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Abstract: This paper deals with a three species Syn-eco-system consisting of three species (S1), (S2) and 
(S3) are in series the ecological interaction: Mutualism in pairs while the terminal species S1 and S3 are 

harvested. The possibility of existence of bio economic equilibrium is being discussed and an optimal 

harvesting policy is given using Pontryagin’s maximum principle.   Further some numerical examples are 

computed using Matlab. 
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1. INTRODUCTION 

There is an extensive study on several kinds of prey- predator interactions after it was initiated by 

Lotka [1] and Volterra [2]. Bionomics of natural resources has played a significant role in all 

these interactions. There is a strong impact of harvesting on the dynamic evolution of a 
population. In fishery, forestry, agriculture and wild life management, the exploitation of 

biological resources and harvesting of population species can be seen. The problems of predator-

prey systems in the presence of harvesting were discussed by many authors and attention on 
economic policies from harvesting have also been analyzed.  A detailed discussion on the issues 

and techniques associated with the bionomic exploitation of natural resources was given by Clark 

[3, 4]. A study on a class of predator-prey models under constant rate of harvesting of both 

species simultaneously was made by Brauer and Soudack [5, 6]. Multi-species harvesting models 
are also studied in detail by Chaudhuri [7, 8].  Models on the combined harvesting of a two 

species prey predator fishery have been discussed by Ragozin and Brown [9], Chaudhuri and 

Saha Ray [10].  K. Shiva Reddy et.al [12] and B. Ravindra Reddy [13, 14, 15] proposed the 
mathematical models for two and three species ecosystem with bionomic and optimal harvesting. 

They also investigated the stability concepts using various mathematical techniques.  In this 

connection, a three species mathematical model in series mutualism based on the system of non-
linear equations has been constructed. Biological and Bionomical equilibria of the system are 

derived.   

2. MATHEMATICAL MODEL 

The model equations in this problem are as follows  

(i) Equation for the growth rate of (S1): 

21
1 1 11 1 12 1 2 1 1 1

dN
a N a N a N N q E N

dt
                                                                       (2.1) 

(ii) Equation for the growth rate of (S2):  

22
2 2 22 2 21 2 1 23 2 3

dN
a N a N a N N a N N

dt
                       (2.2) 
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(iii) Equation for the growth rate of (S3): 

23
3 3 33 3 32 3 2 3 3 3

dN
a N a N a N N q E N

dt
                       (2.3) 

Notation Adopted: 

( )iN t  : Population density of the species Si at time t, i=1, 2, 3. 

a i  : Natural growth rate of Si, i = 1,2,3 

iia : Decrease rate of Si due to its own insufficient resources i = 1, 2, 3. 

12a : Increase rate of the first species (S1) due to inhibition by the second species (S2),   

21a : Increase rate of the second species (S2) due to (S1) 

23a : Increase rate of the second species (S2) due to (S3),  

32a : Increase rate of the third species (S3) due to (S2) 

Ki= a i / ii : Carrying capacities of Si, i = 1, 2, 3. 

iq : Catch ability coefficient of the species (Si), i=1, 3 

iE : Effort applied to harvest the first species (Si), i=1, 3 

1 1 1q E N , 3 3 3q E N  are the catch-rate functions based on the catch-per-unit-effort hypothesis. 

The variables 1 2,N N and 3N are non-negative and the model parameters 12 21, , , , ,i i iia K a a a  

23 32,a a  are assumed to be non-negative constants. 

Further 1 1 1a q E , 3 3 3a q E
 

3. EQUILIBRIUM STATES 

The system under investigation has eight equilibrium states defined by 0, 1, 2,3idN
i

dt
 and 

these are given hereunder. 

I.   Fully washed out state: 

E1:       1 2 30, 0, 0N N N  

II. States in which only one species survives while the other two are washed out 

E2: 
3 3 3

1 2 3

33

0, 0,
a q E

N N N
a

;      E3: 
2

1 2 3

22

0, , 0
a

N N N
a

 

E4:  
1 1 1

1 2 3

11

, 0, 0
a q E

N N N
a

 

III. States in which two species survive and the third washed out  

E5:  
2 33 23 3 3 3 2 32 22 3 3 3

1 2 3

22 33 23 32 22 33 23 32

( ) ( )
0, ,

a a a a q E a a a a q E
N N N

a a a a a a a a
 

This state exists only when 22 33 23 32 0a a a a  

E6: 
3 3 31 1 1

1 2 3

11 33

, 0,
a q Ea q E

N N N
a a

 

E7: 
2 12 1 1 1 22 2 11 1 1 1 21

1 2 3

11 22 12 21 11 22 12 21

( ) ( )
, , 0

a a a q E a a a a q E a
N N N

a a a a a a a a
 

This state exists only when 11 22 12 21a a a a  

IV. The co-existent state (or) Normal steady state 

E8:      
1 1 1 22 33 32 23 12 23 3 3 3 2 12 33

1

11 22 33 12 21 23 11 23 32

( ) ( )a q E a a a aa a a a q E a a a
N

a a a a a a a a a
,      
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2 11 33 21 33 1 1 1 11 23 3 3 3
2

11 22 33 12 21 23 11 23 32

( ) ( )a a a a a a q E a a a q E
N

a a a a a a a a a
  ,                          

           3 3 3 22 33 12 12 2 11 32 32 21 1 1 1

3

11 22 33 13 31 22 12 21 33

( ) ( )a q E a a a a a a a a a a q E
N

a a a a a a a a a
 

This state exists only when 33 13 31 22 12 21 33( )a a a a a a a .  

4. BIO ECONOMIC ASPECT AT  INTERIOR EQUILIBRIUM POINT 

The concept of bionomic equilibrium is a union of those of biological equilibrium as well as 

economic equilibrium.  Biological equilibrium is given by 0idN

dt
, i=1, 2, 3.  

By definition, the bionomic equilibrium is said to be achieved when the selling price of the 
harvested biomass equals to the total cost price utilized in harvesting it. 

 Let ic be the harvesting cost per unit effort for , 1,3iS i  and ip  be the price per unit biomass of 

, 1,3iS i .  The net revenue or economic rent at any time instant is then given by 1 3R R R , 

where 1 1 1 1 1 1( )R p q N c E  ,
 3 3 3 3 3 3( )R p q N c E   

Here iR  represent net revenue for , 1,3iS i . The bionomic equilibrium 

1 2 3 1 3( ) , ( ) , ( ) , ,N N N E E  satisfies the following equations. 

2

1 1 11 1 12 1 2 1 1 1 0a N a N a N N q E N
                                                                    (4.1)

 

2

2 2 22 2 21 2 1 23 2 3 0a N a N a N N a N N
                                                                          (4.2)

 

2

3 3 33 3 32 2 3 3 3 3 0a N a N a N N q E N
                                                                       (4.3) 

The revenue returns (R) on first and third species taken together will be 
 

1 1 1 1 1 3 3 3 3 3R p q N c E p q N c E                                                                      
(4.4)

                         

The cases would arise while determining the bionomic equilibrium. 

Case (i): if 3 3 3 3c p q N  then the cost is greater than revenue for third species then its harvesting 

would come to a halt (E3=0). Only the harvesting of first species remains operational.
  

1 1 1 1c p q N
 

1
1

1 1

c
N

p q
                                            

(4.5)
 

1
2 2 33 21 33 3 23

22 33 23 32 1 1

1 c
N a a a a a a

a a a a p q
                

(4.6)
 

1
3 3 22 2 32 32 21

22 33 23 32 1 1

1 c
N a a a a a a

a a a a p q
                        

(4.7)
     

1
1 1 11 12 2

1 1 1

1 c
E a a a N

q p q
                       

(4.8)
 

The condition, for this 
1 0E  to be positive definite, is that 

1
1 12 2 11

1 1

c
a a N a

p q
                                  

(4.9)
 

Case (ii):
 
If 1 1 1 1c p q N then the cost is greater than revenue for first species then its harvesting 

would come to a halt (E1=0). Only the harvesting of third species remains operational 

( 3 3 3 3c p q N )
 



R. Srilatha & B. Ravindra Reddy 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)            Page 1046 

3
3

3 3

c
N

p q
                     

(4.10)
 

3
1 1 22 21 2 12

11 22 21 12 3 3

1 c
N a a a a a

a a a a p q
                                    

(4.11)
 

3
2 2 11 1 21 11

11 22 21 12 3 3

1 c
N a a a a a

a a a a p q
                  

(4.12)
 

Now substituting 
1 2 3, ,N N N in equations (4), (5) and (6) we get

 
 

3
3 3 32 2 33

2 3 3

1 c
E a a N a

q p q
                  `                    

(4.13)
 

Now   
3 0E , where the following condition  

3
3 32 2 33

3 3

c
a a N a

p q
 

                              
(4.14)

 

Case (iii): if 1 1 1 1c p q N , 3 3 3 3c p q N  then the cost is greater than the revenue for the both 

species and  species-harvesting will come to a total closer.  

Case (iv):
 
if 1 1 1 1c p q N , 3 3 3 3c p q N  the cost is less than revenue return on the harvesting of the 

both the species, the system becomes operational to yield profit. 

The bionomic equilibrium 
1 2 3 1 3( ) , ( ) , ( ) , ,N N N E E is the positive solution of the 

system (4.1 – 4.3) 

Solving these equations, we get 

1
1

1 1

c
N

p q
, 3

3

3 3

c
N

p q
, 31

2 2 21 23

22 1 1 3 3

1 cc
N a a a

a p q p q
               

(4.15)
 

1
1 1 11 12 2

1 1 1

1 c
E a a a N

q p q
                   

(4.16)
 

3
3 3 32 2 33

3 3 3

1 c
E a a N a

q p q
  

        
(4.17)

    

1 0E , 
3 0E

            (4.18) 

1
1 12 2 11

1 1

c
a a N a

p q
,   3

3 32 2 33

3 3

c
a a N a

p q
                  

(4.19)
 

Thus the bionomic equilibrium 1 2 3 1 3( ) , ( ) , ( ) , ,N N N E E exits if the conditions 

(4.18) and (4.19) hold. 

5. OPTIMAL HARVESTING POLICY 

The present target is to select the harvesting policy that maximizes the present value J of 
continuous time stream of revenues given by 

1 1 1 1 1 3 3 3 3 3( ) ( ) ( ) ( )

0

tJ e p q N c E t p q N c E t dt                                   (5.1) 

where denotes the instantaneous annual rate of discount. Intentionally we have to maximize 

(5.1) subject to the state equations (2.1)–(2.3) by adopting Pontryagin’s maximum principle.  

The control variable Ei(t) is subjected to the constrains max0 ( ) ( )iE t E .  

The Hamiltonian for the problem is given by   
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2

1 1 1 1 1 3 3 3 3 3 1 1 1 11 1 12 1 2 1 1 1

2 2

2 2 2 22 2 21 1 2 23 2 3 3 3 3 33 3 32 3 2 3 3 3

( ) ( )tH e p q N c E p q N c E a N a N a N N q E N

a N a N a N N a N N a N a N a N N q E N

                                         

(5.2) 

where 
1
, 

2
 and 

3
 are the adjoint variables.  

Consider the switching functions    

   1 1 1 1 1 1 1 1 1 1
( ) ( )tt e p q N c E q E N .                        (5.3) 

and 

2 3 3 3 3 2 3 3 3 3
( ) ( )tt e p q N c E q E N                          (5.4) 

The optimal control will be a combination of extreme controls and the singular control. 

The optimal control function E1(t) and E3(t) that maximizes H must satisfy the following 

conditions. 

1 1 max,( )E E     when 1( ) 0t
  

i.e  1
1 1

1 1

( ) t c
t e p

q N
                                  (5.5) 

1 0E     when 1( ) 0t     i.e  1
1 1

1 1

( ) t c
t e p

q N
                                   (5.6) 

and   

3 3 max,( )E E     when 2 ( ) 0t
  
i.e  3

3 3

3 3

( ) t c
t e p

q N
                                  (5.7) 

3 0E     when 2 ( ) 0t     i.e  3
3 3

3 3

( ) t c
t e p

q N
                                                           (5.8) 

Thus the optimal harvesting policy is  

1 max 1

1 1

*

1

( ) ; ( ) 0

( ) 0 ; ( ) 0

; ( ) 0

E t

E t t

E t

                                     (5.9) 

and 

3 max 2

3 2

*

2

( ) ; ( ) 0

( ) 0 ; ( ) 0

; ( ) 0

E t

E t t

E t

                                   (5.10) 

By Pontryagin’s maximum principle, 

1

0
H

E
;

2

0
H

E
 ; 1

1

d H

dt N
 ;  2

2

d H

dt N
   and 3

3

d H

dt N
              (5.11) 

1
1 1 1 1 1 1 1 1 1

1 1 1

0 0
H ct te p q N c q N e p
E q N

         (5.12) 

3
3 3 3 3 3 3 3 3 3

2 3 3

0 0
cH t te p q N c q N e p

E q N
       (5.13)   

1
1 1 1 1 1 11 1 12 2 1 1 2 21 2

1

2
d H te p q E a a N a N q E a N
dt N

       

(5.14)

  

 

2
1 12 1 2 2 21 1 22 2 23 3

2

2
d H

a N a a N a N a N
dt N      

                       (5.15)

 

  

3
3 3 3 2 23 2 3 3 32 2 33 3 3 3

3

2
d H te p q E a N a a N a N q E
dt N

      (5.16)
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After simplification we get 

1
1 1 1 1 11 1 2 21 2

d te p q E a N a N
dt

               (5.17) 

2
1 12 1 2 22 2 3 23 3

d
a N a N a N

dt
                                  (5.18) 

3
3 3 3 2 23 2 3 33 3

d te p q E a N a N
dt

                                 (5.19) 

From (5.12), (5.13) and (5.18)    

32 1
2 22 2 12 1 1 23 3 3

1 1 3 3

cd c t ta N a N p e a N p e
dt q N q N

 

i.e,  2
22 2 2 1

d ta N A e
dt

             (5.20) 

where 31
1 12 1 1 23 3 3

1 1 3 3

cc
A a N p a N p

q N q N
 

The solution of which can be obtained as 
1

2

22 2

A te
a N

          (5.21) 

From (5.21) and (5.17),   

1 1
1 1 1 1 11 1 22 2

22 2

d At te p q E a N a N e
dt a N  

i.e, 1
1 11 1 2

d ta N A e
dt

             (5.22) 

The solution of which can be obtained as 
2

1

11 1

A te
a N

          (5.23) 

where  
1

2 1 1 1 22 2

22 2

A
A p q E a N

a N
 

From (5.21) and (5.19),   

3 1
33 3 3 3 3 3 23 2

22 2

d At ta N e p q E a N e
dt a N  

i.e, 3
33 3 3 3

d ta N A e
dt

             (5.24) 

The solution of which can be obtained as 
3

3

33 3

A te
a N

        (5.25) 

where  
1

3 3 3 3 23 2

22 2

A
A p q E a N

a N
 

From (5.12) and (5.23), we get a singular path, 
2 1

1

1 111 1

A ct te e p
q Na N

  from 

which we obtain 
2 1

1

1 111 1

A c
p

q Na N
         (5.26)  

From (5.13) and (5.25), we get a singular path, 
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3 3
3

3 333 3

A ct te e p
q Na N

   

From which we obtain 
3 3

3

3 333 3

A c
p

q Na N
          (5.27) 

Thus from (5.26) and (5.27), we write as, 

1 2
1 1

1 1 11 1

( ) 0
c A

F N p
q N a N

           (5.28) 

3 3
3 3

3 3 33 3

( ) 0
c A

G N p
q N a N

            (5.29) 

There exists a unique positive root 
1 1( )N N  of  

1( ) 0F N  in the interval 
1 10 N K

 
if 

the following inequalities hold: 1(0) 0, ( ) 0F F K ,
'

1( ) 0F N  for
1 0N .  Similarly there 

exists a unique positive root 
3 3( )N N  if 

3( ) 0G N  in the interval 
3 30 N K

 
If the 

following inequalities hold: 3(0) 0, ( ) 0G G K ,
'

3( ) 0G N  for
3 0N  

For 
1 1 3 3, , we getN N N N

  

31
2 2 21 23

22 1 1 3 3

1 cc
N a a a

a p q p q
           (5.30) 

1
1 1 11 12 2

1 1 1

1 c
E a a a N

q p q
            (5.31) 

3
3 3 32 2 33

3 3 3

1 c
E a a N a

q p q
           (5.32)

 

Hence once the optimal equilibrium 1 2 3, ,N N N is determined, the optimal harvesting 

effort 
1E and 

3E can be determined. From (5.21), (5.23) and (5.25) we observe that  

( ) ( 1,2,3)i

tt e i  is independent of time is an optimum equilibrium.  Hence they satisfy the 

transversality condition at . That is they remain bounded as t .  

From (5.26) and (5.27) we have  

2 1
1

1 111 1

0
A c

p
q Na N

   as t  and     

3 3
3

3 333 3

0
A c

p
q Na N

 as t   

Thus the total economic revenue  

1 2 3 1( ) ,( ) ,( ) , , 0N N N E t
 

1 2 3 3( ) , ( ) , ( ) , , 0N N N E t  

This  implies that an infinite discount rate leads to the total economic revenue tending to zero, 

and hence the system would remains closed. 

6. NUMERICAL SIMULATIONS 

(1) Let a1=3,α11=0.5,α12=0.5,q1=0.35,E1= 10,a2=4,α21=0.84,α22=2.4, α23=0.02,a3=3.5, α32=0.5, 

α33=2,        q3 =0.3,E3 =12, N1 =15, N2 =20 and  N3 =10 
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Fig 6.1. Population growth rate Variations verses time. 
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Fig 6.2. Phase-space trajectories corresponding to the stabilities of the population 

(2) Let   a1=2,α11=1,α12=0.35,q1=0.01,E1=8,a2=2,α21=0.1,α22=0.6, α23=0.2,a3=2.4, α32=0.4, 

α33=0.4, q3 =0.69,E3 =6,N1 =6, N2 =8 and  N3 =10 
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Fig 6.3. Population growth rate Variations verses time. 
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Fig 6.4. Phase-space trajectories  

7. CONCLUDING REMARKS 

The bionomic equilibrium has been analyzed followed by the determination of optimal harvesting 

policy by employing Pontryagin’s Maximum Principle [11].  At the steady state, the harvesting 
cost per unit effort is equal to the marginal profit of the effort. It is found that even under 

continuous harvesting of the terminal species, the population may be maintained at an appropriate 

equilibrium level.  Some numerical examples are also computed using Matlab. 
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