Stability Analysis of Three Species Model in Series Mutualism with Bionomic and Optimal Harvesting of Two Terminal Species

R. Srilatha
Department of Mathematics
Sree Chaitanya Inst. of Tech. \& Sci
Thimmapur, Karimnagar, India
bsrilatha82@gmail.com

B. Ravindra Reddy
Department of Mathematics, JNTUH College of Engineering Jagitial Karimnagar District, India. rbollareddy@gmail.com

Abstract

This paper deals with a three species Syn-eco-system consisting of three species $\left(S_{1}\right),\left(S_{2}\right)$ and (S_{3}) are in series the ecological interaction: Mutualism in pairs while the terminal species S_{1} and S_{3} are harvested. The possibility of existence of bio economic equilibrium is being discussed and an optimal harvesting policy is given using Pontryagin's maximum principle. Further some numerical examples are computed using Matlab.

Keywords: Series Mutualism, Optimal harvesting, Bionomic harvesting, Terminal species

1. Introduction

There is an extensive study on several kinds of prey- predator interactions after it was initiated by Lotka [1] and Volterra [2]. Bionomics of natural resources has played a significant role in all these interactions. There is a strong impact of harvesting on the dynamic evolution of a population. In fishery, forestry, agriculture and wild life management, the exploitation of biological resources and harvesting of population species can be seen. The problems of predatorprey systems in the presence of harvesting were discussed by many authors and attention on economic policies from harvesting have also been analyzed. A detailed discussion on the issues and techniques associated with the bionomic exploitation of natural resources was given by Clark [3, 4]. A study on a class of predator-prey models under constant rate of harvesting of both species simultaneously was made by Brauer and Soudack [5, 6]. Multi-species harvesting models are also studied in detail by Chaudhuri [7, 8]. Models on the combined harvesting of a two species prey predator fishery have been discussed by Ragozin and Brown [9], Chaudhuri and Saha Ray [10]. K. Shiva Reddy et.al [12] and B. Ravindra Reddy [13, 14, 15] proposed the mathematical models for two and three species ecosystem with bionomic and optimal harvesting. They also investigated the stability concepts using various mathematical techniques. In this connection, a three species mathematical model in series mutualism based on the system of nonlinear equations has been constructed. Biological and Bionomical equilibria of the system are derived.

2. Mathematical Model

The model equations in this problem are as follows
(i) Equation for the growth rate of $\left(\mathrm{S}_{1}\right)$:

$$
\begin{equation*}
\frac{d N_{1}}{d t}=a_{1} N_{1}-a_{11} N_{1}^{2}+a_{12} N_{1} N_{2}-q_{1} E_{1} N_{1} \tag{2.1}
\end{equation*}
$$

(ii) Equation for the growth rate of $\left(\mathrm{S}_{2}\right)$:

$$
\begin{equation*}
\frac{d N_{2}}{d t}=a_{2} N_{2}-a_{22} N_{2}^{2}+a_{21} N_{2} N_{1}+a_{23} N_{2} N_{3} \tag{2.2}
\end{equation*}
$$

(iii) Equation for the growth rate of $\left(\mathrm{S}_{3}\right)$:

$$
\begin{equation*}
\frac{d N_{3}}{d t}=a_{3} N_{3}-a_{33} N_{3}^{2}+a_{32} N_{3} N_{2}-q_{3} E_{3} N_{3} \tag{2.3}
\end{equation*}
$$

Notation Adopted:

$N_{i}(t)$: Population density of the species S_{i} at time $\mathrm{t}, \mathrm{i}=1,2,3$.
$a_{i}:$ Natural growth rate of $S_{i}, i=1,2,3$
$a_{i i}$: Decrease rate of S_{i} due to its own insufficient resources $\mathrm{i}=1,2,3$.
a_{12} : Increase rate of the first species $\left(\mathrm{S}_{1}\right)$ due to inhibition by the second species $\left(\mathrm{S}_{2}\right)$,
a_{21} : Increase rate of the second species $\left(\mathrm{S}_{2}\right)$ due to $\left(\mathrm{S}_{1}\right)$
a_{23} : Increase rate of the second species $\left(\mathrm{S}_{2}\right)$ due to $\left(\mathrm{S}_{3}\right)$,
a_{32} : Increase rate of the third species $\left(\mathrm{S}_{3}\right)$ due to $\left(\mathrm{S}_{2}\right)$
$\mathrm{K}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} / \alpha_{i i}$: Carrying capacities of $\mathrm{S}_{\mathrm{i}, \mathrm{i}} \mathrm{i}=1,2,3$.
q_{i} : Catch ability coefficient of the species $\left(\mathrm{S}_{\mathrm{i}}\right), \mathrm{i}=1,3$
E_{i} : Effort applied to harvest the first species $\left(\mathrm{S}_{\mathrm{i}}\right), \mathrm{i}=1,3$
$q_{1} E_{1} N_{1}, q_{3} E_{3} N_{3}$ are the catch-rate functions based on the catch-per-unit-effort hypothesis.
The variables N_{1}, N_{2} and N_{3} are non-negative and the model parameters $a_{i}, K_{i}, a_{i i}, a_{12}, a_{21}$, a_{23}, a_{32} are assumed to be non-negative constants.
Further $a_{1}>q_{1} E_{1}, a_{3}>q_{3} E_{3}$

3. EQUILIBRIUM STATES

The system under investigation has eight equilibrium states defined by $\frac{d N_{i}}{d t}=0, i=1,2,3$ and these are given hereunder.
I. Fully washed out state:
$\mathrm{E}_{1}: \quad \overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0$
II. States in which only one species survives while the other two are washed out
$\mathrm{E}_{2}: \quad \overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}-q_{3} E_{3}}{a_{33}} ; \quad \mathrm{E}_{3}: \quad \overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0$
$\mathrm{E}_{4}: \quad \overline{N_{1}}=\frac{a_{1}-q_{1} E_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0$
III. States in which two species survive and the third washed out
$\mathrm{E}_{5}: \quad \overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2} a_{33}+a_{23}\left(a_{3}-q_{3} E_{3}\right)}{a_{22} a_{33}-a_{23} a_{32}}, \overline{N_{3}}=\frac{a_{2} a_{32}+a_{22}\left(a_{3}-q_{3} E_{3}\right)}{a_{22} a_{33}-a_{23} a_{32}}$
This state exists only when $a_{22} a_{33}-a_{23} a_{32}>0$
$\mathrm{E}_{6}: \quad \overline{N_{1}}=\frac{a_{1}-q_{1} E_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}-q_{3} E_{3}}{a_{33}}$
$\mathrm{E}_{7}: \quad \overline{N_{1}}=\frac{a_{2} a_{12}+\left(a_{1}-q_{1} E_{1}\right) a_{22}}{a_{11} a_{22}-a_{12} a_{21}}, \overline{N_{2}}=\frac{a_{2} a_{11}+\left(a_{1}-q_{1} E_{1}\right) a_{21}}{a_{11} a_{22}-a_{12} a_{21}}, \overline{N_{3}}=0$
This state exists only when $a_{11} a_{22}>a_{12} a_{21}$
IV. The co-existent state (or) Normal steady state

$$
\mathrm{E}_{8}: \quad \overline{N_{1}}=\frac{\left(a_{1}-q_{1} E_{1}\right) a_{22} a_{33}-a_{32} a a_{23}+a_{12} a_{23}\left(a_{3}-q_{3} E_{3}\right)+a_{2} a_{12} a_{33}}{a_{11} a_{22} a_{33}+a_{12} a_{21} a_{23}-a_{11} a_{23} a_{32}}
$$

Stability Analysis of Three Species Model in Series Mutualism with Bionomic and Optimal Harvesting of Two Terminal Species

$$
\begin{aligned}
& \overline{N_{2}}=\frac{a_{2} a_{11} a_{33}+a_{21} a_{33}\left(a_{1}-q_{1} E_{1}\right)+a_{11} a_{23}\left(a_{3}-q_{3} E_{3}\right)}{a_{11} a_{22} a_{33}+a_{12} a_{21} a_{23}-a_{11} a_{23} a_{32}}, \\
& \overline{N_{3}}=\frac{\left(a_{3}-q_{3} E_{3}\right) a_{22} a_{33}+a_{12} a_{12}+a_{2} a_{11} a_{32}-a_{32} a_{21}\left(a_{1}-q_{1} E_{1}\right)}{a_{11} a_{22} a_{33}+a_{13} a_{31} a_{22}-a_{12} a_{21} a_{33}}
\end{aligned}
$$

This state exists only when $\left(a_{33}+a_{13} a_{31} a_{22}\right)>a_{12} a_{21} a_{33}$.

4. Bio Economic Aspect at Interior Equilibrium Point

The concept of bionomic equilibrium is a union of those of biological equilibrium as well as economic equilibrium. Biological equilibrium is given by $\frac{d N_{i}}{d t}=0, \mathrm{i}=1,2,3$.

By definition, the bionomic equilibrium is said to be achieved when the selling price of the harvested biomass equals to the total cost price utilized in harvesting it.

Let c_{i} be the harvesting cost per unit effort for $S_{i,} i=1,3$ and p_{i} be the price per unit biomass of $S_{i,} i=1,3$. The net revenue or economic rent at any time instant is then given by $R=R_{1}+R_{3}$, where $R_{1}=\left(p_{1} q_{1} N_{1}-c_{1}\right) E_{1}, R_{3}=\left(p_{3} q_{3} N_{3}-c_{3}\right) E_{3}$
Here $\quad R_{i}$ represent net revenue for $S_{i,} i=1,3$. The bionomic equilibrium $\left(N_{1}\right)_{\infty},\left(N_{2}\right)_{\infty},\left(N_{3}\right)_{\infty}, E_{1 \infty}, E_{3 \infty}$ satisfies the following equations.
$a_{1} N_{1}-a_{11} N_{1}^{2}+a_{12} N_{1} N_{2}-q_{1} E_{1} N_{1}=0$
$a_{2} N_{2}-a_{22} N_{2}^{2}+a_{21} N_{2} N_{1}+a_{23} N_{2} N_{3}=0$
$a_{3} N_{3}-a_{33} N_{3}^{2}+a_{32} N_{2} N_{3}-q_{3} E_{3} N_{3}=0$
The revenue returns (R) on first and third species taken together will be

$$
\begin{equation*}
R=p_{1} q_{1} N_{1}-c_{1} E_{1}+p_{3} q_{3} N_{3}-c_{3} E_{3} \tag{4.3}
\end{equation*}
$$

The cases would arise while determining the bionomic equilibrium.
Case (i): if $c_{3}>p_{3} q_{3} N_{3}$ then the cost is greater than revenue for third species then its harvesting would come to a halt $\left(\mathrm{E}_{3}=0\right)$. Only the harvesting of first species remains operational.

$$
\begin{align*}
& c_{1}<p_{1} q_{1} N_{1} \\
& N_{1 \infty}=\frac{c_{1}}{p_{1} q_{1}} \tag{4.5}\\
& N_{2_{\infty}}=\frac{1}{a_{22} a_{33}-a_{23} a_{32}}\left(a_{2} a_{33}+a_{21} a_{33} \frac{c_{1}}{p_{1} q_{1}}+a_{3} a_{23}\right) \tag{4.6}\\
& N_{3 \infty}=\frac{1}{a_{22} a_{33}-a_{23} a_{32}}\left(a_{3} a_{22}+a_{2} a_{32}+a_{32} a_{21} \frac{c_{1}}{p_{1} q_{1}}\right) \tag{4.7}\\
& E_{1_{\infty}}=\frac{1}{q_{1}}\left\{a_{1}-a_{11} \frac{c_{1}}{p_{1} q_{1}}+a_{12} N_{2}\right\} \tag{4.8}
\end{align*}
$$

The condition, for this $E_{1}>0$ to be positive definite, is that

$$
\begin{equation*}
a_{1}+a_{12} \quad N_{2 \infty}>a_{11} \frac{c_{1}}{p_{1} q_{1}} \tag{4.9}
\end{equation*}
$$

Case (ii): If $c_{1}>p_{1} q_{1} N_{1}$ then the cost is greater than revenue for first species then its harvesting would come to a halt $\left(\mathrm{E}_{1}=0\right)$. Only the harvesting of third species remains operational $\left(c_{3}<p_{3} q_{3} N_{3}\right)$

$$
\begin{align*}
& N_{3 \infty}=\frac{c_{3}}{p_{3} q_{3}} \tag{4.10}\\
& N_{1_{\infty}}=\frac{1}{a_{11} a_{22}-a_{21} a_{12}}\left(a_{1} a_{22}+a_{21} \frac{c_{3}}{p_{3} q_{3}}+a_{2} a_{12}\right) \tag{4.11}\\
& N_{2_{\infty}}=\frac{1}{a_{11} a_{22}-a_{21} a_{12}}\left(a_{2} a_{11}+a_{1} a_{21}-a_{11} \frac{c_{3}}{p_{3} q_{3}}\right) \tag{4.12}
\end{align*}
$$

Now substituting N_{1}, N_{2}, N_{3} in equations (4), (5) and (6) we get

$$
\begin{equation*}
E_{3 \infty}=\frac{1}{q_{2}}\left\{a_{3}+a_{32} \quad N_{2}-a_{33} \frac{c_{3}}{p_{3} q_{3}}\right\} \tag{4.13}
\end{equation*}
$$

Now $\quad E_{3}>0$, where the following condition

$$
\begin{equation*}
a_{3}+a_{32} \quad N_{2 \infty}>a_{33} \frac{c_{3}}{p_{3} q_{3}} \tag{4.14}
\end{equation*}
$$

Case (iii): if $c_{1}>p_{1} q_{1} N_{1}, c_{3}>p_{3} q_{3} N_{3}$ then the cost is greater than the revenue for the both species and species-harvesting will come to a total closer.
Case (iv): if $c_{1}<p_{1} q_{1} N_{1}, c_{3}<p_{3} q_{3} N_{3}$ the cost is less than revenue return on the harvesting of the both the species, the system becomes operational to yield profit.
The bionomic equilibrium $\left(N_{1}\right)_{\infty},\left(N_{2}\right)_{\infty},\left(N_{3}\right)_{\infty}, E_{1}, E_{3 \infty}$ is the positive solution of the system (4.1-4.3)
Solving these equations, we get

$$
\begin{align*}
& N_{1 \infty}=\frac{c_{1}}{p_{1} q_{1}}, N_{3 \infty}=\frac{c_{3}}{p_{3} q_{3}}, N_{2 \infty}=\frac{1}{a_{22}}\left(a_{2}+a_{21} \frac{c_{1}}{p_{1} q_{1}}+a_{23} \frac{c_{3}}{p_{3} q_{3}}\right) \tag{4.15}\\
& \left.E_{1_{\infty}}=\frac{1}{q_{1}}\left\{a_{1}-a_{11} \frac{c_{1}}{p_{1} q_{1}}+a_{12} N_{2}\right\}\right\} \tag{4.16}\\
& E_{3 \infty}=\frac{1}{q_{3}}\left\{a_{3}+a_{32} N_{2}-a_{33} \frac{c_{3}}{p_{3} q_{3}}\right\} \tag{4.17}\\
& E_{1}>0, \quad E_{3 \infty}>0 \tag{4.18}\\
& a_{1}+a_{12} N_{2}>a_{11} \frac{c_{1}}{p_{1} q_{1}}, \quad a_{3}+a_{32} N_{2 \infty}>a_{33} \frac{c_{3}}{p_{3} q_{3}} \tag{4.19}
\end{align*}
$$

Thus the bionomic equilibrium $\left(N_{1}\right)_{\infty},\left(N_{2}\right)_{\infty},\left(N_{3}\right)_{\infty}, E_{1}, E_{3}$ exits if the conditions (4.18) and (4.19) hold.

5. Optimal Harvesting Policy

The present target is to select the harvesting policy that maximizes the present value J of continuous time stream of revenues given by

$$
\begin{equation*}
J=\int_{0}^{\infty} e^{-\delta t}\left(p_{1} q_{1} N_{1}-c_{1}\right) E_{1}(t)+\left(p_{3} q_{3} N_{3}-c_{3}\right) E_{3}(t) d t \tag{5.1}
\end{equation*}
$$

where δ denotes the instantaneous annual rate of discount. Intentionally we have to maximize (5.1) subject to the state equations (2.1)-(2.3) by adopting Pontryagin's maximum principle.

The control variable $\mathrm{E}_{\mathrm{i}}(\mathrm{t})$ is subjected to the constrains $0 \leq E_{i}(t) \leq(E)_{\text {max }}$.
The Hamiltonian for the problem is given by

Stability Analysis of Three Species Model in Series Mutualism with Bionomic and Optimal Harvesting of Two Terminal Species

$$
\begin{align*}
& H=e^{-\delta t} \quad\left(p_{1} q_{1} N_{1}-c_{1}\right) E_{1}+\left(p_{3} q_{3} N_{3}-c_{3}\right) E_{3}+\lambda_{1}\left[a_{1} N_{1}-a_{11} N_{1}^{2}+a_{12} N_{1} N_{2}-q_{1} E_{1} N_{1}\right] \\
&+\lambda_{2}\left[a_{2} N_{2}-a_{22} N_{2}^{2}+a_{21} N_{1} N_{2}+a_{23} N_{2} N_{3}\right]+\lambda_{3}\left[a_{3} N_{3}-a_{33} N_{3}^{2}+a_{32} N_{3} N_{2}-q_{3} E_{3} N_{3}\right] \tag{5.2}
\end{align*}
$$

where λ_{1}, λ_{2} and λ_{3} are the adjoint variables.
Consider the switching functions

$$
\begin{equation*}
\mu_{1}(t)=e^{-\delta t}\left(p_{1} q_{1} N_{1}-c_{1}\right) E_{1}-\lambda_{1} q_{1} E_{1} N_{1} . \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{2}(t)=e^{-\delta t}\left(p_{3} q_{3} N_{3}-c_{3}\right) E_{2}-\lambda_{3} q_{3} E_{3} N_{3} \tag{5.4}
\end{equation*}
$$

The optimal control will be a combination of extreme controls and the singular control.
The optimal control function $\mathrm{E}_{1}(\mathrm{t})$ and $\mathrm{E}_{3}(\mathrm{t})$ that maximizes H must satisfy the following conditions.
$E_{1}=\left(E_{1}\right)_{\max ,}$ when $\mu_{1}(t)>0$ i.e $\lambda_{1}(t) e^{\delta t}<p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}$
$E_{1}=0 \quad$ when $\mu_{1}(t)<0 \quad$ i.e $\lambda_{1}(t) e^{\delta t}>p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}$
and
$E_{3}=\left(E_{3}\right)_{\max ,}$ when $\mu_{2}(t)>0$ i.e $\lambda_{3}(t) e^{\delta t}<p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}$
$E_{3}=0 \quad$ when $\mu_{2}(t)<0$ i.e $\lambda_{3}(t) e^{\delta t}>p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}$
Thus the optimal harvesting policy is
$E_{1}(t)= \begin{cases}\left(E_{1}\right)_{\max } & ; \mu_{1}(t)>0 \\ 0 & ; \mu_{1}(t)<0 \\ E^{*} & ; \mu_{1}(t)=0\end{cases}$
$E_{3}(t)= \begin{cases}\left(E_{3}\right)_{\max } & ; \mu_{2}(t)>0 \\ 0 & ; \mu_{2}(t)<0 \\ E^{*} & ; \mu_{2}(t)=0\end{cases}$
By Pontryagin's maximum principle,

$$
\begin{align*}
& \frac{\partial H}{\partial E_{1}}=0 ; \frac{\partial H}{\partial E_{2}}=0 ; \frac{d \lambda_{1}}{d t}=-\frac{\partial H}{\partial N_{1}} ; \frac{d \lambda_{2}}{d t}=-\frac{\partial H}{\partial N_{2}} \text { and } \frac{d \lambda_{3}}{d t}=-\frac{\partial H}{\partial N_{3}} \tag{5.11}\\
& \frac{\partial H}{\partial E_{1}}=0 \Rightarrow e^{-\delta t} p_{1} q_{1} N_{1}-c_{1}+\lambda_{1}-q_{1} N_{1}=0 \Rightarrow \lambda_{1}=e^{-\delta t}\left[p_{1}-\frac{c_{1}}{q_{1} \bar{N}_{1}}\right] \tag{5.12}\\
& \frac{\partial H}{\partial E_{2}}=0 \Rightarrow e^{-\delta t} p_{3} q_{3} N_{3}-c_{3}+\lambda_{3}-q_{3} N_{3}=0 \Rightarrow \lambda_{3}=e^{-\delta t}\left[p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right] \tag{5.13}\\
& \frac{d \lambda_{1}}{d t}=-\frac{\partial H}{\partial N_{1}}=-\left[e^{-\delta t} p_{1} q_{1} E_{1}+\lambda_{1} a_{1}-2 a_{11} N_{1}+a_{12} N_{2}-q_{1} E_{1}+\lambda_{2} a_{21} N_{2}\right] \tag{5.14}\\
& \frac{d \lambda_{2}}{d t}=-\frac{\partial H}{\partial N_{2}}=\lambda_{1} a_{12} N_{1}-\lambda_{2} a_{2}+a_{21} N_{1}-2 a_{22} N_{2}+a_{23} N_{3} \tag{5.15}\\
& \frac{d \lambda_{3}}{d t}=-\frac{\partial H}{\partial N_{3}}=-\left[e^{-\delta t} p_{3} q_{3} E_{3}+\lambda_{2} a_{23} N_{2}+\lambda_{3} a_{3}+a_{32} N_{2}-2 a_{33} N_{3}-q_{3} E_{3}\right] \tag{5.16}
\end{align*}
$$

After simplification we get
$\frac{d \lambda_{1}}{d t}=-e^{-\delta t} p_{1} q_{1} E_{1}+\lambda_{1} a_{11} \overline{N_{1}}-\lambda_{2} a_{21} \overline{N_{2}}$
$\frac{d \lambda_{2}}{d t}=-\lambda_{1} a_{12} \overline{N_{1}}+\lambda_{2} a_{22} \overline{N_{2}}+\lambda_{3} a_{23} \overline{N_{3}}$
$\frac{d \lambda_{3}}{d t}=-e^{-\delta t} p_{3} q_{3} E_{3}-\lambda_{2} a_{23} \overline{N_{2}}+\lambda_{3} a_{33} \overline{N_{3}}$
From (5.12), (5.13) and (5.18)
$\frac{d \lambda_{2}}{d t}-\lambda_{2} a_{22} \overline{N_{2}}=-a_{12} \overline{N_{1}}\left[p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}\right] e^{-\delta t}+a_{23} \overline{N_{3}}\left[p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right] e^{-\delta t}$
i.e, $\frac{d \lambda_{2}}{d t}-a_{22} \overline{N_{2}} \lambda_{2}=A_{1} e^{-\delta t}$
where $A_{1}=-a_{12} \overline{N_{1}}\left[p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}\right]+a_{23} \overline{N_{3}}\left[p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right]$
The solution of which can be obtained as $\lambda_{2}=\frac{-A_{1}}{\delta+a_{22} \overline{N_{2}}} e^{-\delta t}$
From (5.21) and (5.17),

$$
\begin{equation*}
\frac{d \lambda_{1}}{d t}=-e^{-\delta t} p_{1} q_{1} E_{1}+\lambda_{1} a_{11} \overline{N_{1}}-a_{22} \overline{N_{2}} \frac{-A_{1}}{\delta+a_{22} \overline{N_{2}}} e^{-\delta t} \tag{5.22}
\end{equation*}
$$

i.e, $\frac{d \lambda_{1}}{d t}-\lambda_{1} a_{11} \overline{N_{1}}=-A_{2} e^{-\delta t}$

The solution of which can be obtained as $\lambda_{1}=\frac{A_{2}}{\delta+a_{11} \overline{N_{1}}} e^{-\delta t}$
where $A_{2}=\left(p_{1} q_{1} E_{1}-a_{22} \overline{N_{2}} \frac{A_{1}}{\delta+a_{22} \overline{N_{2}}}\right)$
From (5.21) and (5.19),
$\frac{d \lambda_{3}}{d t}-a_{33} \overline{N_{3}} \lambda_{3}=-e^{-\delta t} p_{3} q_{3} E_{3}-a_{23} \overline{N_{2}} \frac{-A_{1}}{\delta+a_{22} \overline{N_{2}}} e^{-\delta t}$
i.e, $\frac{d \lambda_{3}}{d t}-a_{33} \overline{N_{3}} \lambda_{3}=-A_{3} e^{-\delta t}$

The solution of which can be obtained as $\lambda_{3}=\frac{A_{3}}{\delta+a_{33} \overline{N_{3}}} e^{-\delta t}$
where $A_{3}=\left(p_{3} q_{3} E_{3}-a_{23} \overline{N_{2}} \frac{A_{1}}{\delta+a_{22} \overline{N_{2}}}\right)$
From (5.12) and (5.23), we get a singular path, $\frac{A_{2}}{\delta+a_{11} \overline{N_{1}}} e^{-\delta t}=e^{-\delta t}\left[p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}\right]$ from
which we obtain $\frac{A_{2}}{\delta+a_{11} \overline{N_{1}}}=\left(p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}\right)$
From (5.13) and (5.25), we get a singular path,

Stability Analysis of Three Species Model in Series Mutualism with Bionomic and Optimal Harvesting of Two Terminal Species
$\frac{A_{3}}{\delta+a_{33} \overline{N_{3}}} e^{-\delta t}=e^{-\delta t}\left[p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right]$
From which we obtain $\frac{A_{3}}{\delta+a_{33} \overline{N_{3}}}=\left(p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right)$
Thus from (5.26) and (5.27), we write as,

$$
\begin{align*}
& F\left(\overline{N_{1}}\right)=\left(p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}\right)-\frac{A_{2}}{\delta+a_{11} \overline{N_{1}}}=0 \tag{5.28}\\
& G\left(\overline{N_{3}}\right)=\left(p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right)-\frac{A_{3}}{\delta+a_{33} \overline{N_{3}}}=0 \tag{5.29}
\end{align*}
$$

There exists a unique positive root $\overline{N_{1}}=\left(N_{1}\right)_{\delta}$ of $F\left(\overline{N_{1}}\right)=0$ in the interval $0<N_{1}<K_{1}$ if the following inequalities hold: $F(0)<0, F\left(K_{1}\right)>0, F^{\prime}\left(\overline{N_{1}}\right)>0$ for $\overline{N_{1}}>0$. Similarly there exists a unique positive root $\overline{N_{3}}=\left(N_{3}\right)_{\delta}$ if $G\left(\overline{N_{3}}\right)=0$ in the interval $0<N_{3}<K_{3}$ If the following inequalities hold: $G(0)<0, G\left(K_{3}\right)>0, G^{\prime}\left(\overline{N_{3}}\right)>0$ for $\overline{N_{3}}>0$
For $\overline{N_{1}}=N_{1_{\infty}}, \overline{N_{3}}=N_{3}$, we get

$$
\begin{align*}
& N_{2 \infty}=\frac{1}{a_{22}}\left(a_{2}+a_{21} \frac{c_{1}}{p_{1} q_{1}}+a_{23} \frac{c_{3}}{p_{3} q_{3}}\right) \tag{5.30}\\
& E_{1}=\frac{1}{q_{1}}\left(a_{1}-a_{11} \frac{c_{1}}{p_{1} q_{1}}+a_{12} N_{2}\right) \tag{5.31}\\
& E_{3 \infty}=\frac{1}{q_{3}}\left(a_{3}+a_{32} N_{2}-a_{33} \frac{c_{3}}{p_{3} q_{3}}\right) \tag{5.32}
\end{align*}
$$

Hence once the optimal equilibrium $N_{1}{ }_{\delta}, N_{2}, N_{3}{ }_{\delta}$ is determined, the optimal harvesting effort E_{1} and $E_{3}{ }_{\infty}$ can be determined. From (5.21), (5.23) and (5.25) we observe that $\lambda_{i}(t) e^{\delta t}(i=1,2,3)$ is independent of time is an optimum equilibrium. Hence they satisfy the transversality condition at ∞. That is they remain bounded as $t \rightarrow \infty$.
From (5.26) and (5.27) we have

$$
\begin{aligned}
& \frac{A_{2}}{\delta+a_{11} \overline{N_{1}}}=\left(p_{1}-\frac{c_{1}}{q_{1} \overline{N_{1}}}\right) \rightarrow 0 \quad \text { as } t \rightarrow \infty \quad \text { and } \\
& \frac{A_{3}}{\delta+a_{33} \overline{N_{3}}}=\left(p_{3}-\frac{c_{3}}{q_{3} \overline{N_{3}}}\right) \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

Thus the total economic revenue

$$
\begin{aligned}
& \left(N_{1}\right)_{\infty},\left(N_{2}\right)_{\infty},\left(N_{3}\right)_{\infty}, E_{1}, t=0 \\
& \left(N_{1}\right)_{\infty},\left(N_{2}\right)_{\infty},\left(N_{3}\right)_{\infty}, E_{3}, t=0
\end{aligned}
$$

This implies that an infinite discount rate leads to the total economic revenue tending to zero, and hence the system would remains closed.

6. Numerical Simulations

(1) Let $\mathrm{a}_{1}=3, \alpha_{11}=0.5, \alpha_{12}=0.5, \mathrm{q}_{1}=0.35, \mathrm{E}_{1}=10, \mathrm{a}_{2}=4, \alpha_{21}=0.84, \alpha_{22}=2.4, \alpha_{23}=0.02, a_{3}=3.5, \alpha_{32}=0.5$, $\alpha_{33}=2, \quad \mathrm{q}_{3}=0.3, \mathrm{E}_{3}=12, \mathrm{~N}_{1}=15, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=10$

Fig 6.1. Population growth rate Variations verses time.

Fig 6.2. Phase-space trajectories corresponding to the stabilities of the population
(2) Let $a_{1}=2, \alpha_{11}=1, \alpha_{12}=0.35, q_{1}=0.01, \mathrm{E}_{1}=8, a_{2}=2, \alpha_{21}=0.1, \alpha_{22}=0.6, \alpha_{23}=0.2, a_{3}=2.4, \alpha_{32}=0.4$, $\alpha_{33}=0.4, \mathrm{q}_{3}=0.69, \mathrm{E}_{3}=6, \mathrm{~N}_{1}=6, \mathrm{~N}_{2}=8$ and $\mathrm{N}_{3}=10$

Fig 6.3. Population growth rate Variations verses time.

Stability Analysis of Three Species Model in Series Mutualism with Bionomic and Optimal Harvesting of Two Terminal Species

Fig 6.4. Phase-space trajectories

7. CONCLUDING REMARKS

The bionomic equilibrium has been analyzed followed by the determination of optimal harvesting policy by employing Pontryagin's Maximum Principle [11]. At the steady state, the harvesting cost per unit effort is equal to the marginal profit of the effort. It is found that even under continuous harvesting of the terminal species, the population may be maintained at an appropriate equilibrium level. Some numerical examples are also computed using Matlab.

References

[1]. Lotka, A.J.,Elements of Physical biology, Williams and Wilkins,Baltimore, 1925.
[2]. Volterra,V.,Leconssen la theorie mathematique de la leitte pou lavie,Gauthier-Villars, Paris, 1931.
[3]. C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York 1976.
[4]. C.W. Clark, Bioeconomic Modeling and Fisheries Management,Wiley, NewYork 1985.
[5]. F. Brauer, A.C. Soudack, Stability regions and transition phenomena for harvested predatorprey systems, J. Math. Biol. 7 (1979) pp319-337.
[6]. F. Brauer, A.C. Soudack, Stability regions in predator-prey systems with constant rate prey harvesting, J. Math. Biol. 8 (1979) pp55-71.
[7]. K.S. Chaudhuri, A bioeconomic model of harvesting a multispecies fishery, Ecol. Model, 32 (1986), pp. 267-279.
[8]. K.S. Chaudhuri, Dynamic optimization of combined harvesting of a two-species fishery, Ecol. Model. 41 (1988),pp.17-25.
[9]. D. L. Ragozin and G. Brown, "Harvest policies and nonmarket valuation in a predator prey system", J. Envirn.Econ. Manag. 12, 1985, pp.155-168.
[10].K.S. Chaudhuri and S.S. Ray, "On the combined harvesting of a prey-predator system", J. Biol. Sys. 4. 1996, pp.373-389
[11]. Pontryagin L.S., Boltyanskii V.S.,Gamkerlidge R.N., and Mischenko E.F.,The mathematical theory of optimal process(Wiley, New York, 1962).
[12]. K. Shiva Reddy and N. Ch. Pattabhiramacharyulu, A three species ecosystem comprising of two predators competing for a prey, Advances in Applied science research, 2 (2011), pp208218.
[13]. B. Ravindra Reddy, Stability analysis of two competitive interacting species with optimal and bionomic harvesting of the second species, Int. J. of Mathematics Trends and Technology(2013), Vol. 4, Issue 2, pp26-34.

R. Srilatha \& B. Ravindra Reddy

[14].B. Ravindra Reddy, Stability analysis of two competitive interacting species with optimal and bionomic harvesting of the first species, Int. J. of Mathematical Archive-4(4), 2013, 126-135.
[15]. B. Ravindra Reddy, A model of two mutually interacting species with limited resources for both the species - a numerical approach, Int. J. of Mathematics and Computer Applications Research, Vol. 3, Issue 1, Mar 2013, 185-192.

