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1. INTRODUCTION

Let f (x) be a function defined on the interval —1 < x <1 such that the integral

J‘:(lf X)L+ x)” f(x)dx (1.1)

Is exist in the sense of Lebesgue for « > —1 and g > —1. The Jacobi series corresponding to the

function T (*) is given by

f(x)=3 aP“”(x)

n=0 (1.2)
Where
a - n+a+p+1)T(n+D)F'(n+a + g +1) J,l LX) L+ x)ﬁPn("”ﬁ)(x) f (x)dx
2 rn+a+DT(n+ B +1) -t
If
b - 2n+a+p+D)T(a+1)T(n+a + B +1)
" 2T (n+a + )T (n+ B +1) (1.3)
Then
1
a =bhb 1-x)“(@+x) P (x) f(x)dx
" "L( ) ( )TPT(x) £(X) (1.4)
andP "’ (x) are the Jacobi polynomials defined by the generating function
2 @ —2xt + ) -t -2 xte t0) 00
x[L+t+@-2xt+t")"°1" =3 P ()"
n=0 (1.5)

Let us write
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2a+1 2p+1

F(¢)={f(cos¢g)— A}(sing /2) (cos¢g /2)

where A being a constant.
Let {s } be the sequence of partial sums of an infinite series a_. Let {r } and {q } be any two

sequences of positive real constants with R N and Q, as their n-th partial sums respectively and
let

(@*r), => q,.r => q,r,_, tendstoinfinityas n —» o . (1.6)
k=0

k=0
If the sequence to sequence transformation is defined by (Borwein [1])

1 n

t:,r = . z a4, M Sy
(a*r), o (1.7)
If
q,r
b 7 S asno w

then the sequence of partial sums {s_} or infinite series £a_ is said to be summable | N ,q_,r_ |
to s.

2. KNOWN RESULTS

Dealing with Norlund summability of Jacobi series Pandey [7] has established the following
theorem.

Theorem 2.1

1
Leta >-—, p-a >-1, B +a >-1.Suppose that
2

z a+(t/Q2)n = O[ a(?(nuz) J’ asn— o
o K log k n (2.1)
Also suppose that

1 (
fH|f(u)—A|du=0| —[t—> O

\1og(D)) 2.2)

and that the antipole condition

b

@+ x) 2 (x) | dx < o

L | | (2.3)

is satisfied, where b is fixed then the series (1.2) is summable | N, g, | at the point x = +1 to the
sum A .

3. MAIN RESULTS

The object of this paper is to generalize the Theorem 2.1 to a more general classon |N,q_,r, |-
summability of the Jacobi series. .

Theorem 3.1

Let (N,q,,r ) be asummability method defined by a non-negative real constants sequences {q_}

1
and {r yandleta > -—, 8 -a >1,4 + a > -1 such that
2
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" (g, ((g*r), )
=0 asn— o

Ez ALY log k an(l/z) J (3'1)
Also suppose that

fl | f(u)- Aldu :OLt—J’ ast— O
and the antipole condition

b

@+ x) 7 (x) | dx < oo
L (3.3)

are satisfied where b is fixed then the series (1.2) is summable |N,q_,r |at x = +1 to the sum
A.

4. LEMMAS

We have required the following lemmas to prove the theorem:

Lemma4.l

Szego [10] for a« > -1,8 > -1

o(n”), when 0 < ¢ <1/n
o(n’”), when z- L<g<nz

_)—(2a+1)/2

. —(28+1)/2
1/2 (SIn 2

(2n+a+p+1) 0(1)

[cos{—5—¢ - (Qa +1) =} + 5=

(cos ;)

when +<g<z -1
n

(
|
Pn(“'ﬁ)(cos $) = {'
|
|
L

Lemma 4.2

1
lete > -—, 4 > -1 andalso let

2
N @)= o (2)‘”””2 A1, Ao o (cos ¢)
k=0
Where
L 2’ 'r(n+a+p+2) 27
! M(a +1)C(n+ B +1) I'(a +1)
Then
For 0=¢< 0
IN,(#)l=0(n""") 4.2)
Forn<¢<7-%
N30 ] — G Gl P
l(q*r) (Sin ¢)(2a+3)/2 (COS¢)(2/I+1)IZJ (43)
n(2a—1)/2 \
+
L(SII’I (2a+¢) /Z(COS ) (25+3)/2 J
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For

L
T-c<¢<nm

a+pf+1
IN,(#) =0 (") (4.4)

Proof:

1 . . .
For « > -— and g > -1and{q }and{r } satisfy the conditions of theorem, using Lemma 4.1
2

for 0 < ¢ < — then condition (4.2) is satisfied. For the estimation of (4.3) we use the Lemma
n

1
(4.1) and Lemma (4.3)for » - —< ¢ < 7 .
n

1 1
For —< ¢ < = — — we have

n n
Nn(¢): 0(1) i qkrn,k(n_k)(2a+1)/2 (sing)f(zau)/z(cos2)7(2/“1)/2
(q*r)n k=1 2 2
( ow )
x| cos{(n—k+p)p - y}+ ——
L (n—k)sing

Since for fixed n, (r,_,) is non-increasing we can deal with the first term of the right by using the

second mean value theorem and apply the result of Lemma (4.3) and the required estimate
follows.

Lemma 4.3:(Khare [5]) If {q,} is a non-negative, non increasing and {r } is a non-negative,
non-decreasing sequence, then

n-1
Z qkl’nik(n _ k)(zafl)/Z -0 ((q *r)nn(Za—1)/2)
k=0

Lemma 4.4: The assumption (3.1) implies that

“(3)

n = O{q*r)n} (45)
1
a < —
where 2 (4.6)

Proof: The expression on the left of (3.1) is increasing and hence greater than equal to a positive
constant. Hence (3.1) implies that, for some positive constant ¢

(2a+%)

(g*r), >cn

On substituting this, we see that the expression on the left of (3.1) tendsto «» as n - « and
(4.5) follows.

Since g, and r_ are positive non increasing, (q*r) = 0O(n) and (4.6) therefore follows by
(4.5).

Lemma 4.5: (Pandey [7]) condition (3.2) is equivalent to

¢ 2a +2 \
Fl(t)=J0|F(¢)|d¢=O|—| ast— 0

(log(1/t) ) 4.7)
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Where

F(¢)=[f (cosg)— Al(sin ¢)2““(cos¢/2)”*1
Lemma 4.6: Let g - « > —1. The antipole condition

b
[ @+ )T f(x) | dx <
-1

Is equivalent to

Ib L+ x) M2 f(x) - Aldx < o
Further
’ Lyt d¢ <
L (cos?) | f(¢)1dg < 4.9)
5. PROOF OF THE THEOREM
The n-th partial sum of the series (1.2), at the point x = +1 is given by Obrechkoff [6].
S, (1) = 2‘”“11: (sin %)2“ (cos%)” f(cosg)s, (1,cos¢)singdg (5.1)
Wheres (1,cos¢) denote the n-th partial sum of the series
PP (cosg)
m b,
Rao [9] has been shown that
S, (1,cosg) = inPn(‘”M)(cos #)
Therefore
S (1)-A= 2("‘*”*”,1”]” (sin £) " (cos £)*"*'[ f (cos ¢) — AIP "/ (cos ¢)d ¢
— 2 T E ()P (cos ¢)dQ
"J.o (#)P, (cos¢) (52)
The (N,q,,r,) means of the series (1.2) of the point x = +1 given by
q n- n-
T @rn), & Z oo
t - A= qurn (L8, (1) - A}
(9*r), ‘o
= Z q.r,_ 2" kf F(¢)P """ (cosg)dg
(Q*r)n k=0
SIGLROLY. (5.3)
Where
N, (¢) = )" qr A, P (cos g)
(g*r), k=0
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To prove the theorem we have to show that

L= [ FIN,(4)dg =0(), asn > o

' - U:/nﬁjﬁf:if,j: jF ($IN_(4)d g

=1, +1,+1,+1, (say) (5.4)

Now

1/

Js

Using (4.1), we have

= "f(¢)Nn(¢)d¢‘

ey (77
I, =0(n )O | |
\ logn )
—o( 1)
B LlognJ
=0()asn— o (5.5)

Next
I, ‘j F (¢)Nn<¢>‘

Using (4.2) we have

n(2a+1)/2 —(2a+3)/2

(s * )
=0l [ 1T®] 9 Dan (4 dg
Llln (q*r)n ZJ J

)
+o (L/n| f () [n@ D7 (sin &) (e d¢)

= Iz,1 + Iz‘z (5.6)
For given any ¢ > 0, let be chosen so that

2a+2
cé
| f ()| ————, for0<¢<§

log(1/¢)
Then

(2a +1)/2 *
m, g @* 1)y
[, < @, L,nl f(¢) |—¢<2a+3>/2 dg
Where, we suppose M is used throughout the paper to denotes a positive constant, which may be
different at each occurrence.

M D2 (TR () a*r),, 1 [(q*r)@/ WL
| |2,1 = - (2a+3)/2( . _J. f1(¢)d s (2ra)+(3)/2¢)
(*r), [L ¢ P L ¢
= Iz‘m + |2,1,2 (5_7)
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Now if m(s) denotes a constant depending on s , we have for fixed s .

(2a+1)12 1 \
l,,,=m(3) N +OL J
(q*r), logn
=0()asn—> w (5.8)
And
n<2a+1>/2F g2 (Q*f)(l)p
[
e m ——I " AR PR |
Do | log (%) [¢ J ]
(2a +1)/2 F n -2a-2 T
n X
< ms J‘ d {(q*r)(x)x(2a+3)/2}
(q*r)n L 1/ IOg X
(2a+1)/2 -2a-2
n noX
<m. | (xPd(g )+ (2a +3)x PV (g ), dx)
(@*r), "t log x
(2a +1)12 F " X(72a71w2 R (-2a-38)/2 W
<m. [ d(q*r), +(2a+3)/2] ————[q*r], dx
(q *r)n L s Jog X s log x J
(2a +1)12
=m_ —[J +((2a +3)/2)k] (say)
(a*r),

Since (q*r),, hasajumpof (q*r), at x = k therefore

! (q*r),

J=y ——
(2a +1)/
= k" 10g k

Where a is a fixed positive integer

But, since (9" ")« is non-negative, non increasing, (K ¥ (A" =0@* 1), o,

[ * )
J=0 LZ k(zc(z(jl)/Zrl)okg Kk
k=a
Also
—(2a+3)/2
k < z (g*r), j —dx
k=a-1 |Og X
[t (@*r), |
= O% Z (2a+3)12 F
Lk:a,lk log k |
By (3.1) we have
[, l<m, (5.9
Again

(2a-1)/2

s
e I R KON AT

(Za 1)/2

MLF )8 L, e m ] F()6 T dg)
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:|221+|2,22 (510)
Now
(2a-1)12 ( 1 \
l,,,=m(5)n +0
o Llog nJ
=0()asn—> o (5.11)
Also
s s ¢(2a—3)/2
I1,,,l<mn®™2 ————g
L log(1/¢)
5 (-2a-1)/2
< men(“’”/zjl X—dx
1/n |Og X
1
=m_ because a < —
2 (5.12)
Hence
I,=0(1)asn—> (5.13)
Next
[nCeD2 o wm NG YR ] (2a-iyiz (7 IM) Capara
I, =0/ [ cos(%) |F(¢)d¢}+0{n [ (costg) |F(¢)d¢}
L(@*r), *° J °
=1, +1,, (say) (5.14)
-1
a =z —
Since 2 we have
1
—p-—2-f-a-1
2
So that (4.8) Implies that
[((cosH I E(p)1dg <
(n(zau)/z\
I, = O| |
Hence L(@*n, )
=0()asn—> » (5.15)
Now it is follows from (4.7) that, given any <> 0, we can choosenn > 0, so that
[ (cos(pr12)) " F(g)Idg <e
(5.16)
. 1
Thus, supposing thatn > —, we have
n
T 005 5 E (9) | dg
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<0 ot - (N eoste) (9 186

<2e

by (5.16), provided that n is sufficiently large. But, once » has been fixed.

-

n<2a*1)/2-|'5 ! (cos %)7”’/}71 |F(¢)|dg
Is just a constant, and hence can be made <e , by choosing n sufficiently large. Hence

I, =0(1) (5.17)

Finally, since * + # +1>0

I, - o[n‘“ﬁ”j:ll F(¢)|d¢}

o {J’:ﬁ(cosfqﬁ)_a_ﬁ_l F@)ldp|

=0 (5.18)
Using (5.5), (5.13), (5.17) and (5.18) we have
I =0(1)
This completes the proof of the theorem.
6. CONCLUSIONS

This theorem has more general result rather than the result of B.N. Pandey [7] that will enrich the
literature on Jacobi summability theory.
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