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Abstract: This paper studies various results on chromatic polynomials of graphs. We obtain 

results on the roots of chromatic polynomials of planar graphs. The main results are chromatic 
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polynomial of a graph of order n and size m is one, whose coefficient alternate in sign. 
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1. INTRODUCTION 

During the period that the Four Color Problem was unsolved, which spanned more than a 

century, many approaches were introduced with the hopes that they would lead to a solution 

of this famous problem. In 1912 George David Birkhoff [5] defined a function P(M, ) that 

gives the number of proper  -colorings of a map M for a positive integer . As we will see, 

P(M, ) is a polynomial in   for every map M and is called the chromatic polynomial of M. 

Consequently, if it could be verified that P(M, 4)>0 for every map M, then this would have 

established the truth of the Four Color Conjecture.  

In 1932 Hassler Whitney [14] expanded the study of chromatic polynomials from maps to 
graphs. While Whitney obtained a number of results on chromatic polynomials of graphs,  

this did not contribute to a proof of the Four Color Conjecture. Renewed interest in 

chromatic polynomials of graphs occurred in 1968 when Ronald C. Read [13] wrote a 
survey paper on chromatic polynomials. 

2. PRELIMINARIES 

2.1. Definition: For a graph G and a positive integer the number of different proper  -

colorings of G is denoted by P(G,  ) and is called the Chromatic Polynomial of G. Two 
-colorings c  and c  of G from the same set {1, 2, ... ,  } of   colors are considered 

different if vcvc ()(  ) for some vertex v of G. Obviously, if  < (G), then P(G, )=0. By 

convention, P(G, 0)=0. Indeed, we have the following.  

2.2. Proposition: Let G be a graph. Then (G)=k if and only if k is the smallest positive integer 
for which            P(G, k) > 0. 

As an example, we determine the number of ways that the vertices of the graph G of Figure.1 

can be colored from the set {1, 2, 3, 4, 5}. The vertex v  can be assigned any of these 5 

colors, while w  can be assigned any color other than the color assigned to v . That is, w  can 

be assigned any of the 4 remaining colors. Both u and t can be assigned any of the 3 colors 
not used for v and w. Therefore, the number P(G, 5) of 5-colorings of G is 5.4.9 = 180. More 
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generally, P(G,  ) =   (  - 1)        (  - 2)
2
 for every integer  .                                                        

 
Figure 1. A graph G with P(G,  

There are some classes of graphs G for which P(G,  ) can be easily computed.  

3. CHROMATIC POLYNOMIALS 

3.1.Theorem: For every positive integer  
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We now determine the chromatic polynomial of C4 in Figure 2. There are  choices for the 
color of v1. The vertices v2 and v4 must be assigned colors different from the assigned to v1. 

The vertices v2 and v4 may be assigned the same color or may be assigned different colors. If 

v2 and v4 are assigned the same color, then there are  - 1 choices for that color. The vertex 
v3 can then be assigned any color except the color assigned to v2 and v4. Hence the number 

of distinct  -colorings of C4 in which v2 and v4 are colored the same is                  (  -1)
2
. 

If, on the other hand, v2 and v4 are colored differently, then there are   - 1 choices for v2 and 

  - 2 choices for v4. Since v3 can be assigned any color except the two colors assigned to v2 

and v4, the number of  -colorings of C4 in which v2     

                                   
Figure 2.  The chromatic polynomial of C4 

and v4 are colored differently is  (  - 1)(  - 2)
2
. Hence the number of distinct  -colorings 

of C4 is  
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The preceding example illustrates an important observation. Suppose that u and v are 

nonadjacent vertices in a graph G. The number of -colorings of G equals the number of  -

colorings of G in which u and v are colored differently plus the number of  -colorings of G 

in which u and v are colored the same. Since the number of  -colorings of G in which u and 

v are colored differently is the number of  -colorings of      G + uv while the number of  -

colorings of G in which u and v are colored the same is the number of  -colorings of the 
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graph H obtained by identifying u and v (an elementary homomorphism), it follows that   

P(G,  ) = P(G + uv,  ) + P(H,  ) 

This observation is summarized below by Erdos, R.J.Wilson [8], chromatic index of graphs. 

3.2. Theorem:  Let G be a graph containing nonadjacent vertices u and v and let H be the graph 

obtained from G by identifying u and v. Then  

P(G,  ) = P(G + uv,  ) + P(H,  ) 

Proof:  Note that if G is a graph of order n ≥ 2 and size m ≥ 1, then G + uv has order n and 

size m+1 while H has order n - 1 and size at most m. The equation stated in Theorem 2.1 can 

also be expressed as  

P(G + uv,  ) = P(G,  ) - P(H,  ) 

In this context, Theorem 2.1 can be rephrased in terms of an edge deletion and an elementary 

contraction.  

3.3. Corollary: Let G be a graph containing adjacent vertices u and v and let F be the graph 

obtained from G by identifying u and v. Then  

P(G,  ) = P(G - uv,  ) - P(F,  ) 

Proof: By systematically applying Theorem 2.1 to pairs of nonadjacent vertices in a 

graph G, we eventually arrive at a collection of complete graphs. We now illustrate this. 

Suppose that we wish to compute the chromatic polynomial of the graph G of Figure 3. 

For the nonadjacent vertices u and v of G and the graph H obtained by identifying u and 

v, it follows that by Theorem 2.1 that the chromatic polynomial of G is the sum of the 

chromatic polynomials of G + uv  and H. 

 
Figure 3 

At this point it is useful to adopt a convention introduced by Alexander Zykov [15] and 

utilized later by Ronald Read [9]. Rather than repeatedly writing the equation that appears 

in the statement of Theorem 2.1, we represent the chromatic polynomial of a graph by a 

drawing of the graph and indicate on the drawing which pair u, v of nonadjacent vertices 
will be separately joined by an edge and identified. So, for the graph G of Figure 3, we 

have Continuing in this manner, as shown in Figure 4, we obtain 

 

P(G,  ) =  5 
-

 
6 4

+14 3
-15 2

+6  

Using this approach, we see that the chromatic polynomial of every graph is the sum of 

chromatic polynomials of complete graphs. A consequence of this observation is the 
following.  

3.4. Theorem:  The chromatic polynomial P(G, ) of a graph G is a polynomial in  .  

Proof. There are some interesting properties possessed by the chromatic polynomial of 

every graph. In fact, if G is a graph of order n and size m, then the chromatic polynomial 
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P(G,  ) of G can be expressed as  

P(G,  ) = co
n
+c1

n-1
+c2

n-2
+…+cn-1 +cn,           

= (5)
 + 4 (4)

 + 3 (3)
 =  5

 - 6 4
 + 14 3

 - 15  2
 + 6  

    

Figure 5. P(G, ) = P(G +uv, ) + P(H, ) 

Where c0 =1(P(G, ) is a polynomial of degree n with leading coefficient 1), cl = -m, ci 

≥ 0 if i is even with 0 ≤ i ≤ n, and ci ≤ 0 if i is odd with 1 ≤ i ≤ n. Since P(G, 0) = 0, it 

follows that cn=0.  

3.5. Theorem: Let G be a graph of order n and size m. Then P (G, ) is a polynomial of degree 

n with leading coefficient 1 such that the coefficient of  n-1
 is -m, and whose coefficients 

alternate in sign.  

Proof: We proceed by induction on m. If m = 0, then G=
nK and P (G, ) = , as we 

have seen. Then          P (
nK , ) =  has the desired properties.  

Assume that the result holds for all graphs whose size is less than m, where m ≥ 1. Let G 
be a graph of order m and let e = uv an edge of G. By Corollary 2.2, 

P(G,  ) = P(G - e,  ) - P(F,  ), 

Where F is the graph obtained from G by identifying u and v. Since G - e has order n and 

size m - 1, it follows by the induction hypothesis that  

P (G - e, ) = ao 
n
 + a1

n-l
 + a2

n-2
 + ...+ an-1  + an, 

Where a0 = 1, a1 = -(m-1), ai ≥0 if i is even with 0≤ i ≤ n, ai≤0 if i is odd with 1≤ i ≤ n.  

Furthermore, since F has order n-1 and size m , where m≤ m-1, it follows that 

P(F,  ) = bo 
n-1

 + b1
n-2

 + b2
n-3

 + ... + bn-2  + bn-1, 

Where b0=1, b1 = - m , bi≥0 if i is even with 0≤ i ≤ n-1, and bi ≤0 if i is odd with 1≤ i ≤ n-

1.  By Corollary  

P(G,) = P(G-e,  ) - P(F,) 

= (ao 
n
 + a1

n-1
 + a2

n-2
 + ... + an-1  + an) –  

   (bo 
n-1

 + b1
n-2

 + b2
n-3

 + ... + bn-2  + bn-1) 

= ao 
n
 + (a1-b0)

n-1
 + (a2-b1)

n-2
 +…..+                   (an-1– bn-2) + (an–bn-1) 

Since a0 = 1, a1–b0 = -(m-1)-1 = -m, ai–bi-1 ≥ 0 if i is even with 2≤ i ≤ n, and ai–bi-1 ≤ 0 if  

i is odd with 0 ≤  i ≤ n, P(G,) has the desired properties and the theorem follows by 
mathematical induction. 
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Suppose that a graph G contains an end-vertex v whose only neighbor is u. Then, of 

course, P(G-v,) is the number of -colorings of G-v. The vertex v can then be assigned 

any of the  colors except the color assigned to u. This observation gives the following.    

3.6. Theorem: If G is a graph containing an end-vertex v, then 

P(G,) = ( - 1) P(G - v,  ) 

One consequence of this result is the following. 

3.7. Corollary:  If T is a tree of order  n ≥ 1, then 

P(T,) =   ( - 1)
n-1

 

Proof:  We proceed by induction on n. For n =1, T = K1 and certainly P(K1,) =. Thus 

the basis step of the induction is true. Suppose that  P(T  , ) = (-1)
n-2

 for every tree T   

of order n-1 ≥1 and let T be a tree of order n.  Let v be an end-vertex of T.  Thus T-v is a tree 

of order n-1.  By Theorem 3.2 and the induction hypothesis 

12 )1(])1()[1(),()1(),(   nnTPTP   
as desired. 

Two graphs are chromatically equivalent if they have the same chromatic polynomial.  

In this section we’ll summarize some well-known facts about the chromatic polynomial’s 
coefficients, roots and substitutions as well as their relations to some graph-theoretic properties of 

G.  

4. COEFFICIENTS OF THE CHROMATIC POLYNOMIALS 

Claim 3.1:  The lead coefficient of chr(G, k) is always 1. 

Proof: Use the partitioning argument from theorem 2.5. The only partition that contributes to the 

lead coefficient is the one with n parts, giving an addend of k(k – 1)…(k – n+1) where the 
coefficient of k

n 
is 1. 

Claim 3.2: The coefficient of k
n-1 

in chr(G,k) is the negative of the number of edges. 

Proof: Apply the deletion-contraction argument. By contracting an edge we obtain a graph on n – 
1 vertices, whose chromatic polynomial has 1 as the coefficient of  k

n-1 
according to our previous 

claim. Therefore deleting the edge should augment the coefficient of k
n – 1 

by 1, finally reaching in 

zero as all edges are removed. So initially it had to be the negative of the number of edges. 

Claim 3.3: The constant term, i.e. the coefficient of 1 in chr(G, k) is always zero. 

Proof:  Substituting k = 0 into the chromatic polynomial yields 0 since G cannot be colored using 

0 colors. 

Claim 3.4: The coefficient of k in chr(G, k) is non-zero if and only if G is connected. 

Proof: We know that the chromatic polynomial of a disconnected graph is the product of that of 

its components. If we have at least two terms, each being divisible by k, then their product is 

divisible by k
2 
, thus its coefficient of k is zero.  

For connected graphs we’ll prove the slightly stronger result that the coefficient of k is positive if 

n is odd and negative if n is even. This works by induction based on the deletion-contraction 
argument. We can always select an edge that is not a bridge unless the graph is a tree. otherwise 

both deletion and contraction gives a connected graph so we may continue the induction. 

Lemma 3.5:  Let c(F) denote the number of components in a spanning subgraph F. Then 

 

                                                                            

Proof: The number of ways we may assign colors to V(G) so that vertices connected by F-edges 

do share the same color is k
c(F) 

. This is the number of colorings that violate the vertex coloring 
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condition for all edges in F. Since the chromatic polynomial counts the colorings that violate this 

condition for no edges in E(G), the result follows from the principle of inclusion-exclusion. 

Claim 3.6: The coefficients of the chromatic polynomial alternate in sign. That is, for the 

coefficient am of k
m 

we have am ≥ 0 if n  m(2) and am ≤ 0 otherwise. 

Proof: The claim holds for the empty graph and is preserved during a deletion-contraction step. 

Claim 3.7: For a connected graph G the coefficients satisfy. 

                   

Proof: We would like to show  for m  . 

For trees we have chr(Tn, k) = k(k – 1)
n-1 

from section 1.4, so am = (−1)
n – m     

and thus the 

claim is  . Rearranging transforms this to n – m  m which we have assumed. 

Otherwise we may select a non-bridge edge as in the proof of claim 3.4 and apply deletion-

contraction. Our previous claim tells us that the corresponding coefficients of chr(G\e, k) and 
chr(G/e, k) have opposite signs, and therefore their absolute values add up. For the contracted 

graph we have 

 

where the last index is no more than so both G\e and G/e satisfy the inequalities in the 

claim and the final addition also preserves them. 

This claim is suspected to be possibly strengthenend: 

Conjecture 3.8: (unimodal conjecture). There exists some k such that 

                                        

This claim has been verified for a few classes of graphs, but remains generally unknown. For 

some related results see [12]. 

5. ROOTS OF CHROMATIC POLYNOMIALS 

A nonnegative integer root k of the chromatic polynomial means noncolorability with k colors by 

definition. It follows that k   is a root if and only if k < (G). 

Lemma 4.1: The derivative of the chromatic polynomial satisfies (−1)
n 

chr (G,1) > 0 for any 

biconnected graph and 0 for any connected graph G. 

Proof:  For connected graphs that are not biconnected there exists a cut vertex  and we may 

write the chromatic polynomial chr(G, q) as a product  according to known claim. 

Neither G1 nor G2 is empty, thus both terms have a root at 1, so 1 is at least a double root of 

chr(G,q) and therefore its derivative also has a root at 1. It follows that the claim is satisfied with 

an equality. 

At this point it is enough to consider biconnected graphs. For K2 we have chr (K2, 1) = 1. 

Otherwise both G\e and G/e are connected for any edge e, so we can obtain the weaker claim by 

using the deletion-contraction argument. To prove the stronger one, we’ll show that there exists 
an edge 2 for which G/e is also biconnected.   

The only possible cut vertex of G/e is the contracted one, since any other vertex would also 

separate G. So we are looking for such an e = ij that removing i and j from V(G)  doesn’t cut G 

apart. 
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There exists a longest path in G: let i be one of its endpoints and j its neighbor. Suppose that the 
removal of i and j leaves a disconnected graph and pick two between the two, and they have to 

traverse i and j respectively. The one going through i can be used to extend the selected longest 

path, implying a contradiction. 

Therefore if we pick e as the final segment of a longest path, G/e is also biconnected and thus the 
claim holds. 

Claim 4.2: The chromatic polynomial has no real root greater than n – 1. 

Proof:   the chromatic polynomial is a sum of terms having the form q(q−1)… (q−p+1) where 

1≤p≤n, each of them possibly occurring multiple times. It is easy to see that such a term increases 

strictly mootonicalls for q > n – 1 ≥ p – 1, and so does their sum as well. 

Since chr(G,q) is nonnegative for q=n – 1 and strictly increasing afterwards, it can have no root > 

n – 1. 

Claim 4.3:  chromatic polynomial of a graph has no negative real roots. 

Proof: By claim 3.6. we have 

                                           

 

                                                                                                                                               

where am ≥0 if n  m(2) and am ≤ 0 otherwise. Thus (−1)
n 

am q
m 

≥ 0 for any q< 0. We also know 

that an = 1 > 0, and therefore (−1)
n
 chr(G,q) > 0 which implies that q cannot be a root. 

Claim 4.4: The chromatic polynomial has no real roots between 0 and 1. 

Proof: It suffices to deal with connected graphs . We show that (−1)
n 
chr(G,q) < 0 for any 0 < q < 

1. This statement can be easily checked for trees where chr(G,q) = q(q – 1)
n – 1 

and otherwise it 

follows from the deletion-contraction property. 

An extension of these claims has been proved by Jackson [13]: 

Conjecture 4.5: Planar graphs have no real roots in [4,  

They have already solved the weaker version that [5, contains no real roots. Since then, Appel 

and Haken have proved the four-color theorem which states that 4 is neither a root [3][4]. For the 

remaining interval (4,5), however, the question is still wide open. 

Tutte has shown that for planar graphs chr(G, where  is the golden ratio 

[12]. He hoped that it takes us closer to the four-color theorem since  is close to 4, 

but unfortunately there are some planar graphs having a root between the two. In fact, Royle has 

shown that there are roots arbitrarily close to 4 from below [9]. 

Theorem 4.6: The roots of all chromatics polynomials are dense in  

Despite this claim for general graphs, there exist root-free zones if we make some restrictions. 

These are particularly important from the point of view of statistical mechanics.  

Theorem 4.7: There exists a universal constant C such that if G has maximum degree D, then all 

complex roots of chr(G, q) satisfy  < CD. 

A similar bound  < CD + 1 exists for the second largest degre. For the third largest degree, no 

such claim can be made: there are arbitrarily large chromatic roots even when all except two 
vertices have degree 2.  

6. SUBSTITUTIONS 

For k  chr(G,k) means the number of k-coloring of G by definition. But there are some further 

locations where the evaluation of the chromatic polynomial is interesting. 

Claim 5.1:   gives the number of acyclic orientations of G. 
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Proof. Denote the number of acyclic orientations of G by f(G)=(−1)
n 
chr(G, −1). For the empty 

graph we have f( )=1 and thus the proposition holds. Now consider a nonempty graph G with 

an edge e selected. Suppose we have an orientation   on all edges except e and we would like to 

find out how many ways (i.e. 0,1 or 2) we can extend it to an acyclic orientation  of G.  

Notice that if there exists such an acyclic extension at all, removing the edge e won’t break it. On 

the other hand, if we can’t add e in either direction because both would close a directed path in  

into a cycle, then these two paths make up a cycle in   by themselves. Therefore   is an 
acyclic orientation of G\e if and only if e can be added in at least one direction. 

 specifies an orientation on G/e too. If it contains a cycle passing through the contracted point, 
one of the two possible orientations of e will extend this cycle into a larger one. And a cycle 

avoiding the contracted point will be kept intact. Thus if  is cyclic, pointing e in least one of the 

two directions will create a cyclic. If  however, both directions of e will result in an acyclic 

graph, since any cycle in  would have been preserved during the contraction. 

Thus if  specifies an cyclic orientation on 0, 1 or 2 of the graphs G\e and G/e, then it can be 
extended to G in 0, 1 or 2 ways respectively. This argument shows that f(G)=f(G\e) + f(G/e). 

Since the same recursion holds for f(G) and (−1)
n 
chr(G, −1)and they are equal for empty graphs, 

they have to be always equal. 

Claim 5.2: chr (G,0) returns the chromatic invariant  

Proof: The derivative of a polynomial at zero equals the linear coefficient. So the clam follows 

and the properties proved for  in section 3.1 apply. 

The chromatic polynomial also exhibits interesting behavior at the so-called Beraha numbers Bn = 

2 + 2 cos  but they are outside the scope of this study. 
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