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Abstract: In this paper,  it is proved that a 2-orsion free semi-prime*-ring(semi    simple *-

ring) admits a generalized (,)*-derivation F with an associated nonzero (,)*-derivation d, 

then F maps from R into Z(R).Using these it is searched for a prime*-ring which results either 

F= 0  or R is commutative.

 

1. INTRODUCTION 

Over the last few decades, Several authors  have  investigated  the  relationship  between  the 

Commutativity of a ring R and the existence of certain specific derivations of R. 

(Cf.,[1],[2],[6],[9] where further   references  can be looked).The  first  result  in this direction is 

due to posner[11] who proved that if a prime ring R admits a non-zero derivation d Such that 

[d(x),x]Z(R). xR, then R is commutative. An analogous result  for centralizing 

automorphisms on prime rings was obtained by Mayne [10].A number of  authors have  extended 

these theorems of Posner and Mayne.They have showed that derivations, auto orphisms, and some 

related mappings cannot be centralized on certain subset of non-commutative prime and some 

other rings. For these results refer the reader ([2],[3],[9]) where the further references can be 

found. In [4] the description of all centralizing additive mappings of a prime ring R of 

characteristic not equal to 2 was given. See also [3] where similar results for some other rings are 

presented. In the year 1990, Bresar and Vukman [6] established that a prime ring must be 

commutative if it admits a non-zero left derivation. Further,Vukman[14] extended the above 

mentioned result for semi-prime rings admits a Jordan left derivation  then   is a derivation 

which maps R into Z( R).In this section our objective is to explore similar types of problems in 

the setting of *-rings with generalized (αβ)*-derivation. 

Throughout the discussion, R will denote an associative ring with center Z(R). For any x, y∈ R, the 

symbol [x, y] will denote the commutator  xy − yx. We shall make extensive use of the following basic 

commutator identities without any specific mention:[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + 

[x, y]z for all x, y, z ∈ R. A ring R is prime if for x, y ∈ R, xRy = {0} implies either x = 0 or y = 0, 

and R is semiprime if xRx = {0} implies x = 0. A ring is said to be 2-torsion free if 2x = 0 then 

x= 0.A semi-prime *-ring is defined as xa*x = 0 x = 0. 

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. 

An additive mapping x → x∗ of R into itself is called an involution if the following conditions 

are satisfied: (i) (xy)∗ = y∗x∗, a n d  (ii) (x∗)∗ = x for all x, y ∈ R. A ring equipped with an 

involution is called a ∗-ring or Ring with involution. Let R be a ∗-ring. A n  additive mapping d:  

R → R is said to be a  ∗-derivation  if d(xy) = d(x)y∗ + xd(y) holds for all x, y ∈ R. An additive 

mapping d : R → R is said to be reverse derivation if  d(xy)=d(y) x+y d(x) holds for all x,y∈ R. 

An additive mapping d:  R → R is called a  reverse∗-derivation if  d(xy) = d(y)x∗ + yd(x) holds 

for all x, y ∈ R. An additive mapping d: R → R said to be (α, β)
*
- derivation if d(xy)=d(x) α(y*) + 

β(x)d(y) holds for all x, y ∈ R. An additive mapping d: R → R  is      said to  be  reverse (α, β)
*
 -

derivation if d(xy) =d(y)α(x 
*
) +(y)d(x) holds for all x, y ∈ R.  An additive mapping F : R → R is 
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called a generalized derivation if there exists a derivation d : R → R such that F (xy) = F (x)y + 

xd(y) holds for all x, y ∈ R. An additive mapping  F : R → R  is  called  a  generalized *-derivation if 

there exists a *-derivation   d : R → R such that F (xy) = F (x)y* +xd(y) holds for all x, y  R. Let α,β 

be automorphisms of  R. An additive mapping F : R → R is called a generalized  (α,β)*-

derivation  with   associated (α, β) *-derivation d   if   F (xy) =F (x) α (*) + β(x)d(y) . F is called a 

generalized reverse (α, β)*-derivation with associated reverse  (α, β)
*
 -derivation  d  if   F (xy) =F 

(y)α(x*) + β(y)d(x) holds for all x, y  R. An additive mapping F : R → R is called right(resp left) 

α*-Centralizer  if    F(xy)=F(x) α(y*)  (resp F(xy) = α(y*) F(x).  In[5]  Brešar and  vukman   

proved  that  if  a   prime ∗-ring  R   admits a  ∗-derivation(resp. reverse ∗-derivation) d, then either d 

= 0 or R  is commutative. Further, the author   Shakir Ali [13] together     with      Ashraf [1] extended the   

above   mentioned   result for   semi prime ∗-rings.  During    the last few decades many authors have 

studied derivations in the context of prime and semi-prime rings with involution (viz., [1], [5], [7], 

[8], [9], and [12]). 

The aim of the present paper is to establish some results involving generalized (α,β) *-derivations 

and generalized reverse(α,β)*-derivations. The obtained results generalizes the result given by 

Brešar and Vukman [5] to a large class of ∗-rings.  

Next we prove the result on 2-torsion free semi-prime *-ring. 

2. MAIN RESULTS 

Theorem2.1: Let R be a 2-torsion free semi-prime*- ring. if R admits a generalized (α,β)* -

derivation F with an associated non-zero (α,β)
* 
-derivation d, then F maps from R to Z(R). 

Proof: Let F be a generalized (α,β)
*
-

 
derivation with an associated non-zero (α,β)

*
-

   
derivation, 

then we have 

F(xy) = F(x)α(y*)+β(x)d(y) x,y R                                                                                             (1) 

Replacing y by yz in (1) we get 

F(xyz) = F(x)α(  (yz)* )+β(x) d(yz). 

Since d is (α,β)* -derivation then 

F(xyz)= F(x) α(z*y*)+β(x) ( d(y)α(z*)+β(y)d(z)  )= F(x)α(z*)α(y*)+β(x)d(y) α(z*)+β(x)β(y)d(z)                     

                                                                                                                                                        (2) 

On the other hand 

F(xyz)=F( xy(z) )
 . 

           = F(xy) α(z*)+ β(xy) d(z). 

           = F(x) α(y*)α(z*)+ β(x) d(y) α(z*)+ β(x β(y)d(z). 

Comparing (1) and (2) we get 

F(x) [α(z*),α(y*]=0.                                                                                                                        (3) 

Replacing z* by z, y* by y in (3) we get 

F(x)[α(z),α(y)]=0.                                                                                                                           (4) 

Replacing z by zF(x) in (4) we get 

F(x)α(z)[ α(F(x),α(y)] +F(x) [α(z),α(y)] α(F(x) = 0. 

Using (4) we have 

F(x)α(z)[α(F(x),α(y)]=0.                                                                                                                 (5) 

Left multiplication of (5) by   α( yF(x) ) we get  

α(yF(x) )  F(x)α(z) [ α(F(x) ,α(y) ] = 0.         

α(y)α(F(x)F(x)α(z)[α(F(x),α(y)] = 0.                                                                                              (6)  
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Left multiplication of (5) by α( F(x)y )  we get 

α( F(x)y )  F(x) (z)  [ α(F(x) ,α(y) ] = 0.      

=α(F(x)α(y) F(x) α(z)  [ α(F(x),α(y) ] = 0                                                                                       (7)  

Comparing (6) and (7) we get 

[α(F(x),α(y)] F(x) α(z) [ α(F(x),α(y) ] = 0. 

I.e) [α(F(x),α(y)] R [ α(F(x),α(y) ] = 0.x,yR. 

Semi-Primeness of R forces the above equation to 

[ α(F(x ),α(y)] = 0.x,yR. 

α(F(x) α(y) -  α(y) α(F(x) = 0 . 

α(F(x) y) -  α(yF(x) ) = 0. 

α(F(x) y - yF(x) ) = 0. 

α [F(x),y] = 0. x,yR 

Since α≠0 is an automorphism of R we get 

[F(x),y] = 0. x,yR. 

Hence F is mapping from R into Z(R).  

Next theorem deals with a semi-prime*-ring R admits an additive mapping G from R to itself 

satisfying G(xy) = G(x) α(y*).x,yR ,   then  G maps  from R to center of  R. 

Theorem2.2: Let R be a semi-prime*-ring. If G:RR is an additive mapping such that 

 G(xy)= G(x)α(y*).x,yR ,   then  G maps  from R to Z(R). 

Proof:  By assumption we have G(xy)= G(x)α(y*).x,yR. 

Now compute G(xzy) in two different ways. On the one hand 

G(xzy) = G(x(zy)) = G(x) α( (zy)*). 

= G(x) α( y*z*)  =   G(x) α(y*) α(z*)                                                                                             (8) 

On the other hand 

G(xzy)=G((xz)y)=G(xz)α(y*)                                                                                                     

=G(x) α(z*) α(y*)                                                                                                                           (9) 

Comparing    (8) and (9) we get  

G(x)[α(z*),α(y*)]= 0.                                                                                                                    (10) 

Replacing z* by z,   y* by y   in (10) we get 

G(x)[α(z),α(y)]= 0.                                                                                                                        (11) 

Replacing   z by zG(x) in (11) we  get 

G(x) [α(zG(x),α(y) ] = 0. 

G(x) [α(z)α(G(x),α(y) ] = 0. 

G(x) [ α(z),α(y)] αG(x)+ G(x) α(z) [ α(G(x),α(y) ] = 0. 

Using (11) we obtain G(x)α(z)[α(G(x),α(y)] = 0.                                                                         (12)  

Left multiplication of (12) by α( yG(x) )  we get 

α(yG(x) ) G(x)α(z) [ α(G(x), α(y) ] = 0.      

α(y)α(G(x) G(x) α(z)[α(G(x),α(y)]  = 0                            .                                                           (13)  

Left multiplication of (12) by α(G(x)y )  we get  
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α( G(x) y ) G(x) α(z) [ α(G(x),α(y) ] = 0.       

α(G(x))α(y)G(x)α(z)[ α(G(x),α(y) ] = 0                                                                                        (14)  

Comparing   (13) and (14)  we get 

[α(G(x),α(y)] R [ α(G(x),α(y) ] = 0.x,yR.  

Semi-Primeness of R forces the above equation to 

[α(G(x ),α(y) ] = 0.x,yR 

α( G(x) )  α(y) - α(y) α(G(x)) = 0 . 

α(G(x) y) – α (yG(x) ) = 0. 

α( G(x) y - yG(x)  ) = 0. 

α [G(x),y] = 0. .x,yR 

Since α≠0 is an automorphism of  R we get  [G(x),y] = 0. x,yR. 

Hence G maps from R into Z(R).  

Next we deal with a prime*-ring R and semi-simple*-ring. 

Corollary 2.3: Let R be a prime *-ring. If R admits a generalized (α,β) *-
  
derivation F with an 

associated non-zero (α,β)
*  

-
 
derivation d, then either F = 0 or R is commutative. 

Proof:     In the view of Theorem 1 we have  

F(x)[α(y),α(z)]= 0. x,y,zR.                                                                                                      (15) 

Replacing y by yt in (15) we get   F(x) [α(yt),α(z)] = 0  

F(x) [α(y) α(t),α(z) ] = 0. 

=F(x)[α(y),α(z)]α(t)+ F (x)α(y) [ α(t),α(z)] = 0.                                                                           (16) 

=F (x) α(y) [α(t),α(z)] = 0.x,y,z R.(By 15) 

= F (x)R [ α(t),α(z)] = 0.x,t,zR.                                                                                               (17) 

Primness of R forces (17) to either F (x) = 0 or [ α(t),α(z)] = 0. x,t,z,R.   

Consider [ α(t),α(z)] = 0.t,zR. 

α(t) α(z) - α(z) α(t) = 0 . 

α(tz) - α(zt) = 0. 

α ( [t,z] ) = 0. 

Since α≠0 is an automorphism of R we get [t, z] = 0. t,zR. 

Hence either F = 0 or R is commutative. 

Corollary2.4: Let  R be a semi-simple *-ring.If R admits generalized (α,β) *-
   

derivation F with 

an associated non-zero (α,β)
* 
-
  
derivation d, the F maps from R  into Z(R). 

Theorem 2.5: Let R be semi- prime *-ring . If R admits a generalized  reverse(α,β) *-
   

derivation 

F with an associated non-zero reverse (α,β)
*  

-
  
derivation d,then [d(x),z ] = 0.  

Proof: F(xy)=F(y)α(x*)+β(y)d(x) x,y R                                                                                  (18) 

Replacing x by xz in  ( 18) and using the fact that d is ()*-derivation we get 

F(xzy) = F(y) α ( (xz)*)+β(y) d(xz). 

           = F(y) α(z*x*) + β(y)  ( d(z) α(x*)+ β(z)d(x) ) 

          =F(y)α(z*)α(x*)+β(y)d(z)α(x*)+β(y)β(z)d(x).                                                                   (19) 

On the other hand 
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          F(xzy)=F( x(zy) )
 . 

                    = F(zy) α(x*)+β(zy)d(x). 

                    =F(y)α(z*)α(x*)+β(y)d(z)α(x*)+β(z)β(y)d(x).   (By (18)                                        (20) 

Comparing (19) and (20) we get 

[β(y),β(z)]d(x)=0x,y,zR  .                                                                                                        (21) 

Replacing y by d(x) y in (21) we get 

[β(d(x) y ) , β(z)] d(x) = 0. 

=[ β(d(x)  β(y) , β(z) ]d(x) = 0. 

= β(d(x) [ β(y) , β(z) ] d(x) +[  β(d(x) , β(z)]  β(y)d(x) = 0. 

= [β(d(x),β(z)] β(y)d(x) = 0. x,y,z R   (By (21)                                                                       (22) 

Right multiplication of (22) by β( z d(x) ) we get 

[β(d(x) , β(z)]  β(y)d(x) β( zd(x) )  = 0.                                                                                         (23) 

Right multiplication of (22) by β ( d(x)z  ) we get  

[β(d(x),β(z)]  β(y)d(x) β( d(x)z  ) = 0.                                                                                           (24) 

Comparing   (23) and (24) we get 

[β( d(x) ) , β(z) ]  β(y)d(x) [  β(d(x)) , β(z) ]  = 0. x,y,z R                       

[β( d(x) ) , β(z) ] R [  β(d(x) ) , β(z ) ] = 0.                              (25)        

By semi-primeness of R , (25)  reduces   to 

[β(d(x)) , β(z) ] = 0. x,z R     

= β(d(x) ) β(z) -  β(z) β(d(x) ) = 0. 

= β (d(x) z ) -  β( zd(x )  ) = 0. 

= β[d(x) , z]  = 0 

since β≠0 we get [d(x) , z]  = 0 x,z R     

Hence the theorem. 

The Next corollary states that a non-commutative prime*-ring R admits  generalized  reverse        

( α,β) *-
  
derivation F then  F is a right  α*- centralizer. 

Corollary 2.6:  Let R be  a non-commutative prime *-ring. If R admits a generalized reverse (α,β) 

*-
  
derivation F with an associated non-zero reverse (α,β) *-

  
derivation d, then F is a  right α*- 

centralizer 

Proof: By theorem (2.5) we have 

[β(y)β(z)]d(x)=0x,y,zR                                                                                                            (26) 

Replacing y by  xy in (26)  we  get 

[β(xy), β(z) ]d(x) = 0. x,y,z R . 

=[β(x) β(y), β(z) ]d(x) = 0.                                                                                                    

= β(x)[ β(y), β(z) ]d(x)+[ β(x), β(z) ] β(y) d(x) = 0. 

=[ β(x) ,β(z) ] β(y) d(x) = 0. x,y,z R  (By (26) 

= [ β(x), β(z)] R d(x) = 0. x,z R   

The primeness of R forces the above equation to either [ β(x), β(z)] = 0 or d(x) = 0. 

Consider [ β(x), β(z)] = 0  = β(x) β(z)- β(z) β(x) 
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                                         = β (xz)- β(zx). 

                                         = β [x,z] 

ie β [x,z] = 0. Since β≠0 is endomorphism of R we get [x,z] = 0 

Therefore either [x,z] = 0 or d(x)=0. 

Put U={xR[x,z] = 0} and V = {xRd(x) = 0}. 

Then U and V are additive subgroups of R such that U  V = R. 

But   R cannot be union of two of its proper subgroups   we find that 

U=R or V =R. 

If U = R then [x, z] = 0 x, z R and hence R is commutative, a contradiction. 

On the other hand if V =R then d(x) = 0.x R  then d = 0. 

F(xy) = F(y) α(x*) 

F is right α *-centralizer. 

Corollary 2.7:  Let R be semi-prime *-ring. If R admits non-zero reverse (α, β)
* 

-
 
derivation d, 

then  d maps from R into Z(R). 

Proof: choose F = d in the proof of theorem 3. 

3. CONCLUSION 

The motivation of the result for which a generalized (,)*-derivation F which is mapping from a 

2-torsion free semi-prime*- ring R to the center Z(R) plays a key role in this total article. Hence it 

is proved some other results regarding a prime*-ring R admits a generalized (α, β)*-
  
derivation F  

Which is equal to zero or R is commutative, a non-commutative prime*-ring R admits a 

generalized reverse (α, β)*-
  
derivation F then  F is right α*- centralizer. 
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