Group Inverses of Con-s-k-EP Matrices

B.K.N. Muthugobal

Guest Lecturer in Mathematics Bharathidasan University Constituent College, Nannilam R. Subash

Assistant Professor in Mathematics, A.V.C College of Engineering, Mayiladuthurai. subash_ru@rediffmail.com

Abstract: In this paper, the existence of the group inverse for con-s-k-EP matrices under certain condition is derived.

Keywords: AMS classification: 15A09, 15A15, 15A57

1. INTRODUCTION

Let c_{nxn} be the space of nxn complex matrices of order n. let C_n be the space of all complex n tuples. For $A \epsilon c_{nxn}$. Let \overline{A} , A^T , A^* , A^S , \overline{A}^S , A^{\dagger} , R(A), N(A) and $\rho(A)$ denote the conjugate, transpose, conjugate transpose, secondary transpose, conjugate secondary transpose, Moore Penrose inverse range space, null space and rank of A respectively. A solution X of the equation AXA = A is called generalized inverse of A and is denoted by A^- . If A ϵc_{nxn} then the unique solution of the equations A XA = A, XAX = X, $[AX]^* = AX$, $XA \stackrel{*}{=} XA$ [3] is called the Moore-Penrose inverse of A and is denoted by A^{\dagger} . A matrix A is called Con-s- $\mathcal{A} - EP_r$ if $\rho A = r$ and $N(A) = N(A^T VK)$ (or) $R(A)=R(KVA^T)$. Throughout this paper let " \mathcal{A} " be the fixed product of disjoint transposition in $S_n = \{1, 2, ..., n\}$ and k be the associated permutation matrix.

Let us define the function \mathcal{R} (x)= $x_{k_1}, x_{k_2}, ..., x_{k_n}$. A matrix A = $(a_{ij}) \in c_{nxn}$ is s-ksymmetric if $a_{ij} = a_{n-k(j)+1,n-k(i)+1}$ for i, j = 1,2,...,n. A matrix A $\in c_{nxn}$ is said to be Consk-EP if it satisfies the condition $A_x = 0 \le A^s \And (x) = 0$ or equivalently N(A) =N(A^T VK). In addition to that A is con-s-k-EP $\le KVA$ is con-EP or AVK is con-EP and A is con-s-k-EP $\le A^T$ is con-s-k-EP_r moreover A is said to be Con-s-k-EP_r if A is con-s-k-EP and of rank r. For further properties of con-s-k-EP matrices one may refer [2].

Theorem 2 (p.163) [1]

Let
$$A \in C_{n \times n}$$
. Then A is $EP \iff A^{\#} = A^{\dagger}$ when $A^{\#}$ exists.

It is well known that, for an con-EP matrix, group inverse exists and coincides with its Moore-Penrose inverse. However, this is not the case for a con-s-k-EP matrix. For example, consider

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ for } k=(1,2)(3), \text{ the associated permutation matrix } K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } V = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

A is con-s-k-EP₁ matrix, But
$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $\rho(A) = \rho(A^2)$

Therefore by **Theorem 2**, group inverse $A^{\#}$ does not exists for A. Here it is proved that for a con-s-k-EP matrix A, if the group inverse exists then it is also a con-s-k-EP matrix.

Theorem 2.1.1

Let
$$A \in C_{n \times n}$$
 be con-s-k-EP_r and $\rho(A) = \rho(A^2)$. Then $A^{\#}$ exists and is con-s-k-EP_r.

Proof

Since, $\rho(A) = \rho(A^2)$, by **Theorem 2**, $A^{\#}$ exists for A. To show that $A^{\#}$ is con-s-k-EP_r, it is enough to prove that $R(A^{\#}) = R(KV(A^{\#})^{T})$.

Since,
$$AA^{\#} = A^{\#}A$$
, we have, $R(A) = R(AA^{\#})$
 $= R(A^{\#}A)$
 $= R(A^{\#})$
 $AA^{\#}A = A \Longrightarrow A^{T} = A^{T}(A^{\#})^{T}A^{T}$
 $\Rightarrow KVA^{T} = KVA^{T}A^{\#T}A^{T}$
Therefore, $R(KVA^{T}) = R(KVA^{T}A^{\#T}A^{T})$
 $= R(KVA^{T}A^{\#T})$
 $= R(KV(A^{\#}A)^{T})$
 $= R(KV(AA^{\#})^{T})$
 $= R(KVA^{\#T}A^{T})$
 $= R(KVA^{\#T}A^{T})$
 $= R(KVA^{\#T}A^{T})$

Now, A is con-s-k-EP_r $\Leftrightarrow R(A) = R(KVA^T)$ and $\rho(A) = r$ $\Leftrightarrow R(A^T) = R(KV(A^{\#})^T)$ and $\rho(A) = \rho(A^{\#}) = r \Leftrightarrow A^{\#}$ is con-s-k-EP_r.

Remark 2.1.2

In the above Theorem the condition that $\rho(A) = \rho(A^2)$ is essential. Example 2.1.3

Let
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 for $k = (1,2)(3)$, the associated permutation matrix
 $K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $V = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. $KVA = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is $EP_1 \Longrightarrow A$ is

con-s-k-EP₁. Since
$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $\rho(A^2) = 0$.

That is, $\rho(A) \neq \rho(A^2)$. Hence $A^{\#}$ does not exists for a con-s-k-EP matrix A. Thus, for a con-s-k-EP matrix A, if $A^{\#}$ exists then it is also con-s-k-EP_r.

Theorem 2.1.4

For
$$A \in C_{n \times n}$$
 if $A^{\#}$ exists then, A is con-s-k-EP $\Leftrightarrow (KVA)^{\#} = A^{\dagger}VK$.

Proof

A is con-s-k-EP
$$\Leftrightarrow$$
 KVA is con-EP (by Theorem (2.11) [2])
 $\Leftrightarrow (KVA)^{\#} = (KVA)^{\dagger}$ (by Theorem 2)

$$\Leftrightarrow (KVA)^{\#} = A^{\dagger}VK \qquad (by \text{ Theorem (2.1.12)})$$

Theorem 2.1.5

For
$$A \in C_{n \times n}$$
, A is con-s-k-EP_r $\Leftrightarrow A^{\dagger} = KV$ (polynomial in AVK)
= (polynomial in KVA)VK.

Proof

It is clear that if $(KVA)^{\dagger} = f(KVA)$ for some scalar polynomial f(x) then KVA commutes with $(KVA)^{\dagger}$.

$$\Rightarrow (KVA)(KVA)^{\dagger} = (KVA)^{\dagger}(KVA)$$
$$\Rightarrow (KVA)(A^{\dagger}VK) = (A^{\dagger}VK)(KVA)$$
$$\Rightarrow KVAA^{\dagger}VK = A^{\dagger}VKKVA$$
$$\Rightarrow KVAA^{\dagger}VK = A^{\dagger}A$$
$$\Rightarrow KVAA^{\dagger} = A^{\dagger}AKV$$
$$\Rightarrow A \text{ is con-s-k-EP}_{r}$$

(ByTheorem(2.11)[2]) Conversely, let A be con-s-k-EP_r, then $KVAA^{\dagger} = A^{\dagger}AKV$ and $KVA^{\dagger}A = AA^{\dagger}KV$. Now, we will prove that A^{\dagger} can be expressed as KV (polynomial in AVK) and (polynomial in KVA)VK. Let $(KVA)^{s} + \lambda_{1}(KVA)^{s+1} + + \lambda_{q}(KVA)^{s+q} = 0$ be the minimal polynomial of KVA. Then s = 0 (or) s = 1. For suppose $s \ge 2$, then

$$(KVA)^{\dagger}[(KVA)^{s} + \lambda_{1}(KVA)^{s+1} + \dots + \lambda_{q}(KVA)^{s+q}] = 0$$
.

Hence,

$$[(KVA)(KVA)^{\dagger}(KVA)](KVA)^{s-2} + \lambda_{1}[(KVA)(KVA)^{\dagger}(KVA)](KVA)^{s-1} + \dots + \lambda_{q}[(KVA)(KVA)^{\dagger}(KVA)](KVA)^{s+q-2} = 0$$

That is, $(KVA)^{s-1} + \lambda_1 (KVA)^s + \dots + \lambda_q (KVA)^{s+q-1} = 0$ this is a contradiction. If s = 0, then Thus,

$$(KVA)^{\dagger} = (KVA)^{-1} = -\lambda_1 I - \lambda_2 (KVA).... - \lambda_q (KVA)^{q-1}$$
$$A^{\dagger}VK = A^{-1}VK = -\lambda_1 I - \lambda_2 (KVA).... - \lambda_q (KVA)^{q-1}$$
$$A^{\dagger} = A^{-1} = [-\lambda_1 I - \lambda_2 (KVA).... - \lambda_q (KVA)^{q-1}]KV$$
$$= (\text{polynomial in } KVA) KV$$

Thus, $A^{\dagger} = (\text{polynomial in } KVA) KV$. If s = 1, then

 $(KVA)^{\dagger}[KVA + \lambda_{1}(KVA)^{2} + \dots + \lambda_{q}(KVA)^{q+1}] = 0 \text{ and it follows that}$ $(KVA)^{\dagger}(KVA) = -\lambda_{1}(KVA) - \lambda_{2}(KVA)^{2} \dots - \lambda_{q}(KVA)^{q} \text{ is a polynomial in } A$ However, $(KVA)^{\dagger} = [(KVA)^{\dagger}(KVA)](KVA)^{\dagger}$

$$= -\lambda_{1}(KVA)^{\dagger}(KVA) - \lambda_{2}(KVA).... - \lambda_{q}(KVA)^{q-1}]$$

$$A^{\dagger}VK = -\lambda_{1}A^{\dagger}VKKVA - \lambda_{2}(KVA).... - \lambda_{q}(KVA)^{q-1}$$

$$A^{\dagger} = -\lambda_{1}A^{\dagger}AKV - \lambda_{2}(KVA)KV.... - \lambda_{q}(KVA)^{q-1}KV$$

$$= [-\lambda_{1}A^{\dagger}A - \lambda_{2}(KVA).... - \lambda_{q}(KVA)^{q-1}]KV$$

$$= (\text{polynomial in } KVA)KV.$$

$$A^{\dagger} = (\text{polynomial in } KVA)KV.$$

REFERENCES

- [1] Ben-Israel, A. and Grevile, T.N.E., *Generalized Inverses: Theory and Applications*, New York: Wiley and Sons (1974).
- [2] Krishnamoorthy, S., Gunasekaran, K. and Muthugobal, B.K.N., "Con-s-k-EP matrices", *Journal of Mathematical Sciences and Engineering Applications*, Vol. 5, No.1, 2011, 353 – 364.
- [3] Rao, C.R. and Mitra, S.K., "Generalized Inverse of Matrices and Its Applications", *Wiley and Sons, New York*, 1971.