Total Domination on Generalized Petersen Graphs

Dr. S. Sudha Professor of Mathematics Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai, India ssudha50@sify.com **R. Alphonse Santhanam** Scholar Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai, India *alpho237@gmail.com*

Abstract: A total dominating set of a graph G is a set of the vertex set V of G such that every vertex of G is adjacent to a vertex in S. In this paper, we have developed an algorithm to find the minimal total dominating set of the generalized Petersen graphs P(n, k) when $n \ge 2k + 1, k = 1, 2$.

Keywords: neighborhood, domination, total domination and generalized Petersen graphs.

1. INTRODUCTION

Cockayne et al., [1] have introduced the concept of total domination set in graphs and this field is under the study of many researches. Teresa et al., [2] have given the comprehensive treatment of theoretical, algorithmic and application aspects of domination in graphs in detail and a survey of several advanced topics in dominations are also given.

In any real world situation which can be modeled by a graph and where domination is of interest, the particular locations commanding high domination values-strategic high grounds are obviously important.

Definition 1.1The open neighborhood of a vertex $v \in V(G)$ is denoted by N(v) and is defined as

$$N(v) = \{u \in V(G) | uv \in E(G)\}$$

The closed neighborhood of a vertex $v \in V(G)$ is denoted by N[v] and is defined as

$$N[v] = N(v) \cup \{v\}$$

Definition 1.2 The set $S \subset V$ of vertices in a graph G = (V, E) is a dominating set if every vertex $v \in V$ is an element of *S* or adjacent to an element of *S*.

Definition 1.3 A dominating set S of G is a total dominating set of G if every vertex of G is adjacent to a vertex in S and we represent it as TD - set.

Thus, a set $S \subseteq V$ is aTD - set in G if N(S) = V.

Definition 1.4 The total domination number of G, denoted by $\gamma_t(G)$, is the cardinality of the minimal TD - set of G

Definition 1.5 Let n, k be positive integers such that $n \ge 3$ and $1 \le k \le \left\lfloor \frac{n}{2} \right\rfloor$. The generalized Petersen graph $P_{n,k}$ is the graph whose vertex set is $\{a_i, b_i : 1 \le i \le n\}$ and whose edge set is $\{a_i, b_i\}, \{a_i, a_{i+1}\}, \{b_i, b_{i+k}\}: 1 \le i \le n\}$ where $a_{n+c} = a_c$ and $b_{n+c} = b_c$ for every $c \ge 1$.

Throughout this paper, we take the outer vertices as $u_1, u_2, ..., u_n$ and the inner vertices as $v_1, v_2, ..., v_n$ for P(n, k).

2. TOTAL DOMINATING SET OF THE GENERALIZED PETERSEN GRAPHS P(n, 1)

Theorem 2.1 The minimal total dominating set for the generalized Petersen graphs P(n, 1) with $n \ge 3$ except n = 7 is given by

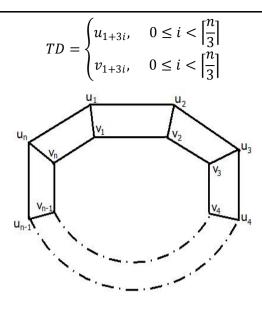


Figure 1. Generalized Petersen graph P(n,1)

Proof. Let $n \ge 3$ and $n \ne 7$. The vertex u_{1+3i} dominates the vertices u_{3i} , u_{3i+2} and v_{1+3i} for $1 \le i < \left[\frac{n}{3}\right]$ (modulo addition *i*); and the vertex v_{1+3i} dominates the vertices v_{3i} , v_{3i+2} and u_{1+3i} for $1 \le i < \left[\frac{n}{3}\right]$ (modulo addition *i*). For i = 0, the vertex u_1 dominates the vertices u_2 , u_n and v_1 ; and the vertex v_1 dominates the vertices v_2 , v_n and u_1 . As iranges from 0 to $\left[\frac{n}{3}\right]$, the minimal total dominating set thus obtained is as follows

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ v_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \end{cases}$$

Example 2.2 Consider the generalized Petersen graph P(6,1). Let $u_1, u_2, ..., u_6$ be the outer vertices and $v_1, v_2, ..., v_6$ be the corresponding inner vertices.

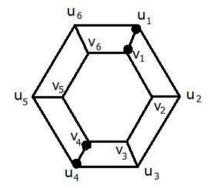


Figure 2. Generalized Petersen graph P(6,1)

By applying theorem 2.1, the minimal total dominating set of P(6,1) is $\{u_1, u_4, v_1, v_4\}$.

Remark 2.3 Consider the generalized Petersen graph P(7,1) when n = 7. Let $u_1, u_2, ..., u_7$ be the outer vertices and $v_1, v_2, ..., v_7$ be the corresponding inner vertices.

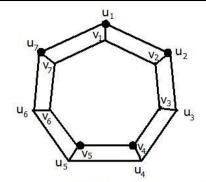


Figure 3. Generalized Petersen graph P(7,1)

The vertex u_1 dominates the vertices u_2 , u_7 and v_1 ; the vertex u_2 dominates the vertices u_1 , u_3 and v_2 ; the vertex u_7 dominates the vertices u_1 , u_6 and v_7 ; the vertex v_4 dominates the vertices v_3 , v_5 and u_4 ; and the vertex v_5 dominates the vertices v_4 , v_6 and u_5 . Thus a set of vertices $\{u_1, u_2, u_7, v_4, v_5\}$ dominates every vertex of P(7,1). Thus the minimal total dominating set is $\{u_1, u_2, u_7, v_4, v_5\}$.

3. TOTAL DOMINATING SET OF THE GENERALIZED PETERSEN GRAPHS P(n, 2)

Theorem 3.1 The minimal total dominating set for the generalized Petersen graph P(n, 2) is given by

(i) For n even, n > 8 there are two cases :

(a)
$$n \not\equiv 2(mod6)$$

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left[\frac{n}{3}\right] \\ v_{1+3i}, & 0 \le i < \left[\frac{n}{3}\right] \end{cases}$$

(b) $n \equiv 2 \pmod{6}$

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ v_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ & v_{n-2} \end{cases}$$

(ii)For n odd, n > 5 there are two cases :

(a) $n \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left[\frac{n}{3}\right] \\ v_{1+3i}, & 0 \le i < \left[\frac{n}{3}\right] \end{cases}$$

(b) $n \equiv 2(mod3)$

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ v_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ & v_{n-2} \end{cases}$$



Figure 4. Generalized Petersen graph P(n,2)

Proof. (i) Let *n* be even and n > 8. There are two cases:

Case (a):Let $n \not\equiv 2 \pmod{6}$. The vertex u_{1+3i} dominates the vertices u_{3i} , u_{3i+2} and v_{1+3i} for $1 \leq i < \left[\frac{n}{3}\right] \pmod{1}$ (modulo addition *i*); and the vertex v_{1+3i} dominates the vertices v_{3i-1} , v_{3i+3} and u_{1+3i} for $1 \leq i < \left[\frac{n}{3}\right] \pmod{1}$ (modulo addition *i*). For i = 0, the vertex u_1 dominates the vertices u_2 , u_n and v_1 ; and the vertex v_1 dominates the vertices v_3 , v_{n-1} and u_1 . We get the TD-set of P(n, 2) for all values of i, $0 \leq i < \left[\frac{n}{3}\right]$ as

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ v_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \end{cases}$$

Case (b):Let $n \equiv 2 \pmod{6}$. The vertex u_{1+3i} dominates the vertices u_{3i} , u_{3i+2} and v_{1+3i} for $1 \le i < \left[\frac{n}{3}\right]$; and the vertex v_{1+3i} dominates the vertices v_{3i-1} , v_{3i+3} and u_{1+3i} for $1 \le i < \left[\frac{n}{3}\right]$ (modulo addition *i*). For i = 0, the vertex u_1 dominates the vertices u_2 , u_n and v_1 ; and the vertex v_1 dominates the vertices $v_{3, -1}$ and u_1 ; and the vertex v_{n-2} dominates the vertices v_{n-4} , v_n and u_{n-2} . We get the TD-set of P(n, 2) for all values of i, $0 \le i < \left[\frac{n}{3}\right]$ as

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ v_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ & v_{n-2} \end{cases}$$

(ii) Let *n* be odd and n > 5. There are two cases :

Case (a): Let $n \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$. The vertex u_{1+3i} dominates the vertices u_{3i} , u_{3i+2} and v_{1+3i} for $1 \le i < \left\lceil \frac{n}{3} \right\rceil$ (modulo addition *i*); and the vertex v_{1+3i} dominates the vertices v_{3i-1} , v_{3i+3} and u_{1+3i} for $1 \le i < \left\lceil \frac{n}{3} \right\rceil$ (modulo addition *i*). For i = 0, the vertex u_1 dominates the vertices u_2 , u_n and v_1 ; and the vertex v_1 dominates the vertices v_3 , v_{n-1} and u_1 . We get the TD-set of P(n, 2) for all values of $i, 0 \le i < \left\lceil \frac{n}{3} \right\rceil$ as

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \\ v_{1+3i}, & 0 \le i < \left\lceil \frac{n}{3} \right\rceil \end{cases}$$

Case (b):Let $n \equiv 2 \pmod{3}$. The vertex u_{1+3i} dominates the vertices u_{3i} , u_{3i+2} and v_{1+3i} for $1 \le i < \left[\frac{n}{3}\right]$; and the vertex v_{1+3i} dominates the vertices v_{3i-1} , v_{3i+3} and u_{1+3i} for $1 \le i < \left[\frac{n}{3}\right]$ (modulo addition *i*). For i = 0, the vertex u_1 dominates the vertices u_2 , u_n and v_1 ; and the vertex v_1 dominates the vertices v_{n-2} dominates the vertices v_{n-4} , v_n and u_{n-2} . We get the TD-set of P(n, 2) for all values of i, $0 \le i < \left[\frac{n}{3}\right]$ as

$$TD = \begin{cases} u_{1+3i}, & 0 \le i < \left[\frac{n}{3}\right] \\ v_{1+3i}, & 0 \le i < \left[\frac{n}{3}\right] \\ & v_{n-2} \end{cases}$$

Remark 3.2 The values 5,6 and 8 of *n* are not included in the above theorem. Here we have given separately the TD-set of P(5,2), P(6,2) and P(8,2).

Consider the generalized Petersen graph P(5,2) given in fig-5. Let u₁, u₂, ... u₅ be the outer vertices and v₁, v₂, ... v₅ be the corresponding inner vertices. The vertex u₁ dominates the vertices u₂, u₅ and v₁; the vertex v₁ dominates the vertices v₃, v₄ and u₁; the vertex v₃ dominates the vertices v₁, v₅ and u₃; and the vertex v₄ dominates the vertices v₁, v₂ and u₄. Thus the set of vertices {u₁, v₁, v₃, v₄} dominates every vertex of P(5,2). Thus the minimal total dominating set is{u₁, v₁, v₃, v₄}.

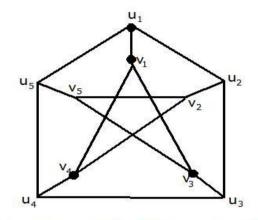


Figure 5. Generalized Petersen graph P(5,2)

Consider the generalized Petersen graph P(6,2) given in fig-6. Let u₁, u₂, ... u₆ be the outer vertices and v₁, v₂, ... v₆ be the corresponding inner vertices. The vertex u₁ dominates the vertices u₂, u₆ and v₁; the vertex u₄ dominates the vertices u₃, u₅ and v₄; the vertex v₁ dominates the vertices v₃, v₅ and u₁; and the vertex v₄ dominates the vertices v₂, v₆ and u₄. Thus the set of vertices {u₁, u₄, v₁, v₄} dominates every vertex of P(6,2). Thus the minimal total dominating set is{u₁, u₄, v₁, v₄}.

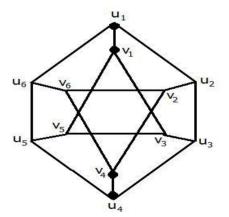


Figure 6. Generalized Petersen graph P(6,2)

3. Consider the generalized Petersen graph P(8,2)given in fig-7. Let u₁, u₂, ... u₈ be the outer vertices and v₁, v₂, ... v₈ be the corresponding inner vertices. The vertex u₁ dominates the vertices u₂, u₈ and v₁; the vertex u₄ dominates the vertices u₃, u₅ and v₄; the vertex v₁ dominates the vertices v₃, v₇ and u₁; the vertex v₄ dominates the vertices v₂, v₆ and u₄; the vertex v₆ dominates the vertices v₄, v₈ and u₆ and the vertex v₇ dominates the vertices v₁, v₅ and u₇. Thus the set of vertices {u₁, u₄, v₁, v₄, v₆, v₇} dominates every vertex of P(8,2). Thus the minimal total dominating set is{u₁, u₄, v₁, v₄, v₆, v₇}.

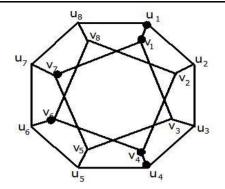


Figure 7. Generalized Petersen graph P(8,2)

4. In the above theorem 3.1, we note that the TD-set of the cases a(i) and a(ii) are same and for the cases b(i) and b(ii) also the TD-sets are same.

Example 3.3 Consider the generalized Petersen graph P(10,2) to illustrate the theorem 3.1. Let $u_1, u_2, ..., u_{10}$ be the outer vertices and $v_1, v_2, ..., v_{10}$ be the corresponding inner vertices. Here n = 10 By applying theorem 3.1(case a(i)), the minimal total dominating set of P(10,2) is $\{u_1, u_4, u_7, u_{10}, v_1, v_4, v_7, v_{10}\}$.

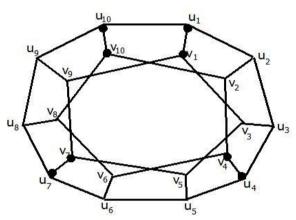


Figure 8. Generalized Petersen graph P(10,2)

4. CONCLUSION

In this paper we have found the minimal total dominating set of the generalized Petersen graphs P(n, k) when $n \ge 2k + 1, k = 1, 2$.

References

- [1] E. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, J. Graph Theory 10: 211-219, 2006
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York 1998.
- [3] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer publications, New York, 2010.
- [4] W.J. Desormeaux and T.W. Haynes, Total Domination in Graphs with diameter 2, J. Graph Theory 75: 91-103, 2014.
- [5] D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei and R. Yuster, Some remarks on domination, J.Graph Theory 46: 207-210,2004.
- [6] S. Sudha and R. Alphonse Santhanam, Double Domination on Generalized Petersen Graphs (Accepted for Publication).

AUTHORS' BIOGRAPHY

Dr.S.Sudha has got her Ph.D., in 1984. She has got 35 years of teaching and research experience. She is currentlyworking as a Professor in Mathematics at the Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005. Her fields of interest are Computational Fluid Dynamics, Graph Theory, Fuzzy Graphs and Queueing Theory. She has published more than 25 articles in journals. She has also published some books.

R. Alphonse Santhanam is a Scholar at Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005.He has published one article in a journal.