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Abstract: In this paper, a mathematical model for forward propagation of a combustion front with 
Arrhenius kinetics through a porous medium is presented. The reaction involves oxygen and a solid fuel. 
We assume that this solid fuel depends on the space variable. Under an incompressible assumption, we 
obtain a simple model whose variables are temperature, oxygen mass fraction, fuel concentration, seepage 
velocity and pressure. We also assume that the amount of gas produced by the reaction is equal to the 
amount of gas consumed by it. By actual solution, we prove the existence and uniqueness of solution of the 
model. We examine the properties of solution under certain conditions. Using large activation energy 
asymptotics, the analytical solution of the model was provided via Homotopy perturbation method (HPM) 
and the results are presented graphically. It is discovered that the influence of Frank-Kamenetskii number 
on the heat transfer and species consumption is quite significant..  

Keywords: Combustion front, Solid fuel, Porous medium, Homotopy Perturbation Method (HPM).

 
1. INTRODUCTION 
Combustion fronts in porous media have been studied by many authors during the last few 
decades. In particular, for combustion processes in oil recovery, models and results of numerical 
simulations have been presented. One of the first models of combustion in a petroleum reservoir 
was formulated by Gottfried [1]. The model consists of a system of six partial differential 
equations describing the flow of oil, water, and gas through the porous medium, together with a 
chemical reaction between oxygen and oil. Crookston and Culham [2] presented a general model 
for thermal recovery processes, as well as associated numerical procedures. In addition to the 
aspects of combustion processes modelled by Gottfried, they included such aspects as coke 
formation and oxidation. 

These models are nonlinear reaction–diffusion–convection systems derived from the principle of 
conservation. In vector form in one space dimension, they have the form 

( ) ( )( ) ( )( ) , 0 , 0,t xx x
H U F U B U U G U x l t+ = + < < >                                                                   (1) 

where l is the length of the porous medium and U is the vector of unknown quantities, such as 
temperature and densities. The first and second terms in (1) represent, respectively, accumulation 
and transport by convection of these quantities; the function G represents source terms due to 
chemical reactions and heat loss; and the term ( )( )xxUUB  represents diffusion of heat, mass, etc. 

The combustion process is described by the solution of the system (1), with suitable initial and 
boundary conditions. 
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In the more recent literature, several authors have studied the oxidation of crude oil with air 
injected in porous media. These include Ayeni [3] who studied thermal runaway phenomena 
while investigating the reaction of oxygen and hydrogen. He provided useful theorems on such 
flows. Olayiwola and Ayeni [4] studied the continuity, momentum and coupled nonlinear energy 
and species convection-diffusion equations describing the in-situ combustion process in porous 
media. The numerical solution was provided using large activation energy asymptotics and 
shooting method. 

Some recent work identifies combustion fronts with traveling waves, and proves their existence 
using geometric methods. Da Mota et al. [5, 6] used this approach to study combustion fronts in a 
two-phase (oil and oxygen) model. Combustion fronts were identified with traveling waves 
connecting an unburned state ahead of the front to a burned state behind it. 

In this work, we study a model for combustion of oxygen and a solid fuel such as coke in a porous 
medium. As in [4], we assume the fuel depends on the space variable x . We also assume that the 
amount of gas produced by the reaction is equal to the amount of gas consumed by it. We shift 
and rescale the temperature so that  corresponds to the initial temperature of the porous medium 

, which are also take to be the ignition temperature. Physically relevant solutions must have 
. However, in order to have a clear picture of solution in this region, we consider all 

solutions in the upper half plane . We prove the existence and uniqueness of solution. We 
also examine the properties of solution. To simulate the flow analytically, we assume that the 
incoming mixture is at the burner temperature. 

0

≥x

0T
≤0 lx ≤

0

2. MODEL FORMULATION 
We consider a horizontal one-dimensional porous medium with an initially available 
concentration of a solid fuel such as coke. The space variable is x , ∞<< x0 . The chemical 
reaction in the medium takes the simple form 

[solid reactant] + [gaseous reactant] → [gaseous product] + [heat].                                              (2)  

To formulate balance equations, we assume that fuel depends on space variable x . We also 
assume that the fluids are incompressible. Thus gρ  and fρ  are constants. The state variables 

depending on  are temperature ( )x T , oxygen mass fraction in the gas phase , fuel 
concentration , seepage velocity v  and pressure 

oxC

fC p . 

The following steady state equations are assumed to hold in the porous medium: 

Balance of energy 

pggpgg c
Q

dx
Td

cdx
dTv

ρ
ω

ρ
λ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

                                                                                                   (3) 

Balance of oxygen mass 

g

oxox
ox

ox s
dx

Cd
D

dx
dC

v
ρ
ω

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

                                                                                                    (4) 

Balance of fuel mass 

( )
f

sff
f

f s
dx

Cd
D

dx
dC

v
ρ

ω−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1
2

2

                                                                                              (5) 

Balance of total gas mass 

ωρ gg s
dx
dv

=                                                                                                                                  (6) 
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Darcy’s law 

x
pkv
∂
∂

−=                                                                                                                                       (7) 

The rate of coke consumption in the chemical reaction, in medium, is assumed to be given by a 
version of Arrhenius’s law: 

( )
⎪⎩

⎪
⎨
⎧

≤
>=

−

0,0
0,

Tfor
TforeCpCA RT

E

f
a

oxω ,                                                                                        (8) 

where A  is the Arrhenius constant, E  the activation energy,  the order of the gaseous reaction 
rate, and 

a
R  is the gas constant, gρ  is the gas density,  fρ  is the fuel density, λ  is thermal 

conductivity,  is heat capacity of gas at constant pressure, pgc ω  is rate of coke consumption in 

the chemical reaction, Q  is heat of reaction,  is the mass–weighted stoichiometric coefficients 
for oxygen,  is the mass–weighted stoichiometric coefficients for solid fuel,  is the mass–
weighted stoichiometric coefficients for gas,  is the flow resistance, which is directly 
proportional to rock permeability and inversely proportional to gas viscosity.  

oxs

sfs gs
k

The quantity  may be positive, negative, or zero, depending on whether the amount of gas 
produced by the reaction is more than, less than, or equal to the amount of gas consumed by it. 
Here, we will assume , 

gs

0=gs ρρρ == fg . 

From the balance of total gas mass (6), we obtain 

=v constant                                                                                                                                    (9) 

We let 

0, 00 >−= uuv  

From the Darcy’s law, we obtain 

0
0 px

k
u

p += ,                                                                                                                            (10) 

where  is the initial total gas pressure.  0p

From now on, we shall assume that the pressure is constant. Although these assumptions could be 
relaxed in the future, they considerably simplify the equations. With these simplifications, 
Equations (3) – (8) reduces to the following system modeling temperature, oxygen mass fraction 
and fuel concentration. 

02

2

0 =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

pgpg c
Q

dx
Td

cdx
dTu

ρ
ω

ρ
λ

                                                                                             (11) 

02

2

0 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ωoxox

ox
ox s

dx
Cd

D
dx

dC
u                                                                                          (12) 

( )
0

1
2

2

0 =
−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ρ
ωsff

f
f s

dx
Cd

D
dx

dC
u                                                                                     (13) 

The boundary conditions were formulated as follows: 
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Boundary conditions: 

( ) ( ) ( ) ⎪
⎭

⎪
⎬

⎫

===

===

∞→∞→∞→

===

0limlim,lim

,,

0

00000

xCxCTxT

CCCCTT

fox

fxfxoxbx

ηηη

,                                                      (14) 

where the subscript b  means burner. 

3. METHOD OF SOLUTION 

3.1 Existence and Uniqueness of Solution 

Theorem 1: Let sfox
pg

oxf ss
c

DD −==== 1,1λρ
λ

. Then there exists a unique solution of 

problem (11) - (13) satisfy (14).  

Proof:  Let sfox
pg

oxf ss
c

DD −==== 1,1λρ
λ

 and ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= fox

pg
ox CC

c
QTs

2
φ .  

Then (11) - (14) become 

02

2

10 =+
dx
d

dx
du φλφ

                                                                                                                    (15) 

( ) ( ) ( ) ∞→→++= xasTsxCC
c
QTs oxf

pg
box 000 ,

2
0 φφ                                                   (16) 

We obtain the solution of problem (15) as  

( ) ( ) ( ) oox

x
u

f
pg

box TseCC
c
QTTsx +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=

−
1

0

000 2
λφ                                                             (17) 

Then, we obtain 

( ) ( ) ( ) ( ) ( )( xCxC
cs

QTeCC
cs

QTTxT fox
pgox

o

x
u

f
pgox

b +−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=

−

22
1

0

000
λ )                  (18) 

( ) ( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−=

−

xCxT
Q

cs
T

Q
cs

eCCTT
Q

cs
xC f

pgox
o

pgox
x

u

fb
pgox

ox

222
1

0

000
λ   (19) 

( ) ( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−=

−

xCxT
Q

cs
T

Q
cs

eCCTT
Q

cs
xC ox

pgox
o

pgox
x

u

fb
pgox

f

222
1

0

000
λ   (20) 

Hence, there exists a unique solution of problem (11) - (14). This completes the proof. 

3.2 Non-dimensionalisation 

We scale the length by using iv
x α

=* , where  is the injection velocity and  iv α  the effective 

thermal diffusivity. We introduce dimensionless variables for space, 

*x
xx =′                                                                                                                                         (21) 
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We also introduce dimensionless variables for temperature, fuel concentration, oxygen mass 
fraction, velocity, pressure and density; 

( )02
0

TT
RT

E
−=θ ,   *p

pp =′ ,    *ρ
ρρ =′ ,    0

ox

ox
ox C

C
C =′ ,    0

f

f
f C

C
C =′ ,   *

1
0 x

u
λ

=             (22) 

where  is the initial temperature of the porous medium and  are the initial fuel 

concentration and initial oxygen mass fraction, respectively;  are reference values 
for space, pressure and density, respectively. 

0T 00 , oxf CC
** , ρp* ,x

Using (19) and (20), with these dimensionless variables, and after dropping the prime, the system 
(11) – (14) become 

( ) ( ) 0100
2

2

=−−−−++ ∈+−− θ
θ

υθγυθγδθθ eCCeCCe
dx
d

dx
d

oxox
xa

ff
x                                     (23) 

( ) ( ) 0100
2

2

=−−−−−+ ∈+−− θ
θ

υθγυθγβ eCCeCCe
dx

dC
dx

Cd
oxox

xa
ff

xoxox                              (24) 

( ) ( ) 0100
2

2Cd
=−−−−−+ ∈+−− θ

θ

υθγυθγσ eCCeCCe
dx

dC
dx oxox

xa
ff

xff                               (25) 

( ) ( )

( ) ( )

( ) ( )
⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

∞→→=

∞→→=

∞→→=

xasxCCC

xasxCCC

xasx

fff

oxox

b

0,0

0,0

0,0

0

0

θθθ

                                                                                 (26) 

where 

,   
Q

Tcs pgox 02 ∈
=υ ,   ( ) ( )000

2
fb

pgox CCTT
Q

cs
++−=γ ,

E
RT0∈=            

( )
1

20*

0*02 0

λρρ
α

β i
ox

RT
E

f

a

oxf
a

oxox

vC
eCCCppCAs

′

′′′
=

−

,   
( ) ( )

1
20*

0*02 01
λρρ

α
σ i

f

RT
E

f

a

oxf
a

oxsf

vC
eCCCppCAs

′

′′′−
=

−

,   

( )
1

2
0

*

0*02 0

λρρ
α

δ i
pg

RT
E

f

a

oxf
a

ox

vTc
eCCCppCQA

∈′

′′′
=

−

: Frank-Kamenetskii number 

3.3 Properties of Solution 

equation (23) when 0∈→ , 0=bθIn this section, we consider  and transform the equation from 

infinite domain to finite domain, using the transfo x− . 

We obtain 

rmation ey =

( ) ( 000
22 ) =−−−−+ θυθγυθγ eCCyCCy

ydy oxox
a

ff                                                      (27) 
2 δθd

( ) ( ) 01,00 == θθ  
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Theorem 2: Let  and  in (27). Then  ( )yθ000 === fox CCυ 1=a  is symmetric about 
2
1

=y . 

Proof:  Let =υ 1000 == fox CC =a 27). We obtain  and  in (

( ) ( ) 012

2

+
yd δθ

=ye
dy

θ  

( ) ( ) 01,00 == θθ , 

Let 

 

12 −= yz  

Then

2

2

2

2d
= 4

dz
d

dy
   

So the problem mes  beco

( ) ( ) 01
2

=+ zezd θδθ
42dz

    

( ) ( ) 011 ==− θθ                                                                                                    

It suffices to show

     

 that ( ) ( )zz θθ =− . 

Replace z  by z− . We obtain 

( )
( )

( ) 01
2

=+
− −zzd δθ

 
42−

e
zd

θ

Hence θ  is symmetric about  i.e. 0=z θ  is symmetric about 
2
1

=y . This completes the proof. 

Theorem 3: Let  and  in (27). Then  0
2
1

=⎟
⎠
⎞

⎜
⎝
⎛′ . 000 === fox CCυ 1=a θ

 and Proof: Let 1000 === fox CCυ =a We obtain  in (27). 

( ) ( ) 012

2

+
yd θ

=ye
dy

θδ  

( ) ( ) 01,00 == θθ , 

Since . Then 0
2
1

=⎟
⎠
⎞

⎜
⎝
⎛′θ( )yθ  is symmetric about 

2
1

=y . This completes the proof. 

Theorem 4: Let  and  in (27). Then  ( ) 0>′ yθ  for ⎟
⎠
⎞

⎜
⎝
⎛∈

2
1,0 . 000 === fox CCυ 1=a y

Proof: Let  and 000 === fox CCυ 1=a  in (27). We obtain 

( ) ( )ye
dy

yd θ2 θδ12 −=  

( ) ( ) 01,00 == θθ , 
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Using Ayeni [3], we obtain 

( ) ( ) ( )tθδθ = 2
1

dtetyky ∫01 , , 

where 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤

≤≤

=

2
1,

0,

,
ytt

tyy

tyk  

So 

( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−+=′ ∫ y

y

ty eydteeyy θθθδθ 2
1

1  

( )∫= 2
1

1 y

t dteθδ           

Hence, ( )yθ  is strictly monotonically increasing for ⎟
⎠
⎞

⎜
⎝
⎛∈

2
1,0y . This completes the proof. 

3.4 Solution by Homotopy Perturbation Method 

Homotopy perturbation method (HPM) was first proposed by He and was successfully applied to 
various engineering problems [7].  

– (26) when 0∈→ , 000 == oxf CC , 1=aHere, we consider equations (23)  and using the 

transformation xey −= . 

We obtain 

( ) 02
22

2

+
δθd

=− θυθγ ey
ydy

                                                                                                    (28) 

( ) ( ) bθθθ == 1,00  

( ) 02
22

2

=−− θυθγβ ey
ydy

Cd ox                                                                                                 (29) 

( ) ( ) 01,00 CCC oxox ==  

( ) 02
22

2

=−− θυθγσ ey
ydy

Cd f                                                                                                  (30) 

Using the approximation (see Ayeni [8]): 

                                                                                                    (31) 

tions (28) – (30), where details can be found in [7] and 
obtain the following approximated solutions: 

( ) ( ) 01,00 fff CCC ==   

( ) ( ) 221exp θθθ +−+≈ e       

We apply Homotopy-perturbation to equa
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Then ( )yθ , ( )yCox and can be expressed as function of ( )yC f x  using previous transformation, 

putations were done using computer symbolic algebraic package MAPLE. 

where 
 

xe−y = . The com

2−= eq ,   υθγ −     ( 2
bA = ,) ( )2

bbqB υθγθ −= ,     ( )22
bbC υθγθ −= , 

⎟
⎞++ CBA 11

, 
⎠

⎜
⎝
⎛=D

1262
1 ( )bA υθγυ −−= 21 , ( )222

1 34 bbqB θυυγθγ +−= ,   

( )222
1 232 bbbC θυυγθγθ +−  =    
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4. RESUL AND DISCUSSI  
Here the existence and uniqueness of solution of the Problem is proved by actual solutions. Also, 
under certain condition, we have examined the properties of solution. Analy l solutions of 
equations (28) - (30) are achieved via Homotopy perturbation method and computed for the 

ues of 

TS ON 

tica

val 0 718.2,1,3.,1.0,1 ===== eυσβγ . The species concentration and 
aphically in Figs. 1 - 6.  temperature values are depicted gr

From Figs. 1 and 2, we can conclude that with the increase of Frank-Kamenetskii number (δ ), 
temperature increases.  
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From Figs. 3 and 4, we can conclude that with the increase of Frank-Kamenetskii number (δ ), 
oxygen mass fraction decreases. 
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From Figs. 5 and 6, we can conclude that with the increase of Frank-Kamenetskii number (δ ), 
fuel mass fraction decreases. 

 

 
5. CONCLUSION  
From the studies made on this paper we conclude that Frank-Kamenetskii numb r enhance the 
temperature and decrease the species concentration. These occur as a result of increase in heat of 
reaction. When the heat of reaction is high, the rate of conversion of solid fuel into light oils, 
water and gas is high and consequently, the recovery rate is boosted. This is of great economic 
importance.   
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The results may be used as a preliminary predictive tool to study mathematically the forward 
propagation of a combustion front through a porous medium. The work may be extended to more 
complex cases such as when the amount of gas produced by the reaction is more than or less than 
the amount of gas consumed by it and therefore, recommended for further research. 

REFERENCES 
[1] Gottfried B. S., A mathematical model of thermal oil recovery in linear systems, Soc. Pet. 

Eng. J.  196 - 210 (1965). 
[2] Crookston R. B. and Culham W. E., A numerical simulation model for thermal recovery 

processes, Soc. Pet. Eng. J.  9, 37 - 58 (1979). 
[3] Ayeni R. O., Thermal Runaway, Ph.D. Thesis Cornell University USA. Nigeria. Pp. 25 

(1978)  
[4] Olayiwola R. O. and Ayeni R. O., In-situ combustion simulation for heavy oil reservoirs, 

WSEAS Transaction on Mathematics. 10(9), 301 - 309 (2011). 
[5] Da Mota J. C., Dantas W. and Marchesin D., Traveling waves for combustion in porous 

media, Int. Ser. Num. Math. Birkhauser. 129, 177 - 187 (1999). 
[6] Da Mota J. C., Dantas W. and Marchesin D., Combustion fronts in porous media, SIAM J. 

Appl. Math. 62, 2175 - 2198 (2002). 
[7] He J. H., Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B. 

20(10), 1141 - 1199 (2006). 
[8] Ayeni R. O., On the explosion of chain-thermal reactions, J. Austral. Math. Soc. (Series B). 

24, 194 - 202 (1982). 

APHY 

Association of Mathematical Physics (NAMP). His area of Specialization is in 

inna, Nigeria. 
He is a member of Nigeri ociety (NMS) and Nigerian Association 
of Mathematical Physics ( a of Specialization is in Dynamics. 

, Nigeria. He holds B. Tech (Mathematics/ 

Mathematical Society (NMS) and Nigeria Computer Society (NCS). His area of 

AUTHORS’ BIOGR

Dr. R. O. Olayiwola: He is a Senior Lecturer in the Department of Mathematics, 
Federal University of Technology, Minna, Nigeria. He had his Ph.D in Applied 
Mathematics from Ladoke Akintola University of Technology, Ogbomoso, 
Nigeria. He is a member of Nigeria Mathematical Society (NMS) and Nigerian 

Fluid Dynamics and Combustion Theory. 

Dr. A. A. Mohammed: He is a Senior Lecturer in the Department of 
Mathematics, Federal University of Technology, Minna, Nigeria. He had his Ph.D 
in Applied Mathematics from Federal University of Technology, M

a Mathematical S
NAMP). His are

 

Mr. Falaye A. A.: He is a Lecturer in the Department of Mathematics, Federal 
University of Technology, Minna
Computer Science) and M.Sc. (Computer Science). He is a member of Nigeria 

interest are risk and security in Network System, mobile and internet banking and 
fluid mechanics. 

 

Mr. Adetutu O. M: He is an Assistant Lecturer in the Department of Statistics, 
Federal University of Technology, Minna, Nigeria. He had his M.Sc in Statistics 
from University of Ilorin, Ilorin, Nigeria. He is a member of Nigeria Statistical 
Association (NSA). His area of Specialization is in Micro-array Analysis and its 
Applications. 


	1. Introduction
	2. Model Formulation
	3. Method of Solution
	4. Results and Discussion 
	5. Conclusion 
	References

