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Abstract: In this work the Legendre multiwavelet and Chebyshev multiwavelet basis with considering the 

standard Galerkin method has been applied to give the approximate solution for linear first order system of 

partial differential equations (PDE's). The properties ofthe Legendre multiwaveletand Chebyshev 

multiwavelet are presented. These properties together with the standard Galerkin method are then utilized 
to reduce linear first order system of PDE's to the solution of an algebraic system. Numerical results and 

comparison with exact solution are given to demonstrate the applicability and efficiency of the method.  

Keywords: Legendre multiwavelet,Chebyshev multiwavelet, system of partial differential equations, 

Galerkin method.

 

1. INTRODUCTION  

In 1807, Joseph Fourier developed a method for representing a signal with a series of coefficients 

based on an analysis function. He laid the mathematical basis from which the wavelet theory is 

developed. The first to mention wavelets was Alfred Haar in 1909 in his PhD thesis. In the 
1930’s, Paul Levy found the scale-varying Haar basis function superior to Fourier basis functions. 

The transformation method of decomposing a signal into wavelet coefficients and reconstructing 

the original signal again is derived in 1981 by Jean Morlet and Alex Grossman. In 1986, Stephane 

Mallat and Yves Meyer developed a multiresolution analysis using wavelets. They mentioned the 
scaling function of wavelets for the first time; it allowed researchers and mathematicians to 

construct their own family of wavelets using the derived criteria. Around 1998, Ingrid Daubechies 

used the theory of multiresolution wavelet analysis to construct her own family of wavelets. Her 
set of wavelet orthonormal basis functions have become the cornerstone of wavelet applications 

today.Wavelet analysis can be performed in several ways, a continuous wavelet transform, a 

discretized continuous wavelet transform and a true discrete wavelet transform. The application of 
wavelet analysis becomes more widely spread as the analysis technique becomes more generally 

known. The fields of application vary from science, engineering, medicine to finance. Types of 

wavelets are Haar Wavelets (orthogonal in L2, compact Support, scaling function is symmetric 

wavelet function is antisymmetric, Infinite support in frequency domain), Shannon Wavelet 
(orthogonal, localized in frequency domain, easy to calculate, infinite support and slow decay), 

Meyer Wavelets (Fourier transform of father function) and Daubishes wavelets (orthogonal in L2, 

compact support, zero moments of father-function).Studying systems of partial differential 
equations (PDEs) is very important. Such systems arise in many areas of mathematics, 

engineering and physical sciences. These equations are often too complicated to be solved exactly 

and even if an exact solution is obtained, the required calculations may be too complicated. Very 

recently, many powerful methods have been presented, such as the Adomian decomposition 
method[1-5], the homotopy perturbation method (HPM) [6-9], and the differential transform 

method[10-13]. The application of Legendre wavelets for solving differential, integral and 

integro-differential equations is thoroughly considered in [14-20]. Chebyshev wavelet used to 
solve integral and integro-differential equations in [21-23].  In this paper we are dealing with the 

numerical approximation of the following second order system of linear partial differential 

equations 
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with initial condition     

 

The aim of this workis to present two numerical methods(Legendre and Chebyshev multiwavelet) 

for approximating the solutionof a linear first order system of partial differential equations 
(PDE's). These methods consists of expanding the solution by Legendre multiwaveletand 

Chebyshev multiwavelet with unknown coefficients. The properties of Legendre multiwavetlet 

and Chebyshev multiwavelet together with the Galerkin method are then utilized to evaluate the 

unknown coefficients and find an approximate solution to Eqs. (1).The article is organized as 
follows: In Section II, we describe the basic formulation of wavelets and Legendre multiwavelet 

and  Chebyshev multiwavelet required for our subsequent development. Section III is devoted to 

the solution of Eq. (1) by using Legendre multiwavelet and Chebyshev multiwavelet Galerkin 
approximation. In Section IV, wereport our numerical finding and demonstrate the accuracy of the 

proposed scheme by considering numerical examples. Section V consists of a brief summary. 

2. PROPERTIES OF LEGENDRE MULTIWAVELETS AND CHEBYSHEV MULTIWAVELETS  

2.1 Wavelets  

Wavelets constitute a family of functions constructed from dilation and translation of a single 

function called the mother wavelet. When the dilation parameter a and the translation parameter b 
vary continuously we have the following family of continuous wavelets [15,21,22] 

 

If we restrict the parameters a and b to discrete values as 

 and  we have the following family of discrete wavelets: 

 

where  form a wavelet basis for  . In particular, when  and  then  

forms an orthonormal basis [4, 5, 6,9,10]. 

2.2 Legendre Multiwavelets [15, 21, 24, 25] 

Legendre multiwavelets have four arguments;  

can assume any positive integer, m is the order for Legendre polynomials and t is the normalized 
time. They are defined on the interval [0,1]: 

 

where – , M nonnegative integer and  The coefficient 

 is for orthonormality, Pm(t) are the well-known shifted Legendre polynomials of order 

m which are defined on the interval [0, 1], and can be determined with the aid of the following 

recurrence formula: 

 

Also the two-dimensional Legendre multiwavelet are defined as [10]: 
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where , n1 and n2 are defined similarly to n, k1 and k2 can 

assume any positive integer, m1 and m2 are the order for Legendre polynomials and 

 forms a basis for L
2
([0, 1]×[0, 1]). 

2.3 Chebyshev Multiwavelets 

The second Chebyshev wavelets involve four arguments, n = 1,…, 2
k-1 

 ,  k 

is assumed any positive integer, m is the degree of thesecond Chebyshev polynomials and t is the 

normalizedtime. They are defined on the interval [0, 1] as [21-23]:
 

 

 

 

Also the two-dimensional Chebyshev multiwavelet are defined as: 

 

n1 and n2 are defined similarly to n, k1 and k2 can assume any positive integer, m1 and m2 are the 

order for chebyshev polynomials and  forms a basis for L
2
([0, 1]×[0, 1]). 

2.4 Function Approximation  

A functionf(x, t) defined over [0,1]×[0,1]can be expand as : 

 

If the infinite series in equation (14) is truncated, then equation (14) can be written as : 

 

Where   and  are   matrices, respectively given by 

 

 

Also, F is a  matrix whose elements can be calculated from 

 

with,  
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3. SOLUTION OF FIST ORDER SYSTEM OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

we are dealing with the numerical approximation of the first order system of  linear partial 

differential equations (1) With initial condition (2),    

Let            

 

A Galerkin approximation to (18  ) is constructed as follows. The approximation uNM and vNM are 

sought in the form of the truncated series [25]: 

 

 

where and ψi,j are Legendre or Chebyshev multiwavelet 

basis. Now we have This approximation provides greater 

flexibility in which to impose initial conditions. The expansion coefficient  are determined by 

Galerkin equations: 

 

where  denotes inner product defined as 

 

 

Galerkin equations (17) gives a system of linear equations which 

can be solved for the elements of  

 using suitable method and get the approximate solution (19). 

4. ILLUSTRATIVE EXAMPLES 

Example 1. We consider another linear system of PDEs [1,10] 

 

 

With the initial conditions  

 

 We applied the Legendre multiwavelets and  Chebyshev multiwavelet methods at  k1 = k2 = 0 and 
M = N = 3  

and solved Eq. (14). The exact solution,

 , Fig. (1a)  and (1b) shows  the exact   ,  Legendre multiwavelets and  

Chebyshev multiwavelet solution of  u(x,t) and v(x,t) respectively, figure (1c) show the  the exact,  
Legendre multiwavelets and  Chebyshev multiwavelet solution of  u(x,t) and v(x,t)at t=0.1 and 0 

≤ x ≤ 1, table 1 show the absolute error obtained by ,  Legendre multiwavelets and  Chebyshev 

multiwavelet of u(x,t) and v(x,t) . 

Example 2. We consider another linear system of PDEs [1,10] 

 

 

With the initial conditions  
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 We applied the Legendre multiwavelets and  Chebyshev multiwavelet methods at  k1 = k2 = 0 and 

M = N = 3 and solved Eq. (14). The exact solution,

 , Fig. (2a)  and (2b) shows  the exact   ,  Legendre multiwavelets and  Chebyshev multiwavelet 

solution of  u(x,t) and v(x,t) respectively, figure (2c) show the  the exact   ,  Legendre 
multiwavelets and  Chebyshev multiwavelet solution of  u(x,t) and v(x,t)at t=0.1 and 0 ≤ x ≤ 1, 

table 2 show the absolute error obtained by, Legendre multiwavelets and  Chebyshev 

multiwavelet of u(x,t) and v(x,t) . 

Example3. We consider another linear system of PDEs 

 

 

With the initial conditions  

 

We applied the Legendre multiwavelets and Chebyshev multiwavelet methods at  k1 = k2 = 0 and 

M = N = 3 and solved Eq. (14). The exact solution,  

, Fig. (3a)  and (3b) shows  the exact, Legendre multiwavelets and  Chebyshev multiwavelet 
solution of u(x,t) and v(x,t) respectively, figure (3c) show the  the exact ,  Legendre multiwavelets 

and  Chebyshev multiwavelet solution of  u(x,t) and v(x,t)at t=0.1 and 0 ≤ x ≤ 1, table 3 show the 

absolute error obtained by, Legendre multiwavelets and  Chebyshev multiwavelet of u(x,t) and 
v(x,t) . 

Example4. We consider another linear system of PDE s 

 

 

With the initial conditions  

 

We applied the Legendre multiwavelets and Chebyshev multiwavelet methods at  k1 = k2 = 0 and 

M = N = 3 and solved Eq. (25). The exact solution,  

, Fig. (4a)  and (4b) shows  the exact, Legendre multiwavelets and  Chebyshev multiwavelet 

solution of  u(x,t) and v(x,t) respectively, figure (4c) show the  the exact,  Legendre multiwavelets 

and  Chebyshev multiwavelet solution of  u(x,t) and v(x,t)at t=0.1 and 0 ≤ x ≤ 1, table 4 show the 
absolute error obtained by,  Legendre multiwavelets and  Chebyshev multiwavelet of u(x,t) and 

v(x,t) . 

 

Fig. 1a Exact and approximate solution of u(x, t) by Legendre and Chebyshev  multi wavelet method, 

0≤x,t≤1 
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Fig.1b Exact and approximate solution of v(x, t) by Legendre and Chebyshev multi wavelet method, 0≤x,t≤1   

Fig. 1c. Exact, Legendre Chebyshev multiwavelet solution of u(x, t) and v(x t) for 0 ≤ x ≤ 1, t=0.1 

Fig. 2a Exact and approximate solution of u(x, t) by Legendre and Chebyshev multi wavelet method, 0≤x, 

t≤1 

Fig. 2b Exact and approximate solution of v(x, t) by Legendre and Chebyshev multi wavelet method, 0≤x, 
t≤1 
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Fig. 2c. Exact, Legendre Chebyshev multiwavelet solution of u(x, t) and v(x t) for 0 ≤ x ≤ 1, t=0.1 

 

Fig. 3a Exact and approximate solution of u(x, t) by Legendre and Chebyshev multi wavelet method, 0≤x, 

t≤1 

Fig. 3b Exact and approximate solution of v(x, t) by Legendre and Chebyshev multi wavelet method, 0≤x, 
t≤1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3c. Exact, Legendre Chebyshev multiwavelet solution of u(x, t) and v(x t) for 0 ≤ x ≤ 1, t=0.1 
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Fig. 4a Exact and approximate solution of u(x, t) by Legendre and Chebyshev multi wavelet method, 0≤x, 

t≤1 

 

Fig. 4b Exact and approximate solution of v(x, t) by Legendre and Chebyshev  multi wavelet method, 

0≤x,t≤1   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4c. Exact, Legendre Chebyshev multiwavelet solution of u(x, t) and v(x t) for 0 ≤ x ≤ 1, t=0.1 

Table 1. The error of u(x,t) and v(x,t) of example 1  

x  , t=0.1     

0 4.3×10-5 7.9×10-5 4.3×10-5 7.9×10-5 

0.1 3.3×10-5 1.7×10-5 3.3×10-5 1.7×10-5 

0.2 8.3×10-6 2.9×10-5 8.3×10-6 2.9×10-5 

0.3 1.3×10-5 4.9×10-6 1.3×10-5 4.9×10-6 

0.4 2.1×10-5 2.2×10-5 2.1×10-5 2.2×10-5 

0.5 1.2×10-5 3.1×10-5 1.2×10-5 3.1×10-5 

0.6 5.6×10-6 1.6×10-5 5.6×10-6 1.6×10-5 

0.7 2.2×10-5 1.5×10-5 2.2×10-5 1.5×10-5 

0.8 1.8×10-5 3.4×10-5 1.8×10-5 3.4×10-5 

0.9 3.1×10-5 5.0×10-6 3.1×10-5 4.9×10-6 

1.0 1.5×10-4 1.7×10-4 4.3×10-5 7.9×10-5 
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Table 2. The error of u(x,t) and v(x,t) of example 2  

x , t=0.1     

0 1.6×10-4 2.1×10-4 1.6×10-4 2.1×10-4 

0.1 6.1×10-5 1.2×10-4 6.2×10-5 1.2×10-4 

0.2 3.2×10-5 8.7×10-5 3.2×10-5 8.7×10-5 

0.3 3.8×10-5 7.1×10-5 3.8×10-5 7.1×10-5 

0.4 5.3×10-5 6.6×10-5 5.4×10-5 6.6×10-5 

0.5 6.2×10-5 6.1×10-5 6.2×10-5 6.1×10-5 

0.6 5.5×10-5 4.9×10-5 5.6×10-5 4.9×10-5 

0.7 3.6×10-5 3.1×10-5 3.6×10-5 3.1×10-5 

0.8 1.1×10-5 1.1×10-5 1.1×10-5 1.1×10-5 

0.9 4.4×10-7 3.3×10-7 3.1×10-7 5.1×10-7 

1.0 2.1×10-4 1.7×10-4 1.6×10-4 2.1×10-4 

Table 3. The error of u(x,t) and v(x,t) of example 3 

x , t=0.1     

0 5.9×10
-5 

3.2×10
-5

 5.9×10
-5 

3.2×10
-5

 

0.1 7.3×10-6 1.7×10-5 7.3×10-6 1.7×10-5 

0.2 1.3×10-5 7.4×10-7 1.3×10-5 7.4×10-7 

0.3 5.3×10-6 1.5×10-5 5.1×10-6 1.5×10-5 

0.4 2.5×10-5 2.2×10-5 2.5×10-5 2.2×10-5 

0.5 3.1×10-5 1.9×10-5 3.1×10-5 1.9×10-5 

0.6 2.1×10-5 9.4×10-6 2.1×10-5 9.5×10-6 

0.7 4.5×10-7 1.1×10-6 5.0×10-7 1.3×10-6 

0.8 1.1×10-5 1.6×10-6 1.2×10-5 1.8×10-6 

0.9 1.6×10-5 2.9×10-5 1.6×10-5 2.9×10-5 

1.0 2.1×10-4 1.1×10-4 5.9×10-5 3.2×10-5 

Table 4. The error of u(x,t) and v(x,t) of example 4  

x , t=0.1     

0 3.6×10-5 6.0×10-5 3.9×10-5 6.0×10-5 

0.1 1.1×10-4 3.1×10-5 1.1×10-4 3.0×10-5 

0.2 1.3×10-4 5.5×10-5 1.3×10-4 5.5×10-5 

0.3 8.1×10-5 9.5×10-5 8.1×10-5 9.6×10-5 

0.4 1.1×10-5 1.2×10-4 1.1×10-5 1.2×10-4 

0.5 4.3×10-5 1.2×10-2 4.2×10-5 1.2×10-4 

0.6 6.4×10-5 9.3×10-5 6.4×10-5 9.3×10-5 

0.7 5.2×10-5 4.9×10-5 5.2×10-5 4.8×10-5 

0.8 2.2×10-5 2.3×10-5 2.2×10-5 2.2×10-5 

0.9 1.6×10-5 6.4×10-5 1.6×10-5 6.4×10-5 

1.0 9.5×10-5 2.4×10-4 3.9×10-5 6.0×10-5 

5. CONCLUSION 

In the current work the Legendrmultiwavelet and Chebyshev multiwavelet have been applied for 
solving linear second order system of PDE’s by reducing the linear first order system of 

PDE’sinto system of algebraic equations and with solving this system we obtained approximate 

solution of the problem. In addition, an illustrative example have been included to demonstrate 
the validity and applicability of the methods. 
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