Special Types of Ternary Semigroups

V. Jyothi

Research Scholar K L University, Guntur A.P, India

Dr. Y. Sarala

S. Daya Murali

Assistant Professor K L University,Guntur A.P, India saralayella1970@gmail.com B. Tech Scholar K L University, Guntur A.P, India murali.singamsetti@gmail.com

Abstract: The main goal of this paper is to initiate the notions of U-ternarysemigroup and V-ternary semigroup in the class of orbitary ternarysemigroups. We study prime ideals and maximal ideals in a U-ternarysemigroup and characterize V-ternary semigroup. It is proved that if T is a globally idempotent ternarysemigroups with maximal ideal, then either T is a V-ternarysemigroup or T has a unique maximal ideal which is prime. Finally we proved that a ternarysemigroup T is a V-ternarysemigroup if and only if T has atleast one proper prime ideal and if $\{\mathbf{p}_{\alpha}\}$ is the family of all proper prime ideals, then < x > =T for

 $x \in T \setminus Up_{\alpha}$ or T is a simple ternarysemigroup.

Keywords: U-Ternary semigroup, V-Ternary Semigroup, Globally idempotent ternary semigroup.

Mathematics Subject Classification: 06F05, 20N99.

1. INTRODUCTION

The concept of a semigroup is so simple and natural that it is hard to say when it first appeared. The algebraic structure of semigroups was widely studied by Clifford [2] etc. The concept of ternary algebraic system was instigate by Lehmer [3] in 1932, but in advance such formation was investigated by Kasner [4] who gave the ideal of n-ary algebras. The concept of ternary semigroup was familiar to Banach. Who is assigned with example of a ternarysemigroup which cannot reduced to a semigroup. Glimer [6] studied about U-rings and this notion was introduced by Satyanarayana [5] in commutative semigroups. Anjaneyulu and Ramakotaiah [1] introduced the notions of U-semigroups and V-semigroups in the class of orbitary semigroups. In [8] Sarala and Anjaneyulu studied the notions of ideals in ternarysemigroups. In this paper we initiate the notion of a U-ternary semigroup, V-ternary semigroups and distinguish the U and V-ternarysemigroups.

2. PRELIMINARY NOTES

Definition 2.1: Let $T \neq \emptyset$. Then T is called a ternarysemigroup if being existence a mapping from T×T×T to T which maps $(pqr) \rightarrow [pqr]$ satisfying the condition

 $:[(pqr) st] = [p(qrs)t] = [pq(rst)] \text{ for all } p, q, r, s, t \in \mathbb{T}.$

Definition 2.2: An idempotent component $e \in T$ is said to be left (or lateral or right) identity of the if eaa = a (or aea = a or aae = a) for all $a \in T$.

Left (or lateral or right) identity may not be unique. But if e is an identity (i.e. e plays the role of left lateral and right identity simultaneously) then e is unique.

3. MAIN RESULTS

Definition 3.1: For any ideal P in a ternarysemigroup T, if the intersection of all primeideals accommodate P is known the prime radical of the ideal P and is represented by rad P or \sqrt{P} .

Definition 3.2: A ternarysemigroup T is called as a U-ternarysemigroup, provided for any ideal A in T specified \sqrt{A} =T implies A=T.

The following table1 show an example of a U-ternarysemigroup. **Table. 1.**

•	р	q	r	S
р	р	р	р	р
q	р	р	р	q
r	р	р	р	р
S	р	р	r	S

Theorem 3.3: A ternarysemigroup T is an U-ternarysemigroup if either T has a left identity or T is originate by an idempotent.

Proof: Assume T has a left identity *e*. If A be any proper ideal such that \sqrt{A} =T. Since $\sqrt{A} \subseteq \{x \in T: x^n \in A \text{ for an odd natural numbers } n\} = T$. So there is a natural number *n* specified $e^n \in A$ and hence $e \in A$. Thus $T = eTT \subseteq A$, a contradiction. Then T is a U-ternary semigroup.

Suppose T is generated by an idempotent e. As above we can prove that for an ideal A in T, if $\sqrt{A} = T$, Then $e \in A$ and hence A=T. So T is a U-Ternarysemigroup.

Theorem 3.4: A ternarysemigroup T is a U-ternarysemigroup if either T has a right identity or T is originate by an idempotent.

Proof: Assume T has a right identity *e*. If A be any proper ideal such that $\sqrt{A} = T$. Since $\sqrt{A} \subseteq \{x \in T: x^n \in A \text{ for an odd natural numbers } n\} = T$. So there exist a natural number *n* such that $e^n \in A$ and hence $e \in A$. Thus $T=TTE \subseteq A$, a contradiction. Therefore T is a U-ternarysemigroup.

Suppose T is generated by an idempotent *e*. As above we can prove that for an ideal A in T, if \sqrt{A} =T then $e \in A$ and hence A=T. So T is a U-ternarysemigroup.

Theorem 3.5: A ternarysemigroup T is a U-ternarysemigroup then either T has a lateral identity or T is generated by an idempotent.

Proof: The proof is same as to Theorem 3.4.

Theorem 3.6: A ternarysemigroup T is a U-ternarysemigroup then either T has an identity or T is generated by an idempotent.

Proof: By theorem 3.3, 3.4and 3.5, T is a U-ternarysemigroup.

From the above example of U-ternarysemigroup, we remark that there are U-ternarysemigroups neither containing left (right, lateral) identity nor generated by an idempotent.

Definition 3.7: If A is an ideal of a ternarysemigroup T then A is known **Proper Ideal** if $A \neq T$.

Definition 3.8: If A is an ideal of a ternarysemigroup T then A is known a **Prime Ideal** provided PQR $\subseteq A$: P, Q and R are ideals of T, then either P \subseteq A or Q $\subseteq A$ or R $\subseteq A$.

Theorem 3.9: A ternarysemigroup T is a U-ternary semigroup \leftrightarrow every proper ideal is accommodate in a proper prime ideal.

Proof: Assume T is a U-ternarysemigroup. Let A be a actual ideal in T. If A is not accommodate in any proper prime ideal, then $\sqrt{A} = T$. Since T is a U-ternarysemigroup, we have A is equal to T, a contradiction. So every proper ideal is accommodate in a actual prime ideal. Conversely if every actual ideal is accommodate in a actual prime ideal, then clearly T is a U-ternary semigroup.

Theorem 3.10: Let T be a U-ternarysemigroup. If $\{p_{\alpha}\}$ is the prime ideals in T and if P is a greatest element in this collection, then P is a greatest ideal in T.

Proof: Assume T be a U-ternarysemigroup. If P is not a maximal ideal in T, then there is a actual ideal A in T accommodate P properly. Since P is a maximal element in the set of all proper prime ideals in T, we have A is not accommodate in any actual prime ideal. So $\sqrt{A} = T$. Since T is a U-ternarysemigroup, A = T, a negation. Hence P is a maximal ideal in T.

Definition 3.11: If a ternarysemigroup T is called a Dimension n or n-Dimensional if there exist a strictly ascending chain $p_o \subset p_1 \subset p_2 \subset, p_n$ of prime (proper) ideals in T, but no such a chain of n+2 proper prime ideals exist in T where n is an odd natural number.

Theorem 3.12: If A is a proper ideal in the finite dimensional U-ternary semigroup T, then A is contained in a maximal ideal.

Proof: By theorem 3.9, A is accommodate in a proper prime ideal p_o . If p_o is not a largest ideal, then by theorem 3.10, a proper prime ideal p_1 such that $p_0 \subset p_1$. If p_1 is largest we are through otherwise p_1 is properly accommodate in a proper prime ideal p_2 in T the processes of choosing p_i 's must cease in a some number of steps because of the finite dimensionality of T. Hence A is accommodate in a largest ideal.

In a commutative ring it is proved that every finite dimensional U-ring is a union of maximal ideals [6]. But in ternarysemigroups this is not true, as in the ternarysemigroup T in above example is a finite dimensional U-ternarysemigroup with the unique maximal ideal $\{a, b, c\}$.

Definition 3.13: A ternarysemigroup T is called a V-ternarysemigroup if for any element $a \in T$, $\sqrt{\langle a \rangle} = T$ implies $\langle a \rangle = T$.

Every U-ternarysemigroup is a V-ternarysemigroup. However V-ternarysemigroup is not compulsory a U-ternarysemigroup.

Assume T be the ternarysemigroup of all odd natural numbers greater than 1, under usual multiplication. The ideal $A = \{3, 5 ...\}$ is not accommodate in any proper prime ideal and hence by theorem 3.9, T is not a U-ternarysemigroup. Clearly every principal ideal is accommodate in a proper prime ideal. So T is a V-ternarysemigroup.

Definition 3.14: If A is an ideal of a ternarysemigroup T then A is known a globally idempotent ideal if $A^3 = A$.

Definition 3.15: A ternarysemigroup T is called a **globally idempotent ternarysemigroup** provided $T^3 = T$.

Theorem 3.16: If T is a globally idempotent ternarysemigroup with maximal ideals, then either T is a V-ternarysemigroup or T has a single largest ideal which is prime.

Proof: Let $S = \{a \in T: \sqrt{\langle a \rangle} \neq T\}$. If $S = \emptyset$, then for every $a \in T, \sqrt{\langle a \rangle} = T$ and so T has no proper prime ideals. But maximal ideals are prime [7]. Hence this case is inadmissible. Clearly S is an ideal in T. If $S \neq T$, then S is the unique largest ideal. For, let M be any maximal ideal. Since $T = T^3$, M is a prime ideal and so $\sqrt{M} = M$. Now if $a \in M \setminus S$, then $T = \sqrt{\langle a \rangle} \subseteq \sqrt{M} = M$. Thus $M \subseteq T$ and so M = T. Then only other possibility is S = T, in which case T is a V-ternary semigroup.

It is clearly a ternarysemigroup T is globally idempotent double implies maximal ideals in T are prime. So if a ternarysemigroup T contains unique maximal ideal which is prime, then T is

globally idempotent. But from the above example of V-ternarysemigroup, we remark that there are V-ternarysemigroups containing maximal ideals which are not globally idempotent.

Definition 3.17: A ternarysemigroup T is called a **simple ternarysemigroup** if T has no proper ideals.

Theorem 3.18: If a ternarysemigroup T is a V-ternarysemigroup double implies T has atleast one actual prime ideal and if $\{p_{\alpha}\}$ is the family of all actual prime ideals, the $\langle x \rangle = T$ for $x \in T \setminus U p_{\alpha}$ or T is a simple ternarysemigroup.

Proof: Let T ne a V-ternarysemigroup. If T has no actual prime ideals, then $\sqrt{\langle a \rangle} = T$ for every $a \in T$. This implies $\langle a \rangle = T$ and hence T is a simple ternarysemigroup. So assume T has proper prime ideals. Then for any $a \in T \setminus U p_{\alpha}$, $\sqrt{\langle a \rangle} = T$, since a does not belong to any actual prime ideal. Thus $\langle a \rangle = T$. Conversely assume if a is any element in T such that $\langle a \rangle$ not equal to T. If $a \in T \setminus U p_{\alpha}$, then, $\langle a \rangle = T$. So $a \in U p_{\alpha}$ and hence $\sqrt{\langle a \rangle} \neq T$. Therefore T is a V-ternarysemigroup.

ACKNOWLEDGEMENT

The authors like to express their thanks to the management and department of Mathematics, K L University for their support and encouragement during this work.

REFERENCES

- A. Anjaneyulu and D. Ramakotaiah; On a Class of Semigroups Simon Stevin. Vol. 54 (1980), 241-249.
- [2] A. H. Clifford and G. B. Preston; The Algebraic Theory of Semigroups. Vol. II, American Math Society, Providence (1961).
- [3] D. H. Lehmer; A ternary Analogue of Abelian Groups; Amer. Fr.of Maths. 59(1932), 329-338.
- [4] E. Kasner; An extension of the Group Concept (reported by L. G. Weld), Bull. Amer.Math. Soc., Vol. 10, pp. 290-291, 1994.
- [5] M. Stayanarayana; On a class of Semisimple Semigroups, Semigroup Forum, 10(1975), 129-138.
- [6] R. W. Gilmer; Extension of results concerning Rings in which semiprimary ideals and Primary, Duke Math Journal, 31(1964), 73-78.
- [7] S. Scwartz; Prime Ideals and Maximal Ideals in Semigroups, ZechoMath Journal, 19(94),(1969), 72-79.
- [8] Y. Sarala, A. Anjaneyulu and D. Madhusudhana Rao; On Ternary Semigroups, International Journal of Mathematics Sciences, Technology and Humanities, 76 (2013), 848-859.