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Abstract: Many authors have explored the chaotic behavior of many families of mappings like the Tent 

family, Quadratic family, the logistic family, etc. The analysis of the nature of the logistic family  

Fµ (x) = µx(1 – x) has played an important role in the development of the subject of dynamical system and 

chaos. The chaotic nature of the family of mappings fc (x) = x2 – x + c through the period doubling cascade 

has already been proved by Kulkarni P. R. and Borkar V. C. In this paper, the topological conjugacy of the 

family of mappings fc (x) = x2 – x + c with the mapping σ has been established and thereby, the chaotic 

nature of fc (x) = x2 – x + c in the sense of Devaney R. L. has been proved.    
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1. INTRODUCTION 

Nearly in last thirty years, there has been a rapid development in the theory of dynamical systems 

and chaos. Computers have contributed a lot in this development. In this section we define some 
preliminary notions and state some fundamental results concerned. Many authors like Alligood 

[1], Devaney [2], Scheinerman [3] have defined the notion of dynamical systems and chaos. 

However, we take the most general definition given by Scheinerman [3]. 

1.1 Dynamical System 

A dynamical system consists of a state vector x  R
n
 which is a list of numbers and may change as 

the time passes and a function f : R
n
 → R

n
, where the set R

n
 is called as the set of states or the state 

space. Given a state vector x  R
n
, the function f describes the rule by means of which the state 

vector x changes with time. The two types of dynamical systems viz. discrete and continuous with 

a variety of examples are given by [1], [2], [3] and [4]. In this paper, we will consider only one 

dimensional discrete dynamical system fc (x) = x
2
  – x + c. 

1.2 Iterations of a Function 

Let f : S →S, S  R,  be a given dynamical system. Iterations of the function f means the 

compositions of f with itself. Thus the first iteration of f at a point x of its domain means f(x) itself. 

The second iteration of f at x is the composition (f f)(x) = f(f(x)). It is also denoted by f 
2
.  

Thus f 
2
 (x) = f(f(x)). 

In general, the k
th

 iteration of f at a point x is the k times composition of f with itself at the point x, 
denoted by f 

k
(x). For more details, refer [2], [3], [7].

 
 
 
   

1.3 Fixed Points and Periodic Points  

A point x is said to be a fixed point of a function f if f(x) = x. It is clear that if x is a fixed point of 

f, then f 
n
 (x) = x for all n Z

+
, where is Z

+
 the set of positive integers.  

A point x0 is said to be a periodic point with period n if f 
n 
(x0) = x0 for some  
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n Z
+
. It is clear that if x0 is periodic with period n, then it is periodic with period 2n, 3n, 

4n,...The smallest n, in this case, is called as the prime period of the orbit. Thus x0 is a periodic 

point with period n of f if it is a fixed point of f 
n
. Refer [2], [3], [7]. 

1.4 Attracting and Repelling Fixed Points 

Let p be a fixed point of a dynamical system f : S →S, S  R.  

(1) We say that p is an attracting fixed point or a sink of f if there is some neighborhood of p  

such that all points in this neighborhood are attracted towards p. In other words, p is a sink if 

there exists an epsilon neighborhood  such that 

 for all x .  

(2) We say that p is a repelling fixed point or a source of f if there is some neighborhood  of 

p such that each x in   except for p maps outside of . In other words, p is a source 

if there exists an epsilon neighborhood such that  for infinitely many values 

of positive integers n. Refer [2], [3], [7]. 

1.5 Hyperbolic Periodic Points 

A periodic point p of a mapping f with prime period n is said to be hyperbolic  

if |(f 
n
) | ≠ 1. Refer [2], [3], [7]. 

1.6 Theorem 

Let f : [a, b] →R be a differentiable function, where  be continuous and p be a hyperbolic fixed 

point of f. If , then p  is an attracting fixed point of f.  

Proof: Refer [2], [3], [7]. 

1.7 Theorem 

Let f : [a, b]→R be a differentiable function, where  be continuous and p be a hyperbolic fixed 

point of f. If , then p  is a repelling fixed point of f. 

Proof: Refer [2], [3], [7]. 

1.8 Neutral Fixed Point 

A fixed point p of a differentiable function f is said to be a neutral fixed point if   . 

1.9 Attracting and Repelling Periodic Point 

Let p be a periodic point of period n of a function f. Then p is said to be an attracting periodic 

point or a repelling periodic point according as it is an attracting or a repelling fixed point of the 

n
th 

 iterate  f 
n
 . 

1.10 Theorem 

Let f :[a, b] →R be a differentiable function, where  be continuous and p be a periodic point of f 

with period n. Then the periodic orbit of p is attracting or repelling according as  

or . 

1.11 Theorem 

Let p be a neutral fixed point of a function f.  

(i) If , then p is weakly attracting from the left and weakly repelling from the right. 

(ii) If , then p is weakly repelling from the left and weakly attracting from the right. 

 Let p be a neutral fixed point of f with If . 

(iii) If  then p is weakly repelling. 

(iv) If , then p is weakly attracting.  (Refer [1],[2],[3]) 
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2. CHAOS 

The term chaos is used when there is a type of randomness or uncertainty in a particular thing. 

Chaotic dynamics is the study of such randomness. There are many definitions of chaos given by 

different authors including measure theoretic notions, topological concepts, etc. We will use the 
topological ideas and define chaos in accordance with the definition given by Devaney, R. L. [2]. 

However, before going to the definition of chaos, we need to have a review of the some of the 

ideas used in it. 

2.1 Sensitive Dependence on Initial Conditions 

Let I be an interval in R. A mapping f : I → I  has sensitive dependence on initial conditions if 

there exists a  > 0 such that, for every x in I and for every neighborhood N of x, there is some y  

N and some positive integer n such that | f 
n
 (x) – f 

n
 (y) | > .  

In other words, f has sensitive dependence on initial conditions at x if for every  

ϵ-neighborhood Nϵ (x) of x, there is a point yϵ Nϵ (x) and a δ such that | f 
n
 (x) – f 

n
 (y) | > . If f has 

a sensitive dependence on initial conditions on each x in I, then we say that f has a sensitive 

dependence on initial conditions on I.   

As an example, the Tent function T given by 

  

has sensitive dependence on initial conditions since it can be proved that after 10 iterations, the 
iterates of 1/3 and 0.333 are farther than 1/2 apart. Also, the logistic family Fµ (x) = µx(1 – x) has 

sensitive dependence on initial conditions on the set Λ for .  Refer Devaney[2].  

2.2 Topological Transitivity  

Let I be an interval in R. A mapping f : I → I  is said to be topologically transitive if there exists a 

pair U, V of open sets in I and a positive integer n such that  . 

A topologically transitive mapping has points which eventually move under iterations from one 

arbitrarily small neighborhood to every other neighborhood. For example, it can be verified that 
the tent mapping T is topologically transitive on the interval [0, 1]. Refer Devaney[2]. 

2.3 Orbit and Seed 

Let f : S →S, S  R,  be a given dynamical system. Given an initial point x0  S, the orbit of x0  

under f  is the sequence of iterates x0, x1 = f(x0), x2 = f 
2
(x0), x3 = f 

3
(x0), ..., xn = f 

n
(x0),.... In this 

case, the initial point x0 is called as the seed of the orbit.  

2.4 Dense Set 

Let S be a subset of R. A real number x is said to be a limit point of the set S if there exists a 

sequence {xn} of points in S that converges to x. The set S together with all its limit points is 

called as the closure of S and is denoted by . A set S  R is said to be dense in R if . 

2.5 Chaos 

Let V be a set. A mapping F : V → V is said to be chaotic on V  if  

1. F has sensitive dependence on initial conditions. 

2. F is topologically transitive. 

3. periodic orbits are dense in V.   See[2] 

For example, the logistic family Fµ (x) = µx(1 – x) is chaotic on the set Λ for . Also, 

the tent mapping T is chaotic on the interval [0, 1]. Refer Devaney[2].  

Though there are three conditions to be satisfied by a mapping to be chaotic, there are certain 

relations in these conditions. Since topological transitivity and existence of dense orbits are 

topological properties, these are preserved under homeomorphisms. However, sensitive 
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dependence on initial conditions is a metric property and is not preserved under homeomorphisms 

in general. From the above definitions, it follows that if a map possesses a dense orbit, then it is 
topologically transitive. The converse holds in case of compact subsets of R. The authors J. 

Banks, J. Brooks and others [6] have proved that if a mapping is topologically transitive and has a 

dense orbit, then it has sensitive dependence on initial conditions.      

3. TOPOLOGICAL CONJUGACY 

The analysis of the family of mapping fc (x) = x
2
 – x + c through its dynamics for different values 

of the real parameter c has been done by Kulkarni P. R. and  Borkar V. C.[7]. In this analysis, the 
number and the nature of the fixed and periodic points of the family fc (x) = x

2
 – x + c is explored 

in detail for different values of c. The chaotic behavior of the family of mappings fc (x) = x
2
 – x + 

c has been proved through the so called period doubling cascade. In the current  paper, we will 
prove that the mapping  fc (x) = x

2
 – x + c exhibits chaotic behavior using the notion of 

topological conjugacy. But before that, first we define topological conjugacy and prove some of 

the results associated with it.  

3.1 Topological Conjugacy   

Let f : A → A and g : B → B be two mappings. Then f and g are said to be topologically conjugate 

if there exists a homeomorphism h : A → B such that  h  f  h
-1

 = g or what amounts to the same 

thing, if h f  = g h. In this case, the homeomorphism h is called as a topological conjugacy or 

we say that f  and g are conjugate via the mapping h. 

For example, the mapping is topologically conjugate with the mapping 

 via the mapping , where . Also, it can be easily 

verified that the tent map T is conjugate with the map  for  via the 

conjugacy  defined on the interval [0, 1]. The importance of topological 

conjugacy lies in the following results. 

3.2 Theorem 

If f and g are topologically conjugate via mapping h and if p is a fixed point of f, then h(p) is a 

fixed point of g. 

Proof: Since h(p)=h(f(p))=(h f)(p)=(g h)(p)=g(h(p)), it follows that h(p) is a fixed point  

of g.                             

Here we have a generalization.  

3.3 Theorem 

If f and g are topologically conjugate via mapping h, then h f 
n
=g 

n 
h. Thus, if f and g are 

conjugate, the periodic points are carried into periodic points of the same period under conjugacy. 

Proof: We prove the theorem by induction on n. As f and g are conjugate, h f =g h. Hence the 

result is true for n = 1. Assume that the result is true for some positive integer m, so that  

h f 
m 

= g 
m

h.  

Now h f 
m+1 

= ( h f )  f 
m
 = ( g h )  f 

m
 = g ( h  f 

m
 ) = g (g 

m
h) = g 

m+1
h. 

Hence the result is true for m+1.  

Thus by mathematical induction, the theorem is proved.                          

3.4 Theorem 

Let f : A → A and g : B → B be topologically conjugate via a mapping h : A → B. Then f is 

transitive if and only if g is transitive. That is, topological conjugacy preserves transitivity. Proof: 

First assume that f is transitive. Let U and V be non-empty open sets in A and B respectively. Then 

h being continuous, h
-1

( V ) is open in A, and hence, it can be expressed as a union of open 
intervals in A. Moreover, h being onto, h

-1
( V ) is non-empty. Let I be an open subset of h

-1
( V ). 
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Similarly, let J be an open subset of the open set h( U ). As f is transitive, there exists a positive 

integer n and some y in J such that  (f
  n

)(y)ϵ I. Taking x = h(y), it follows that xϵ U with (g
 n
)(x) = 

(g
 n
)(h(y)) = h(f

 n
(y))ϵ  h(I). 

But as h(I)  V, it follows that (g
 n

)(x)ϵ V. This proves that g is also transitive. The converse 

follows with exactly the same arguments by interchanging the role of f and g. This completes the 

proof.                                                            

3.5 Theorem 

If h : A → B is an onto continuous mapping, then the image under h of a set dense in A is a set 
dense in B.                    

Proof: The proof follows just by using the continuity of h and from the hypothesis that h is onto.                       

3.6 Set of Periodic Points  

Let Pern(f) denote the set of periodic points of period n of the mapping f. 

An immediate consequence of the theorems 3.3 and 3.5 is the following. 

3.7 Theorem 

Let f and g be topologically conjugate. Then Pern(f) is dense if and only if Pern(g) is dense. 

From the definition of chaos and using the theorems 3.2 to 3.7, it follows that if two mappings are 

topologically conjugate, then they have exactly the same dynamics, that is, their behavior 

regarding the number and nature of the fixed and periodic points is the same. We summarize this 
as the following.  

3.8 Theorem 

Let f and g be topologically conjugate. Then f is chaotic if and only if g is chaotic.    

3.9 The Sequence Space 

The set Σ2 = { s = (s0 s1 s2...) : sj = 0 or 1 } is known as the sequence space on two symbols 0 and 

1. By Devaney [2] it has been proved that the set Σ2 is a metric space with respect to the metric d 

defined by ,  

where s = (s0 s1 s2...), t = (t0 t1 t2...) ϵ Σ2. 

3.10 The Shift Map 

The mapping σ : Σ2 → Σ2 defined by σ (s0 s1 s2...) =  (s1 s2 s3...) is called as the shit mapping on the 

sequence space. By Devaney R. L.[2], the following results have been proved. 

(i) The mapping σ is continuous. 

(ii) Card Pern(σ) = 2
n
. 

(iii) Per(σ) is dense in Σ2. 

(iv) There exists a dense orbit for σ in Σ2.   

4. CHAOS IN fc (x) = x
2
 – x + c  

The dynamics of the mapping fc (x) = x
2
 – x + c has been analyzed in detail by Kulkarni P. R. and 

Borkar V. C. for the values of c greater than –1/2. When the value of c decreases below 

 –1/2, the dynamics of the mapping becomes more and more difficult to understand. We will 

attempt to study the behavior of fc (x) = x
2
 – x + c for c < -5/4 and prove that fc has chaotic nature 

using the concept of topological conjugacy. For a better understanding of the dynamics of fc, we 

will use the concepts of Cantor's middle thirds set and the symbolic dynamics introduced by 

Devaney R. L.[2].  

Consider the Figure 1 showing the graph of the function 3.3. 
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Figure 1 

Recall that all the interesting dynamics of the mapping fc occurs between the two fixed points 

 and  for all possible values of c. For the function , the 

surprising activity occurs in the interval . The function  is 

almost enclosed in the rectangular box B with vertices ), ), 

) and ). The value  is a fixed point of the 

function . We observe that the lower middle part of the graph is going out of 

the box B. Let  be the part of the interval I for which the graph of the function is out of the box. 

This set is the open interval . The orbits of all x in the interval  

leave the interval I after the first iteration and escape to infinity. There are many such sets (like 

) in the interval I where the orbits of the points in these intervals escape to infinity. Let us 

denote by  the set of all values of x in I whose orbits never go out of I. To be more specific, 

Let  denote the complement of  in I i.e. 

. Then we have A1  . There are infinitely many subsets of I whose union is . 

Define . Thus  is the set of points in I for which the first 

iteration lies in the set  and all subsequent iterations leave I. Note that this set  must be union 

of two open intervals, say  and  as shown in the figure 1. The intervals  and  can be 

determined from the graphical analysis[7]. Continuing the definition of the sets like , , let  

be the set of points in I  for which the  iteration lies in the set  and the n
th 

iteration 

escapes from I. Then the set  is the set . We observe that the pattern of 

the set  is exactly same to that of the Cantor's middle thirds set. In fact, the set  is a Cantor set 

in its own right. As , the set  is the union of two closed intervals, one to the 

left of the origin denoted  and the other to the right side of the origin denoted . Thus for each 

,  lies within  or within or jumps between  and .  
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4.1 Itinerary 

For each , we define the itinerary of x as the infinite sequence , where 

 if  and  if . Thus the itinerary of x is an infinite sequence of 0's and 1's 

so that  Σ2. We can consider S as a mapping from  to Σ2. 

Now we have enough material for proving our main result of this section. 

4.2 Theorem 

The family of mappings fc (x) = x
2
 – x + c topologically conjugate to the shift map σ on Σ2 via the 

itinerary S. 

Proof: Let  be given. If , then σ . 

As , it has some itinerary  so that . 

Therefore, , 

      ,  

      , etc. 

Since  or  for each , we conclude that .  

That is σ . This completes the proof.                 □ 

Since the shift map σ over the sequence space Σ2 exhibits chaos, it follows that the family of 

mappings fc (x) = x
2
 – x + c is chaotic over the set Λ for c < -5/4. 

5. CONCLUSION 

Dynamical systems and chaos have been a topic of great importance in last few years, specially 

chaos because chaos is the phenomenon observed almost  everywhere in the nature. The analysis 
of the nature of many families of mappings have important applications in many fields. In this 

paper, we have proved chaos in the family  fc (x) = x
2
 – x + c  and added one more family in the 

chaos theory, and thus stretched the surface of chaos. It would be interesting to find out what 
phenomenon in nature can be modeled in terms of this family of mappings and find the long term 

effects through the analysis made so far. 
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