Vijayawada. He has made an indelible mark. He have been focused on ADLs particularly, Heyting ADLs, BL-ADLs, Post ADLs. He has more than 15 research papers to his credit, published in rep uted national & international journals and he has presented 7 research papers in International and National seminars and Conferences. He is also acted as reviewer of reputed journal. Recently, he was take up a minor research project sanctioned by U.G.C.

G.C. Rao, presently working as a Professor in Dept. of Mathematics, Andhra University. Since his doctoral thesis in 1981, Dr. G.C. Rao's profile research contributions have been focused on C-Algebras, ADLs and Sheaf Theory. So far he has advised 12 students for doctoral degree & 12 students for M.Phil. He has more than 70 research papers to his credit, published in reputed national & international journals. He is also on the editorial board of many reputed journals. Apart from his invaluable contribution to research and teaching at university level, he has also authored 8 text books to cater to the needs of under graduate and intermediate students.