On $|N, q_n, r_n|$- Summability of Jacobi Series

Aditya Kumar Raghuvanshi
Department of Mathematics
IFTM University, Moradabad
U.P, India,
dr.adityaraghuvanshi@gmail.com

Abstract: In this paper we have established a theorem on $|N, q_n, r_n|$-summability of Jacobi series, which gives some new interesting results and generalizes some previous known results.

Keywords: $|N, q_n, r_n|$-summability method and Jacobi series.

Mathematical classification: 40D25, 40E05, 40F05 & 40C10.

1. INTRODUCTION

Let $f(x)$ be a function defined on the interval $-1 \leq x \leq 1$ such that the integral

$$
\int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} f(x) \,dx
$$

(1.1)

Is exist in the sense of Lebesgue for $\alpha > -1$ and $\beta > -1$. The Jacobi series corresponding to the function $f(x)$ is given by

$$
f(x) = \sum_{n=0}^{\infty} a_n P_n^{(\alpha, \beta)}(x)
$$

(1.2)

Where

$$
a_n = \frac{(2n + \alpha + \beta + 1)\Gamma(n + 1)\Gamma(n + \alpha + \beta + 1)}{2^{\alpha + \beta + 1}\Gamma(n + \alpha + 1)\Gamma(n + \beta + 1)} \int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} P_n^{(\alpha, \beta)}(x) \,dx
$$

If

$$
b_n = \frac{(2n + \alpha + \beta + 1)\Gamma(n + 1)\Gamma(n + \alpha + \beta + 1)}{2^{\alpha + \beta + 1}\Gamma(n + \alpha + 1)\Gamma(n + \beta + 1)}
$$

(1.3)

Then

$$
a_n = b_n \int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} P_n^{(\alpha, \beta)}(x) \,dx
$$

(1.4)

and $P_n^{(\alpha, \beta)}(x)$ are the Jacobi polynomials defined by the generating function

$$
2^{\alpha + \beta} (1 - 2xt + t^2)^{-1/2} \left[1 - t + (1 - 2xt + t^2)^{1/2}\right]^{-\alpha} \times \left[1 + t + (1 - 2xt + t^2)^{1/2}\right]^{-\beta} = \sum_{n=0}^{\infty} P_n^{(\alpha, \beta)}(x)t^n
$$

(1.5)

Let us write
\[F(\phi) = \{ f(\cos \phi) - A \}/2 \left((\sin \phi / 2)^{2^{n+1}} \right) \]

where \(A \) being a constant.

Let \(\{s_n\} \) be the sequence of partial sums of an infinite series \(\Sigma a_n \). Let \(\{r_n\} \) and \(\{q_n\} \) be any two sequences of positive real constants with \(R_n \) and \(Q_n \) as their \(n \)-th partial sums respectively and let

\[
(q \ast r)_n = \sum_{k=0}^{n} q_{n-k}r_k = \sum_{k=0}^{n} q_k r_{n-k}
\]
tends to infinity as \(n \to \infty \). (1.6)

If the sequence to sequence transformation is defined by (Borwein [1])

\[
t^q_s r_s = \frac{1}{(q \ast r)_n} \sum_{k=0}^{n} q_{k}r_{s-k}
\]

(1.7)

If

\[
t^q_s r_s \to s \quad \text{as} \quad n \to \infty
\]

then the sequence of partial sums \(\{s_n\} \) or infinite series \(\Sigma a_n \) is said to be summable \(|N, q_n, r_n| \) to \(s \).

2. KNOWN RESULTS

Dealing with Nörlund summability of Jacobi series Pandey [7] has established the following theorem.

Theorem 2.1

Let \(\alpha > - \frac{1}{2}, \quad \beta - \alpha > -1, \quad \beta + \alpha \geq -1 \). Suppose that

\[
\sum_{k=2}^{n} \frac{Q_n}{k^{n+\alpha+(1/2)} \log k} = O \left(\frac{Q_n}{n^{\alpha+(1/2)}} \right), \text{ as } n \to \infty.
\]

(2.1)

Also suppose that

\[
\int_{1-\epsilon}^{1} | f(x) - A | \, dx = O \left(\frac{t}{\log (\frac{1}{\epsilon})} \right), \quad t \to 0
\]

(2.2)

and that the antipole condition

\[
\int_{-\epsilon}^{b} (1 + x)^{(\beta - \alpha - 1)/2} | f(x) | \, dx < \infty
\]

(2.3)

is satisfied, where \(b \) is fixed then the series (1.2) is summable \(|N, q_n| \) at the point \(x = +1 \) to the sum \(A \).

3. MAIN RESULTS

The object of this paper is to generalize the Theorem 2.1 to a more general class on \(|N, q_n, r_n| \) - summability of the Jacobi series.

Theorem 3.1

Let \((N, q_n, r_n) \) be a summability method defined by a non-negative real constants sequences \(\{q_n\} \)

and \(\{r_n\} \) and let \(\alpha > - \frac{1}{2}, \beta - \alpha > 1, \beta + \alpha \geq -1 \) such that
On \(|N, q_n, r_n|\) - Summability of Jacobi Series

\[
\sum_{k=2}^{n} \frac{(q^* r)_k}{k^{n+(1/2)} \log k} = O \left(\frac{(q^* r)_n}{n^{a+(1/2)}} \right) \quad \text{as } n \to \infty
\]

(3.1)

Also suppose that

\[
\int_{1/2}^{1} |f(u) - A| \, du = O \left(\frac{t}{\log (1/t)} \right) \text{, as } t \to O
\]

(3.2)

and the antipole condition

\[
\int_{-1}^{b} (1 + x)^{(d - d - 1)/2} |f(x)| \, dx < \infty
\]

(3.3)

are satisfied where \(b\) is fixed then the series \((1.2)\) is summable \(|N, q_n, r_n| \) at \(x = +1\) to the sum \(A\).

4. LEMMAS

We have required the following lemmas to prove the theorem:

Lemma 4.1

Szego [10] for \(\alpha > -1, \beta > -1\)

\[
P^{(a, b)}_n (\cos \phi) = \begin{cases}
O(n^a), & \text{when } 0 \leq \phi \leq 1/n \\
O(n^\beta), & \text{when } \pi - \frac{1}{n} \leq \phi \leq \pi \\
\frac{1}{(a+\beta+1)^{1/2}} \left(\sin \frac{\phi}{2} \right)^{(2a+1)/2} \left(\cos \frac{\phi}{2} \right)^{(2\beta+1)/2} \left(\cos \left(\frac{2n + a + \beta + 1}{2} \right) \phi - (2\alpha + 1) \frac{\pi}{4} \right) + O(1), & \text{when } \frac{1}{n} \leq \phi \leq \pi - \frac{1}{n}
\end{cases}
\]

Lemma 4.2

Let \(\alpha > -\frac{1}{2}, \beta > -1\) and also let

\[
N_n(\phi) = \frac{1}{(q^* r)_n} (2)^{a+\beta+1} \sum_{k=0}^{n} q_k r_{n-k} \lambda_{n-k} P^{(a+1, \beta)}_{n-k} (\cos \phi)
\]

Where

\[
\lambda_{n-k} = \frac{2^{-a-\beta-1} \Gamma(n + \alpha + \beta + 2)}{\Gamma(\alpha + 1) \Gamma(n + \beta + 1)} \sim \frac{2^{-a-\beta-1} n^{a+1}}{\Gamma(\alpha + 1)}
\]

Then

For \(0 \leq \phi \leq \frac{1}{n}\)

\[
|N_n(\phi)| = O(n^{2a+2})
\]

(4.2)

For \(\frac{1}{n} \leq \phi \leq \pi - \frac{1}{n}\)

\[
|N_n(\phi)| = O \left(\frac{n^{1/2}}{(q^* r)_n} \left(\frac{\sin \phi}{2} \right)^{(2a+1)/2} \left(\cos \phi \right)^{(2\beta+1)/2} \right)
\]

(4.3)
For
\[\pi - \frac{1}{n} \leq \phi \leq \pi \]
\[|N_n(\phi)| = O(n^{\alpha + \beta + 1}) \] \hspace{1cm} (4.4)

Proof:

For \(\alpha > -\frac{1}{2} \) and \(\beta > -1 \) and \(\{q_n\} \) and \(\{r_n\} \) satisfy the conditions of theorem, using Lemma 4.1 for \(0 \leq \phi \leq \frac{1}{n} \) then condition (4.2) is satisfied. For the estimation of (4.3) we use the Lemma (4.1) and Lemma (4.3) for \(\pi - \frac{1}{n} \leq \phi < \pi \).

For \(\frac{1}{n} \leq \phi \leq \pi - \frac{1}{n} \) we have
\[N_n(\phi) = O\left(\frac{1}{(q \ast r)^n}\sum_{k=1}^{n-1} q_k r_{n-k} (n-k)^{(2\alpha+1)/2} \left(\sin \frac{\phi}{2}\right)^{(2\alpha+1)/2} \left(\cos \frac{\phi}{2}\right)^{(2\beta+1)/2}\right) \]
\times \left[\cos\{(n-k+\rho)\phi - \gamma\} + \frac{O(1)}{(n-k)\sin \phi}\right]

Since for fixed \(n, (r_{n-k}) \) is non-increasing we can deal with the first term of the right by using the second mean value theorem and apply the result of Lemma (4.3) and the required estimate follows.

Lemma 4.3: (Khare [5]) If \(\{q_n\} \) is a non-negative, non-increasing and \(\{r_n\} \) is a non-negative, non-decreasing sequence, then
\[\sum_{k=0}^{n-1} q_k r_{n-k} (n-k)^{(2\alpha-1)/2} = O\left((q \ast r)_n n^{(2\alpha-1)/2}\right) \]

Lemma 4.4: The assumption (3.1) implies that
\[n^{\alpha + (\frac{1}{2})} = O\{q \ast r\}_n \] \hspace{1cm} (4.5)
where \(\alpha < \frac{1}{2} \) \hspace{1cm} (4.6)

Proof: The expression on the left of (3.1) is increasing and hence greater than equal to a positive constant. Hence (3.1) implies that, for some positive constant \(c \)
\[(q \ast r)_n > cn^{(2\alpha+\frac{1}{2})} \]
On substituting this, we see that the expression on the left of (3.1) tends to \(\infty \) as \(n \to \infty \) and (4.5) follows.

Since \(q_n \) and \(r_n \) are positive non increasing, \((q \ast r)_n = O(n) \) and (4.6) therefore follows by (4.5).

Lemma 4.5: (Pandey [7]) condition (3.2) is equivalent to
\[F(t) = \int_0^t F(\phi) d\phi = O\left(\frac{t^{2\alpha+2}}{\log(1/t)}\right) \text{ as } t \to 0 \] \hspace{1cm} (4.7)
On $|N, q_n, r_n|$ Summability of Jacobi Series

Where

$$F(\phi) = \left[f(\cos \phi) - A \right] \left(\frac{\phi}{2} \right)^{2n+1} \cos \frac{\phi}{2}.$$

Lemma 4.6: Let $\beta - \alpha > -1$. The antipole condition

$$\int_{-1}^{1} (1 + x)^{(\beta - \alpha - 1)/2} | f(x) | dx < \infty$$

is equivalent to

$$\int_{-1}^{1} (1 + x)^{(\beta - \alpha - 1)/2} | f(x) - A | dx < \infty$$

Further

$$\int_{a}^{\pi} (\cos \frac{\phi}{2})^{-\beta - 1} | f(\phi) | d\phi < \infty \quad (4.8)$$

5. **Proof of Theorem**

The nth partial sum of the series (1.2), at the point $x = +1$ is given by Obrechkoff [6].

$$S_{n}(1) = 2^{n+\beta+1} \int_{0}^{\pi} (\sin \frac{\phi}{2})^{2n+1} (\cos \frac{\phi}{2})^{2\beta+1} f(\cos \phi) s_{n}(1, \cos \phi) \sin \phi d\phi \quad (5.1)$$

Where $S_{n}(1, \cos \phi)$ denote the nth partial sum of the series

$$\sum_{n=0}^{\infty} \frac{P_{n}(\alpha, \beta)(1) P_{n}(\alpha, \beta)(\cos \phi)}{b_{n}}.$$

Rao [9] has been shown that

$$S_{n}(1, \cos \phi) = \lambda_{n} P_{n}(\alpha + 1, \beta)(\cos \phi)$$

Therefore

$$S_{n}(1) - A = 2^{n+\beta+1} \lambda_{n} \int_{0}^{\pi} (\sin \frac{\phi}{2})^{2n+1} (\cos \frac{\phi}{2})^{2\beta+1} | f(\cos \phi) - A | P_{n}(\alpha + 1, \beta)(\cos \phi) d\phi$$

$$= 2^{n+\beta+1} \lambda_{n} \int_{0}^{\pi} F(\phi) P_{n}(\alpha + 1, \beta)(\cos \phi) dQ \quad (5.2)$$

The (N, q_n, r_n) means of the series (1.2) of the point $x = +1$ is given by

$$t_{n} = \frac{1}{(q^{*} r_{n})} \sum_{k=0}^{n} q_{k} r_{n-k} s_{n-k}(1)$$

$$t_{n} - A = \frac{1}{(q^{*} r_{n})} \sum_{k=0}^{n} q_{k} r_{n-k} \{ s_{n-k}(1) - A \}$$

$$= \frac{1}{(q^{*} r_{n})} \sum_{k=0}^{n} q_{k} r_{n-k} 2^{n+\beta+1} \lambda_{n-k} \int_{0}^{\pi} F(\phi) P_{n-k}(\alpha + 1, \beta)(\cos \phi) d\phi$$

$$= \int_{0}^{\pi} f(\phi) N_{n}(\phi) d\phi \quad (5.3)$$

Where

$$N_{n}(\phi) = \frac{1}{(q^{*} r_{n})} (2)^{n+\beta+1} \sum_{k=0}^{n} q_{k} r_{n-k} \lambda_{n-k} P_{n-k}(\alpha + 1, \beta)(\cos \phi)$$
To prove the theorem we have to show that
\[I = \int_0^\pi F(\phi) N_n(\phi) d\phi = O(1), \text{ as } n \to \infty \]

\[I = \left(\int_0^{1/n} + \int_{1/n}^\delta + \int_{\delta}^{\pi/2} + \int_{\pi/2}^\pi \right) F(\phi) N_n(\phi) d\phi \]

\[= I_1 + I_2 + I_3 + I_4 \text{ (say)} \quad (5.4) \]

Now
\[|I_1| = \left| \int_0^{1/n} f(\phi) N_n(\phi) d\phi \right| \]

Using (4.1), we have
\[I_1 = O\left(n^{2\alpha+2} \right) O\left(\frac{R^{2\alpha-1}}{\log n} \right) \]

\[= O\left(\frac{1}{\log n} \right) \]

\[= O(1) \text{ as } n \to \infty \quad (5.5) \]

Next
\[|I_2| = \left| \int_{1/n}^\delta F(\phi) N_n(\phi) d\phi \right| \]

Using (4.2) we have
\[I_2 = O\left(\int_{1/n}^\delta f(\phi) \left\{ n^{(2\alpha+1)/2} \right(q \ast r \ast_1(\phi) - q \ast r \ast_2(\phi) \right\} \left(\sin \frac{\phi}{2} \right)^{-(2\alpha+1)/2} d\phi \right) \]

\[+ O\left(\int_{1/n}^\delta f(\phi) \left\{ n^{(2\alpha+1)/2} \right(\sin \frac{\phi}{2} \right)^{-(2\alpha+1)/2} d\phi \right) \]

\[= I_{2,1} + I_{2,2} \quad (5.6) \]

For given any \(c > 0 \), let be chosen so that
\[|f_1(\phi)| \leq \frac{c\phi^{2\alpha+2}}{\log(1/\phi)}, \text{ for } 0 \leq \phi \leq \delta \]

Then
\[|I_{2,1}| \leq \frac{M^{(2\alpha+1)/2}}{q \ast r \ast_1} \int_{1/n}^\delta f(\phi) \left(q \ast r \ast_1(\phi) - q \ast r \ast_2(\phi) \right) \phi^{-(2\alpha+1)/2} d\phi \]

Where, we suppose \(M \) is used throughout the paper to denotes a positive constant, which may be different at each occurrence.

\[|I_{2,1}| = \frac{M^{(2\alpha+1)/2}}{q \ast r \ast_1} \left\{ \left[F_1(\phi)(q \ast r \ast_1(\phi) - q \ast r \ast_2(\phi)) \right]_{1/n}^\delta - \int_{1/n}^\delta f_1(\phi) d\left(\frac{q \ast r \ast_1(1/\phi)}{\phi^{(2\alpha+1)/2}} \right) \right\} \]

\[= I_{2,1,1} + I_{2,1,2} \quad (5.7) \]
Now if \(m(\delta) \) denotes a constant depending on \(\delta \), we have for fixed \(\delta \).

\[
I_{2,3,1} = m(\delta) n \frac{(2a+1/2)}{(q*r)_a} + O\left(\frac{1}{\log n}\right)
\]

\[= O(1) \text{ as } n \to \infty \quad (5.8)\]

And

\[
|I_{2,1,1}| \leq m_n \frac{n(2a+1/2)}{(q*r)_a} \left[\int_{\log \log (\frac{1}{\delta})}^{\phi(2a+3/2)} d \left((q*r)_{(2a+3/2)} \right) \right]
\]

\[
\leq m_n \frac{n(2a+1/2)}{(q*r)_a} \left[\int_{\phi(2a+3/2)}^{\phi(2a+1/2)} d \left((q*r)_{(2a+1/2)} \right) \right]
\]

\[
\leq m_n \frac{n(2a+1/2)}{(q*r)_a} \left[\int_{\phi(2a+1/2)}^{\phi(2a+3/2)} d \left((q*r)_{(2a+3/2)} \right) \right]
\]

\[
= m_n \frac{n(2a+1/2)}{(q*r)_a} \left[J + ((2a+3/2)k) \right] \quad (say)
\]

Since \((q*r)_{(x)}\) has a jump of \((q*r)_x\) at \(x = k\) therefore

\[
J = \sum_{k=a}^{n} (q*r)_k \frac{1}{\log k}
\]

Where \(a\) is a fixed positive integer

But, since \((q*r)_k\) is non-negative, non-increasing, \((k+1)(q*r)_k \leq O(q*r)_k\) so

\[
J = O\left(\sum_{k=a}^{n} \frac{(q*r)_k}{\log k} \right)
\]

Also

\[
k \leq \sum_{k=a-1}^{n} (q*r)_k \int_{x^{-1/2}}^{1} \frac{d}{\log x}
\]

\[
= O\left(\sum_{k=a-1}^{n} \frac{(q*r)_k}{\log k} \right)
\]

By (3.1) we have

\[
|I_{2,1,1}| \leq m_n \quad (5.9)
\]

Again

\[
|I_{2,2}| \leq m_n \frac{1}{(2a-1/2)} \int_{\log \log (\frac{1}{\delta})}^{\phi(2a-5/2)} d \phi
\]

\[
= n \frac{1}{(2a-1/2)} \left[m[F_1(\phi)\phi(2a-5/2)]_{1/n}^{\delta} + m \int_{1/n}^{\delta} F_1(\phi)\phi(2a-7/2) d \phi \right]
\]
Now

\[I_{2,2,1} = m \left(\delta \right) n^{(2a-1)/2} + O \left(\frac{1}{\log n} \right) \]

\[= O(1) \text{ as } n \to \infty \] (5.10)

Also

\[|I_{2,2,2}| \leq m_n n^{(2a-1)/2} \int_{1/n}^{\delta} \frac{\phi^{(2a-3)/2}}{\log(1/\phi)} d\phi \]

\[\leq m_n n^{(2a-1)/2} \int_{1/n}^{\delta} \frac{x^{-(2a-3)/2}}{\log x} dx \]

\[= m_n \text{ because } \alpha < \frac{1}{2} \] (5.11)

Hence

\[I_2 = O(1) \text{ as } n \to \infty \] (5.12)

Next

\[I_3 = O \left(\frac{n^{(2a+1)/2}}{(q*r)_n} \int_{x_{1/n}}^{\delta} \cos \left(\frac{\phi}{2} \right)^{-2\beta -1/2} |F(\phi)| d\phi \right) + O \left(n^{(2a-1)/2} \int_{\phi_{(1/n)}}^{\phi_{1/n}} \cos \frac{1}{2} \phi^{1/2 - \beta -1/2} |F(\phi)| d\phi \right) \]

\[= I_{3,1} + I_{3,2} \text{ (say)} \]

\[\alpha \geq -\frac{1}{2} \text{, so that} \]

\[-\beta - \frac{1}{2} \geq -\beta - \alpha - 1 \]

So that (4.8) Implies that

\[\int_{\phi_{1/n}}^{\phi_{1/n}} \cos \frac{1}{2} \phi^{1/2 - \beta -1/2} |F(\phi)| d\phi < \infty \]

\[I_{3,1} = O \left(\frac{n^{(2a+1)/2}}{(q*r)_n} \right) \]

Hence

\[= O(1) \text{ as } n \to \infty \] (5.13)

Now it is follows from (4.7) that, given any \(\varepsilon > 0 \), we can choose \(\eta > 0 \), so that

\[\int_{x-\eta}^{x} (\cos(\phi/2))^{-n-\beta-1} |F(\phi)| d\phi < \varepsilon \] (5.14)

Thus, supposing that \(n > \frac{1}{\eta} \), we have

\[n^{(2a-1)/2} \int_{x-\eta}^{x} (\cos(\phi/2))^{-2\beta -1/2} |F(\phi)| d\phi \]
On $|N, q_n, r_n|$ - Summability of Jacobi Series

$$\leq n^{(2a-1)/2} \left[\cos \frac{1}{2} (\pi - \frac{1}{n}) \right]^{(2a-1)/2} \int_{\pi - \eta}^{\pi} (\cos \frac{1}{2} \phi)^{-\alpha - \beta - 1} \left| F(\phi) \right| d\phi$$

$$\leq 2 \epsilon$$

by (5.16), provided that n is sufficiently large. But, once η has been fixed.

$$n^{(2a-1)/2} \int_{\pi - \eta}^{\pi} (\cos \frac{1}{2} \phi)^{-\alpha - \beta - 1} \left| F(\phi) \right| d\phi$$

Is just a constant, and hence can be made $< \epsilon$, by choosing n sufficiently large. Hence

$$I_3 = O(1) \quad (5.17)$$

Finally, since $\alpha + \beta + 1 > 0$

$$I_4 = O \left(n^{\alpha + \beta + 1} \int_{\pi - \eta}^{\pi} \left| F(\phi) \right| d\phi \right)$$

$$= O \left(\int_{\pi - \eta}^{\pi} (\cos \frac{1}{2} \phi)^{-\alpha - \beta - 1} \left| F(\phi) \right| d\phi \right)$$

$$= O(1) \quad (5.18)$$

Using (5.5), (5.13), (5.17) and (5.18) we have

$$I = O(1)$$

This completes the proof of the theorem.

6. CONCLUSIONS

This theorem has more general result rather than the result of B.N. Pandey [7] that will enrich the literature on Jacobi summability theory.

ACKNOWLEDGEMENTS

The author is thankful to Dr. B.K. Singh, (Professor and Head of the Dept. of Mathematics, IFTM Uni. Moradabad, U.P., India) for his generous help during the preparation of this paper.

REFERENCES

AUTHOR’S BIOGRAPHY

Mr. Aditya Kumar Raghuvanshi is presently a research scholar in the Dept. of Mathematics, IFTM University Moradabad, India. He has completed his M.Sc. (Mathematics) and M.A. (Economics) from M J P Rohilkhand University Bareilly (U.P.), B. Ed. from C C S University Meerut (U.P.) and he has also completed his M.Phil. (Mathematics) from The Global Open University Nagaland, India. He has published twenty one research papers in various International Journals. His fields of research are O.R., Sum ability and approximation Theory.