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Abstract: In this paper we have established a theorem on | , q , r |
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N  -summability of Jocabi series, 

which gives some new interesting results and generalizes some previous known results. 
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1. INTRODUCTION 

Let ( )f x be a function defined on the interval 1 1x    such that the integral  
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Is exist in the sense of Lebesgue for 1    and 1 .    The Jacobi series corresponding to the 

function 
( )f x

 is given by 

( , )

0

( ) ( )
n n

n

f x a P x
 





 
  (1.2) 

Where  
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Then 
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                                                                         (1.4) 

and
( , )

( )
n

P x
 

 are the Jacobi polynomials defined by the generating function 
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Let us write 
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2 1 2 1
( ) { (co s ) } (s in / 2 ) (co s / 2 )F f A

 
   

 
   

where A  being a constant. 

Let { }
n

s  be the sequence of partial sums of an infinite series 
n

a . Let { }
n

r  and { }
n

q  be any two 

sequences of positive real constants with R 
n
 and 

n
Q  as their n-th partial sums respectively and 

let 

0 0

( * )

n n

n n k k k n k

k k

q r q r q r
 

 

    tends to infinity as n   .                                   (1.6) 

If the sequence to sequence transformation is defined by (Borwein [1]) 

,

0

1

( * )

n

q r

n n k k k

kn

t q r s
q r





 
  (1.7) 

If   

,q r

n
t s

 as n    

then the sequence of partial sums { }
n

s  or infinite series 
n

a  is said to be summable | , , |
n n

N q r  

to s . 

2. KNOWN RESULTS 

Dealing with Nörlund summability of Jacobi series Pandey [7] has established the following 

theorem. 

Theorem 2.1 

Let 
1

, 1, 1
2

            . Suppose that 

( / 2 ) (1 / 2 )

2

,  a s  
lo g

n

n n

t

k

Q Q
O n

k k n
  



 
   

 


 .  (2.1) 

Also suppose that 

1

11

| ( ) | ,
lo g ( )t

t

t
f u A d u O t O



 
   

 


  (2.2) 

and that the antipole condition 

( 1 ) / 2

1

(1 ) | ( ) |
b

x f x d x
  



  
  (2.3) 

is satisfied, where b  is fixed then the series (1.2) is summable | , |
n

N q  at the point 1x    to the 

sum A . 

3. MAIN RESULTS 

The object of this paper is to generalize the Theorem 2.1 to a more general class on | , , |
n n

N q r -

summability of the Jacobi series. . 

Theorem 3.1 

Let ( , , )
n n

N q r be a summability method defined by a non-negative real constants sequences { }
n

q   

and { }
n

r and let 
1

, 1, 1
2

            such that 
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Also suppose that 
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lo g (1 / )t

t
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  (3.2) 

and the antipole condition 

( 1 ) / 2

1

(1 ) | ( ) |
b

x f x d x
  



     (3.3) 

are satisfied where b  is fixed then the series (1.2) is summable  | , , |
n n

N q r at 1x    to the sum 

A . 

4. LEMMAS 

We have required the following lemmas to prove the theorem:  

Lemma 4.1 

Szego [10] for 1, 1      
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Lemma 4.2 
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For  

1

n
    

 

1
| ( ) | O ( )

n
N n

 


 


  (4.4) 

Proof: 

For 
1

2
    and 1   and{ }

n
q and{ }

n
r  satisfy the conditions of theorem, using Lemma 4.1 

for 
1

0
n

   then condition (4.2) is satisfied. For the estimation of (4.3) we use the Lemma 

(4.1) and Lemma (4.3) for 
1

n
     . 

For 
1 1

n n
     we have 
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Since for fixed , ( )
n k

n r


 is non-increasing we can deal with the first term of the right by using the 

second mean value theorem and apply the result of Lemma (4.3) and the required estimate 

follows. 

Lemma 4.3:(Khare [5]) If { }
n

q  is a non-negative, non increasing and { }
n

r  is a non-negative, 

non-decreasing sequence, then 

 
1

( 2 1 ) / 2 ( 2 1 ) / 2

0

( ) O ( * )

n

k n k n

k

q r n k q r n
 



 





 
 

Lemma 4.4: The assumption (3.1) implies that 

 1

2
O { * ) }

n
n q r

 


  (4.5) 

where

1

2
 

  (4.6) 

Proof: The expression on the left of (3.1) is increasing and hence greater than equal to a positive 

constant. Hence (3.1) implies that, for some positive constant c  

1

2
( 2 )

( * )
n

q r c n
 


 

On substituting this, we see that the expression on the left of (3.1) tends to   as n    and 

(4.5) follows. 

Since 
n

q  and 
n

r  are positive non increasing, ( * ) ( )
n

q r O n  and (4.6) therefore follows by 

(4.5). 

Lemma 4.5: (Pandey [7]) condition (3.2) is equivalent to  

2 2

1
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Where  

2 1 2 1
( ) [ (c o s ) ](s in ) (c o s / 2 )

2
F f A

 
  

 
 

.  

Lemma 4.6: Let 1    . The antipole condition  

( 1 ) / 2

1

(1 ) | ( ) |
b

x f x d x
  



    

Is equivalent to 

( 1 ) / 2

1

(1 ) | ( ) |
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Further 

1

2
(c o s ) | ( ) |

a

f d


 
 

  
    (4.8) 

5. PROOF OF THE THEOREM 

The n-th partial sum of the series (1.2), at the point 1x    is given by Obrechkoff [6]. 

1 2 2
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Where (1, co s )
n

S   denote the n-th partial sum of the series 

( , ) ( , )
(1) (c o s )

m m

m m

P P

b

   



  

Rao [9] has been shown that  
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The ( , , )
n n

N q r  means of the series (1.2) of the point 1x    given by 
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To prove the theorem we have to show that  
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For given any 0c  , let be chosen so that 
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Where, we suppose M  is used throughout the paper to denotes a positive constant, which may be 

different at each occurrence. 
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Now if ( )m   denotes a constant depending on  , we have for fixed  . 
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Where a  is a fixed positive integer 
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2 , 2 ,1 2 , 2 , 2
I I 

                     (5.10) 
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by (5.16), provided that n  is sufficiently large. But, once   has been fixed. 
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Is just a constant, and hence can be made  , by choosing n  sufficiently large. Hence  
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Finally, since 
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O (1)

  (5.18) 

Using (5.5), (5.13), (5.17) and (5.18) we have 

O (1 )I 
 

This completes the proof of the theorem. 

6. CONCLUSIONS 

This theorem has more general result rather than the result of B.N. Pandey [7] that will enrich the 

literature on Jacobi summability theory. 
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