Lie Triple Derivations of Algebras of Measurable Operators

Ilkhom Juraev, Ikbol Sharipova, Furkat Juraev
Faculty of Physics and Mathematics
Department of Mathematical Physics and Analysis
Bukhara State University, Bukhara, Uzbekistan
ijmo64@mail.ru, ikbol_sharipova@mail.ru, fjm1980@mail.ru

Abstract

We prove that every Lie triple derivation on algebras of measurable operators is in standard form, that is, it can be uniquely decomposed into the sum of a derivation and a center-valued trace.

Keywords: von Neumann algebras, measurable operator, type I von Neumann algebras, derivation, inner derivation, Lie triple derivation, center-valued trace.

1. Introduction

linear operator $D: A \rightarrow A$ is called a derivation if $D(x y)=D(x) y+x D(y)$ for all $x, y \in A$ (Leibniz rule). Each element $a \in A$ defines a derivation D_{a} on A given as $D_{a}(x)=a x-x a$, $x \in A$. Such derivations D_{a} are said to be inner derivations. If the element a implementing the derivation D_{a} on A, belongs to a larger algebra B, containing A (as a proper ideal as usual) then D_{a} is called a spatial derivation.

A linear operator $L: A \rightarrow A$ is called a Lie triple derivation if
$L[[x, y], z]=[[L(x), y], z]+[[x, L(y)], z]+[[x, y], L(z)]]$, for all $x, y, z \in A$, where $[x, y]=x y-y x$.
Denote by $Z(A)$ the center of A.
A linear operator $\tau: A \rightarrow Z(A)$ is called a center-valued trace if $\tau(x y)=\tau(y x), \forall x, y \in A$.
Let H be a Hilbert space, $B(H)$ be the algebra of all bounded linear operators acting in H, M be a von Neumann subalgebra in $B(H), P(M)$ be a complete lattice of all orthoprojections in M.

A linear subspace \mathscr{D} on H is said to be affiliated with M (denoted as $\mathscr{D} \eta M)$, if $u(\mathcal{D}) \subseteq \mathcal{D}$ for every unitary operator u from the commutant $M^{\prime}=y \in B(H): x y=y x, \forall x \in M$ of the algebra M.

A linear operator x on H with the domain $\mathcal{D}(x)$ is said to be affiliated with M (denoted as $x \eta M$), if $u(\mathcal{D}(x)) \subseteq \mathscr{D}(x)$ and $u x(\xi)=x u(\xi)$ for every unitary operator $u \in M$, and all $\xi \in \mathscr{D}(x)$.

A linear subspace \mathscr{D} in H is said to be strongly dens in H with respect to the von Neumann algebra M, if

1) $\mathcal{D} \eta M$,
2) there exists a sequence of projections $p_{n}{ }_{n=1}^{\infty} \subset P(M)$, such that $p_{n} \uparrow \mathbf{1}, p_{n}(H) \subset \mathcal{D}$, and $p_{n}^{\perp}=\mathbf{1}-p_{n}$ is finite in M for all $n \in \mathbb{N}$, where $\mathbf{1}$ is the identity M.

A closed linear operator x, on a H, is said to be measurable with respect to the von Neumann algebra M, if $x \eta M$, and $\mathscr{D}(x)$ is strongly dens in H. Denote by $S(M)$ the set of all measurable

Ilkhom Juraev et al.

operators affiliated with M (see. [5,13]) and the center of an algebra $S(M)$ by $Z(S(M)$). A von Neumann algebra M is of type I if it contains a faithful abelian projection e (i.e. $e M e$ is an abelian(commutative) von Neumann algebra).

If p_{i}, p_{j} are projectors in $S(M)$, then $p_{i} S(M) p_{j}=p_{i} A p_{j}: A \in S(M), i, j=1,2$. Set $p_{1}=p \quad$ and $\quad p_{2}=1-p . \quad$ Then $\quad S(M)=\sum_{i=1}^{2} \sum_{j=1}^{2} p_{i} S(M) p_{j}$. Let further $\quad M_{i j}=p_{i} S(M) p_{j}$, $i, j=1,2$. Recall that $M_{i j}=M_{i k} M_{k j}$, for $i, j=1,2$.

2. RESULTS AND DISCUSSION

Let $L: S(M) \rightarrow S(M)$ be Lie triple derivation.
Lemma1. If $[x, y] \in Z(S(M))$ for $x, y \in S(M)$, then

$$
[L(x), y]+[x, L(y)] \in Z(S(M))
$$

Proof. $0=L(0)=L[[x, y], z]=[[L(x), y], z]+[[x, L(y)], z]=[[L(x), y]+[x, L(y)], z]$ for all $z \in S(M)$.

Lemma 2. For any projector $p \in S(M)$,

$$
\begin{aligned}
& p L(p) p x+x p L(p) p=\{L(p)-L(p) p-p L(p)+2 p L(p) p\} x p+ \\
& \quad+p x\{L(p)-L(p) p-p L(p)+2 p L(p) p\} .
\end{aligned}
$$

Proof. Applying L to the identity $[[[[x, p], p], p][[[[x, p], p], p], p]=[[x, p], p]$ we obtained the required equality.

Lemma 3. $L\left(p_{1}\right)=\left[p_{1}, s\right]+z$, where $z \in Z(S(M))$, $s \in S(M)$.
Proof. Let $L\left(p_{1}\right)=\sum e_{i j}, e_{i j} \in M_{i j}(\mathrm{i}, \mathrm{j}=1,2)$.
Applying Lemma 2 for all $x \in S(M)$, we obtain $e_{11} x+x e_{11}=\left(e_{11}+e_{22}\right) x p+p x\left(e_{11}+e_{22}\right)$. If $x \in M_{12}$, then, $e_{11} x=x e_{22}$, what follows $\left(e_{11}+e_{22}\right) x=x\left(e_{11}+e_{22}\right) \quad\left(x \in M_{12}\right)$.

Analogously, $\left(e_{11}+e_{22}\right) x=x\left(e_{11}+e_{22}\right) \quad\left(x \in M_{21}\right)$. Let now $x \in M_{11}$ and $y \in M_{12}$. Then $\left\{\left(e_{11}+e_{22}\right) x-x\left(e_{11}+e_{22}\right)\right\} y=\left(e_{11}+e_{22}\right) x y-x y\left(e_{11}+e_{22}\right)=$ $\left(e_{11}+e_{22}\right) x y-\left(e_{11}+e_{22}\right) x y=0$,

Since $y, x y \in M_{12}$. It follows that $\left(e_{11}+e_{22}\right) x-x\left(e_{11}+e_{22}\right)=0 \quad\left(x \in M_{11}\right)$.
Similarly $\quad\left(e_{11}+e_{22}\right) x-x\left(e_{11}+e_{22}\right)=0 \quad\left(x \in M_{22}\right)$, i.e. $e_{11}+e_{22}=z \in Z(S(M))$. Since $L\left(p_{1}\right)=\left(e_{12}+e_{21}\right)+z$ and, setting $s=e_{12}-e_{21}$, we obtain $L\left(p_{1}\right)=\left(p_{1} s-s p_{1}\right)+z$.

Following from this lemma, we can put $L\left(p_{1}\right) \in Z(S(M))$. For, if the theorem is proved with this restriction, the general theorem can be proved by looking at $L^{\prime}(x)=L(x)-[x, s]$.
Lemma 4. If $x \in M_{i j} i \neq j$, then $L(x) \in M_{i j}$.
Proof. $x \in M_{12}, x=\left[\left[x, p_{1}\right], p_{1}\right]$. Let $L(x)=\sum_{1 \leq i, j \leq 2} x_{i j}$, where $x_{i j}=p_{i} L(x) p_{j}$. then $\sum_{1 \leq i, j \leq 2} x_{i j}=L(x)=\left[\left[L(x), p_{1}\right], p_{1}\right]=x_{12}+x_{21}$. If $x, y \in M_{12}$, then $[x, y]=0$, therefore, by
Lemma 1, $c=[L(x), y]+[x, L(y)] \in Z(S(M))$. Since $x=\left[p_{1,} x\right]$, we have
$\left.[L(x), y]=\left[L\left[p_{1}, x\right], y\right]=c-\left[\left[p_{1}, x\right], L(y)\right]=c-L\left[p_{1}, x\right], y\right]+\left[\left[L\left(p_{1}\right), x\right], y\right]+{ }_{\text {what implies }}$ $\left[\left[p_{1}, L(x)\right], y\right]=c+\left[\left[p_{1}, L(x)\right], y\right]$, $\left[x_{12}+x_{21}, y\right]=c+\left[\left[p_{1}, x_{12}+x_{21}\right], y\right]=c+\left[x_{12}-x_{21}, y\right]$, hence $\left[x_{21}, y\right]=\frac{1}{2} c \in Z(S(M))$. We conclude, that $x_{21} y-y x_{21}=0$ for all $y \in M_{12}$.

Thus, $x_{21} y=0$ for all $y \in M_{12}$, hence, $x_{21}=0$. The case of $x \in M_{21}$ can be proved analogously.
Lemma 5. If $x \in M_{i i}$, then $L(x) \in M_{i i}+Z(S(M))$.
Proof. If $x \in M_{11}$, we have $0=\left[\left[x, p_{1}\right], p_{1}\right]$, that is why $0=\left[[L(x), p], p_{1}\right]=x_{21}+x_{12}$. Hence, $x_{12}=x_{21}=0$. Thus, $L(x)=x_{11}+x_{22} \in M_{11}+M_{22}$. Let $x \in M_{11}, y \in M_{22}$. Then $0=[x, y]$, therefore $[L(x), y]+[x, L(y)] \in Z(S(M))$. Let $L(x)=x_{11}+x_{22}, \quad L(y)=y_{11}+y_{22}$. Then $x, y \in M_{i j}\left[x_{11}+x_{22}, y\right]+\left[x, y_{11}+y_{22}\right]=\left[x_{22}, y\right]+\left[x, y_{11}\right]=z \in Z(S(M))$. It follows that $x_{22} \in Z\left(M_{22}\right)$. Thus $x_{22}=c p_{2}=c\left(1-p_{1}\right) \in M_{11}+Z(S(M))$.

Hence $\quad L(x)=x_{11}+x_{22}=x_{11}-c p_{1}+c \in M_{11}+Z(S(M))$.
Definition. If $x \in M_{i j}, i \neq j$, suppose $D(x)=L(x)$. If $x \in M_{i j}, i=j$, then $L(x)=x^{\prime}+z$, where $x^{\prime} \in M_{i j}, z \in Z(S(M))$. In this case $D(x)=x^{\prime}$. Defining in this way D on the all $S(M)$, we put $\tau(x)=L(x)-D(x)$.

Lemma 6. The mapping $\tau: S(M) \rightarrow Z(S(M))$ is a linear mapping.
Proof. Homogeneity of τ is obvious. Let us show additivity of it. Let $x, y \in M_{i j}$. Then we have

$$
\begin{aligned}
& \tau(x+y)-\tau(x)-\tau(y)=L(x+y)-D(x+y)-L(x)+D(x)-L(y)+D(y)= \\
& {[D(x)+D(y)-D(x+y)] \in M_{11} \cap Z(S(M))=0 .}
\end{aligned}
$$

Lemma 7. If $x \in M_{i i}, y \in M_{j k}(j \neq k)$, then $D(x y)=D(x) y+x D(y)$.
Proof. If $i \neq j$, then $x y=0 . D(x) y=0$ and $x D(y)=0$. If $i=j, x \in M_{11}, y \in M_{12}$, then $x y \in M_{12}$ and $D(x y)=L(x y)$, since $x y=[x, y]=-\left[\left[p_{1}, x\right], y\right]$. Hence

$$
\begin{aligned}
& D(x y)=-L\left[\left[p_{1}, y\right], x\right]=-\left[\left[p_{1}, L(y)\right], x\right]-\left[\left[p_{1}, y\right], L(x)\right]=-[L(y), x]- \\
& {[y, L(x)]=[x, L(y)]+[L(x), y]=[x, D(y)]+[D(x), y]=x D(y)+D(x) y .}
\end{aligned}
$$

Lemma 8. If $x \in M_{i i}, y \in M_{i j}$, then $D(x y)=x D(y)+D(x) y$.
Proof. Let $x, y \in M_{11}$. For $r \in M_{12}$, by Lemma 7, we obtain

$$
\begin{aligned}
& D(x y) r=D(x y r)-x y D(r)=D(x) y r+x D(y r)-x y D(r)= \\
& D(x) y r+x\{D(y) r+y D(r)\}-x y D(r)\}=\{D(x) y+x D(y)\} r .
\end{aligned}
$$

Since $\{D(x y)-D(x) y-x D(y)\} r=0$ for all $r \in M_{12}$. It follows that

$$
D(x y)-D(x 0 y-x D(y)=0 .
$$

Lemma $9 D(x y x)=D(x) y x+x D(y) x+x y D(x)$ for every $x \in M_{i j}(i \neq j)$ and $y \in S(M)$.
Proof. Let $x \in M_{i j}(i \neq j), 2 x y x=[[x, y], x]$. Then

$$
\begin{aligned}
& 2 D(x y x)=L(2 x y x)=L([[x, y], x])=[[L(x), y]+[x, L(y)], x]+[[x, y], L(x)]= \\
& {[[D(x), y]+[x, D(y), x]+[[x, y], D(x)]=2\{D(x) y x+x D(y) x+x y D(x)\}}
\end{aligned}
$$

Ilkhom Juraev et al.

Lemma 10. The mapping D is an associated derivation on $S(M)$.
Proof. It is sufficient to show the equality $D(x y)=D(x) y+x D(y)$ for the case of $x \in M_{12}, y \in M_{21}$. We have

$$
\begin{equation*}
\tau[x, y]=D(x) y+x D(y)-D(x y)+D(y x)-D(y) x-y D(x)=z \in Z(S(M)) \tag{1}
\end{equation*}
$$

Muiltiplying the equality (1) from the left on x and on y, respectively, we obtain

$$
\begin{gather*}
x D(y x)-x D(y) x-x y D(x)=x z \tag{2}\\
y D(x) y+y x D(y)-y D(x y)=y z \tag{3}
\end{gather*}
$$

It is clear, $y x \in M_{22}, x \in M_{12}$, therefore by Lemma $7 D(x y x)=D(x 0 y x+x D(y x)$. Sing the equality (2) and Lemma 9, we obtain

$$
0=D(x y x)-D(x) y x-x D(y) x-x y D(x)=x z
$$

Similarly, using the equality (3), we obtain $y z=0$.
$x z=0$ implies
$|x| z=0$ and therefore $|x| z^{*}=0$. Hence $x z^{*}=v|x| z^{*}=0$, where $x=v|x|$ is the polar decomposition of x. We obtain similarly $y z^{*}=0$. Multiplying (1) on z^{*}, we obtain $(D(y x)-D(x y)) z^{*}=z z^{*} . \mathrm{We}$
have
$D(y x) z^{*}=D(y x) p_{2} z^{*}=D\left(y x p_{2} z^{*}\right)-y x D\left(p_{2} z^{*}\right)=-\left(y x D\left(p_{2} z^{*}\right)\right)$.
Similarly, $D(x y) z^{*}=-x y D\left(p_{1} z\right)$. Hence

$$
z z^{*}=(D(y x)-D(x y)) z^{*}=x y D\left(p_{1} z^{*}\right)-y x D\left(p_{2} z^{*}\right) .
$$

Thus $z^{*} z z^{*}=0$, what implies $z=0$. It follows from the equality (1)
$D(x) y+x D(y)-D(x y)=-D(y x)+D(y) x+y D(x)=0$, since $x \in M_{12}, y \in M_{21}$.
Corollary. $\tau[x, y]=0$ for all $x, y \in S(M)$.
Now we can formulate the main theorem.
Theorem 1. Let $L: S(M) \rightarrow S(M)$ be a Lie triple derivation. Then $L=D+\tau$, where D is an associated derivation and τ is a center-valued trace from $S(M)$ into $Z(S(M))$.

Let A be a commutative algebra and let $M_{n}(A)$ be the algebra of $n \times n$ matrices over A. If $e_{i j}$ $i, j=1,2, \ldots, n$ are the matrix units in $M_{n}(A)$, then each element $x \in M_{n}(A)$, has the form

$$
x=\sum_{i, j=1}^{n} \lambda_{i j} e_{j}, \lambda_{i j} \in A, i, j=1,2, \ldots, n
$$

Let $\delta: A \rightarrow A$, be a derivation. Setting
$D_{\delta}\left(\sum_{i, j=1}^{n} \lambda_{i j} e_{i j}\right)=\sum_{i, j=1}^{n} \delta\left(\lambda_{i j}\right) e_{i j}$
we obtain a well-defined linear operator D_{δ} on the algebra $M_{n}(A)$. Moreover D_{δ} is a derivation on the algebra $M_{n}(A)$ and its restriction onto the center of the algebra $M_{n}(A)$ coincides with the given δ. Now Lemma 2.2 [1] implies the following

Lie Triple Derivations of Algebras of Measurable Operators

Corollary. Let M be a homogenous von Neumann algebra of type $I_{n}, n \in N$. Every Lie triple derivation L on the algebra $S(M)$ can be uniquely represented by as a sum $L=D_{a}+D_{\delta}+\tau$, where D_{a} is an inner derivation implemented by an element $a \in S(M)$ while, D_{δ} is the derivation of the form (4) genereted by a derivation δ on the center $S(M)$ identifed with $\mathrm{S}(\mathrm{Z})$.

Now let M be an arbitrary finite von Neumann algebra of type I with the center Z. There exists a family $\left\{z_{n}\right\}_{n \in F}, F \subseteq N$, of central projections from M with $\sup _{n \in F} z_{n}=1$ such that the algebra M is * -isomorphic with the C^{*}-product of von Neumann algebras $z_{n} M$ of type I_{n}, respectively, $n \in F$, i.e.
$M \cong \underset{n \in F}{\oplus} z_{n} M$
By Proposition 1.1 [1] we have that

$$
S(M) \cong \prod_{n \in F} S\left(z_{n} M\right) .
$$

Suppose that D is a derivation on $S(M)$, and δ is its restriction onto its center $S(Z)$. Since δ maps each $z_{n} S(Z) \cong Z\left(S\left(z_{n} M\right)\right)$ into itself, δ generates a derivation δ_{n} on $z_{n} S(Z)$ for each $n \in F$. Let $D_{\delta_{n}}$ be the derivation on the matrix algebra $M_{n}\left(z_{n} Z(S(M))\right) \cong S\left(z_{n} M\right)$ defined as in (4). Put

$$
\begin{equation*}
D_{\delta}\left(\left\{x_{n}\right\}_{n \in F}\right)=\left\{D_{\delta_{n}}\left(x_{n}\right)\right\},\left\{x_{n}\right\}_{n \in F} \in S(M) . \tag{5}
\end{equation*}
$$

Then the map D_{δ} is a derivation on $S(M)$. Now Lemma 2.3 [1] implies the following Corollary. Let M be a finite von Neumann algebra of type I. Every Lie triple derivation L on the algebra $S(M)$ can be uniquely represented as a sum $L=D_{a}+D_{\delta}+\tau$ where D_{a} is an inner derivation implemented by an element $a \in S(M)$, and D_{δ} is a derivation given as (5)

References

[1] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Func. Anal. 256 (2009), 2917-2943.
[2] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69 (1950), 479-502.
[3] G. Lister, A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 (1952), 217242. W. S. Martindale 3 rd, Lie derivations of primitive rings, Mich. Math. J.,11 (1964), 183187.
[4] M. A. Muratov and V. I. Chilin, Algebras of measurable and locally measurable operators,Kyiv, Pratsi In-ty matematiki NAN Ukraini. 69 (2007), 390 pp. (Russian).
[5] C. R. Putnam, Commutation Properties of Hilbert Space Operators, Springer-Verlag, New York, 1967
[6] Richard A. Howland, Lie isomorphisms of derived rings of simple rings, Trans. Amer. Math.Soc. 145 (1969), 393-396.
[7] C. Robert Miers, Derived ring isomorphisms of von Neumann algebras, Canad. J. Math. 25 (1973), 1254-1268 .
[8] C. Robert Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.
[9] C. Robert Miers, Lie *-triple homomorphisms into von Neumann algebras, Proc. Amer. Math. Soc. 58 (1976), 169-172.
[10] C. Robert Miers, Lie triple derivations of von Neumann algebras, Amer. Math. Soc. 71 (1978), 57-61.
[11] S. Sakai, C^{*} - Algebras and W^{*} - Algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1971 . I.
[12]. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401457.

AUTHORS' BIOGRAPHY

Ilkhom Juraev, Faculty of Physics and Mathematics,Department of Mathematical Physics and Analysis,Bukhara State University. 1992-1995 Ph.D. student at Institute of Mathematics, Uzbek Academy of Sciences. 1996-2009 Associate professor, Bukhara State University. 2009-2012 PostDoc at National University of Uzbekistan. 2012- Associate professor, Bukhara State University, 02.09.2014-02.07.2014 Post Doctorant Université de Technologie de BelfortMontbéliard, France

Ikbol Sharipova, Faculty of Physics and Mathematics, Department of Mathematical Physics and Analysis, Bukhara State University, 2011-Assistant lecturer at Bukhara State University.

Furkat Juraev, Faculty of Physics and Mathematics,Department of Mathematical Physics and Analysis,Bukhara State University. 2002-2004 Magister student at Bukhara State University. 2009-2012 Ph.D. student at National University of Uzbekistan, 2009-Assistant lecturer at Bukhara State Universit

