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Abstract: We prove that every Lie triple derivation on algebras of measurable operators is in standard 

form, that is, it can be uniquely decomposed into the sum of a derivation and a center-valued trace.  
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1. INTRODUCTION 

linear operator :D A A  is called a derivation if ( ) = ( ) ( )D xy D x y xD y  for all ,x y A  

(Leibniz rule). Each element a A  defines a derivation aD  on A  given as ( ) = ,aD x ax xa  

.x A  Such derivations aD  are said to be inner derivations. If the element a  implementing the 

derivation aD  on ,A  belongs to a larger algebra ,B  containing A  (as a proper ideal as usual) 

then aD  is called a spatial derivation. 

A linear operator L:A→A is called a  Lie triple derivation if  

L[[x,y],z]=[[L(x),y],z]+[[x,L(y)],z]+[[x,y],L(z)]], for all x,y,z∈A, where [x,y]=xy−yx. 

Denote by Z(A) the center of A. 

A linear operator τ:A→Z(A) is called a center-valued trace if τ(xy)=τ(yx), ∀x,y∈A. 

Let H be a Hilbert space, B(H) be the algebra of all bounded linear operators acting in  H, M be a 

von Neumann subalgebra in B(H), P(M) be a complete lattice of all orthoprojections in M. 

A linear subspace D on H is said to be affiliated  with M (denoted as DηM), if u(D)⊆D for every 

unitary operator u from the commutant 
' ( ) : ,M y B H xy yx x M of the algebra M. 

A linear operator x on H with the domain D(x) is said to be affiliated  with M (denoted as xηM), if 

u ( )D ( )x ⊆D(x) and ux(ξ)=xu(ξ) for every unitary operator u∈M', and all ξ∈D(x). 

A linear subspace D in H is said to be strongly dens in H with respect to the von Neumann algebra 

M, if 

1) DηM, 

2) there exists a sequence of projections 
=1

( ),n n
p P M  such that ,np 1  ( ) ,np H   

and =n np p1  is finite in M  for all ,n   where 1  is the identity .M  

A closed linear operator x, on a H, is said to be measurable with respect to the von Neumann 

algebra M, if xηM, and D(x) is strongly dens in H. Denote by S(M) the set of all measurable 
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operators affiliated with M (see. [5,13]) and the center of an algebra S(M) by Z(S(M)). A von 

Neumann algebra M is of type I if it contains a faithful abelian projection e (i.e. eMe is an 
abelian(commutative) von Neumann algebra). 

If ,ip jp  are projectors in ( ),S M  then ( ) = : ( ) ,i j i jp S M p p Ap A S M  , =1,2.i j  Set 

1 =p p  and 2 = 1 .p p  Then 
2 2

=1 =1

( ) = ( ) .i j

i j

S M p S M p  Let further = ( ) ,ij i jM p S M p  

, =1,2.i j  Recall that =ij ik kjM M M , for , =1,2i j . 

2. RESULTS AND DISCUSSION 

Let : ( ) ( )L S M S M be Lie triple derivation. 

Lemma1. If  [x,y]∈Z(S(M)) for x,y∈S(M), then  

 [L(x),y]+[x,L(y)]∈Z(S(M)). 

Proof. 0 (0) [[ , ], ] [[ ( ), ], ] [[ , ( )], ] [[ ( ), ] [ , ( )], ]L L x y z L x y z x L y z L x y x L y z for all 

( )z S M . 

Lemma 2.  For any projector p∈S(M),  

               pL(p)px+xpL(p)p={L(p)−L(p)p−pL(p)+2pL(p)p}xp+ 

 +px { }L(p)−L(p)p−pL(p)+2pL(p)p . 

Proof. Applying L to the identity  [[[[ , ], ], ]x p p p [[[[ , ], ], ], ] [[ , ], ]x p p p p x p p  we obtained 

the required equality. 

Lemma 3. 1 1,( ) [ ]L p p s z ,  where z∈Z(S(M)), s∈S(M).  

Proof. Let 
1( ) ijL p e , ij ije M (i,j=1,2). 

Applying Lemma 2 for all ( )x S M , we obtain 

11 11 11 22 11 22( ) ( )e x xe e e xp px e e . If 12x M , then, 11 22 ,e x xe  what follows 

11 22 11 22( ) ( )e e x x e e    12( )x M . 

Analogously, 11 22 11 22( ) ( )e e x x e e   21( )x M . Let now 11x M  and 12y M . Then 

11 22 11 22 11 22 11 22

11 22 11 22

{( ) ( )} ( ) ( )

( ) ( ) 0,

e e x x e e y e e xy xy e e

e e xy e e xy
 

Since 12,y xy M . It follows that 11 22 11 22( ) ( ) 0e e x x e e   11( )x M .  

Similarly 11 22 11 22( ) ( ) 0e e x x e e   22( )x M , i.e. 11 22 ( ( ))e e z Z S M . Since 

1 12 21( ) ( )L p e e z  and, setting 12 21s e e , we obtain 1 1 1( ) ( )L p p s sp z . 

Following from this lemma, we can put 1( ) ( ( ))L p Z S M . For, if the theorem is proved with 

this restriction, the general theorem can be proved by looking at L'(x)=L(x)−[x,s]. 

Lemma 4. If ijx M  i≠j, then L ( )x ∈M
ij

 . 

Proof. 12x M , 1 1[[ , ], ]x x p p . Let ( )L x
1 , 2

ij

i j

x , where ( ) .ij i jx p L x p  then 

1 1 12 21

1 , 2

( ) [[ ( ), ], ]ij

i j

x L x L x p p x x . If 12,x y M , then [ , ] 0x y , therefore, by 

Lemma 1, [ ( ), ] [ , ( )] ( ( ))c L x y x L y Z S M . Since 1,[ ]x p x , we have 
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1 1 1 1

1 1

[ ( ), ] [ [ , ], ] [[ , ], ( )] [[ , ], ] [[ ( ), ], ]

[[ , ( )], ] [[ , ( )], ],

L x y L p x y c p x L y c L p x y L p x y

p L x y c p L x y
what implies 

12 21 1 12 21 12 21[ , ] [[ , ], ] [ , ]x x y c p x x y c x x y , hence 
21

1
[ , ] ( ( )).

2
x y c Z S M  We 

conclude, that 21 21 0x y yx  for all 12y M . 

Thus, 21 0x y  for all 12y M , hence, 21 0x . The case of 21x M can be proved 

analogously. 

Lemma 5. If ,iix M then ( ) ( ( ))iiL x M Z S M . 

Proof. If 11x M , we have 1 10 [[ , ], ]x p p , that is why 1 21 120 [[ ( ), ], ] .L x p p x x  Hence, 

12 21 0x x . Thus, 11 22 11 22( )L x x x M M . Let 11 22,x M y M . Then 0 [ , ]x y , 

therefore [ ( ), ] [ , ( )] ( ( ))L x y x L y Z S M . Let 11 22( ) ,L x x x  11 22( )L y y y . Then 

, ijx y M 11 22 11 22 22 11[ , ] [ , ] [ , ] [ , ] ( ( ))x x y x y y x y x y z Z S M . It follows that 

22 22( )x Z M . Thus 22 2 1 11(1 ) ( ( ))x cp c p M Z S M .  

Hence 11 22 11 1 11( ) ( ( ))L x x x x cp c M Z S M . 

Definition. If ijx M , i j , suppose ( ) ( )D x L x . If ,ijx M i j , then ( )L x x z , 

where ijx M , ( ( ))z Z S M . In this case ( )D x x . Defining in this way D  on the all 

( )S M , we put ( ) ( ) ( )x L x D x . 

Lemma 6. The mapping τ:S(M)→Z(S(M)) is a linear mapping.  

Proof. Homogeneity of is obvious. Let us show additivity of it. Let , ijx y M . Then we have  

           
11

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( )] ( ( )) 0.

x y x y L x y D x y L x D x L y D y

D x D y D x y M Z S M
 

Lemma 7.  If ,ii jkx M y M  (j≠k), then D(xy)=D(x)y+xD(y).  

Proof. If i j , then 0xy . ( ) 0D x y  and ( ) 0xD y . If 11 12, ,i j x M y M , then 

12xy M  and ( ) ( )D xy L xy , since 1[ , ] [[ , ], ]xy x y p x y . Hence 

           
1 1 1( ) [[ , ], ] [[ , ( )], ] [[ , ], ( )] [ ( ), ]

[ , ( )] [ , ( )] [ ( ), ] [ , ( )] [ ( ), ] ( ) ( ) .

D xy L p y x p L y x p y L x L y x

y L x x L y L x y x D y D x y xD y D x y
 

Lemma 8. If  ,ii jjx M y M , then D(xy)=xD(y)+D(x)y.  

Proof. Let 11,x y M . For 12r M , by Lemma 7, we obtain 

               
( ) ( ) ( ) ( ) ( ) ( )

( ) { ( ) ( )} ( )} { ( ) ( )} .

D xy r D xyr xyD r D x yr xD yr xyD r

D x yr x D y r yD r xyD r D x y xD y r
 

Since { ( ) ( ) ( )} 0D xy D x y xD y r for all 12r M . It follows that  

               ( ) ( 0 ( ) 0D xy D x y xD y . 

Lemma 9 D(xyx)=D(x)yx+xD(y)x+xyD(x) for every x∈M
ij

 (i≠j) and y∈S(M).  

Proof. Let ( )ijx M i j , 2 [[ , ], ]xyx x y x . Then 

          
2 ( ) (2 ) ([[ , ], ]) [[ ( ), ] [ , ( )], ] [[ , ], ( )]

[[ ( ), ] [ , ( ), ] [[ , ], ( )] 2{ ( ) ( ) ( )}

D xyx L xyx L x y x L x y x L y x x y L x

D x y x D y x x y D x D x yx xD y x xyD x
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Lemma 10. The mapping D is an associated derivation on S(M).  

Proof. It is sufficient to show the equality ( ) ( ) ( )D xy D x y xD y  for the case of 

12 21,x M y M . We have 

           [ , ] ( ) ( ) ( ) ( ) ( )    ( ) ( ( ))x y D x y xD y D xy D yx D y x yD x z Z S M   (1)  

 Muiltiplying the equality (1) from the left on x and on y , respectively, we obtain 

         ( ) ( ) ( )xD yx xD y x xyD x xz              (2) 

           ( ) ( ) ( )yD x y yxD y yD xy yz             (3)   

It is clear, 22yx M , 12x M , therefore by Lemma 7 ( ) ( 0 ( )D xyx D x yx xD yx . Sing the 

equality (2) and Lemma 9, we obtain 

           0 ( ) ( )D xyx D x yx ( ) ( )xD y x xyD x xz . 

Similarly, using the equality (3), we obtain 0yz .  

0xz implies     

0x z  and therefore 
* 0x z . Hence 

* * 0,xz v x z  where x v x  is the polar 

decomposition of x . We obtain similarly 
* 0yz . Multiplying (1) on 

*z , we obtain 

* *( ( ) ( )) .D yx D xy z zz We have 
* * * * *

2 2 2 2( ) ( ) ( ) ( ) ( ( ))D yx z D yx p z D yxp z yxD p z yxD p z . 

Similarly, 
*

1( ) ( )D xy z xyD p z . Hence 

      
* * * *

1 2( ( ) ( )) ( ) ( )zz D yx D xy z xyD p z yxD p z . 

Thus 
* * 0z zz , what implies 0z . It follows from the equality (1)  

( ) ( ) ( ) ( ) ( ) ( ) 0D x y xD y D xy D yx D y x yD x , since 12 21,x M y M . 

Corollary. [ , ] 0x y  for all , ( )x y S M . 

Now we can formulate the main theorem. 

Theorem 1. Let L:S(M)→S(M) be a Lie triple derivation . Then L=D+τ, where D is an associated 

derivation and τ is a center-valued trace from S(M) into Z(S(M)).  

Let A be a commutative algebra and let M
n
(A) be the algebra of n×n matrices over A. If e

ij
 

, 1,2,...,i j n  are the matrix units in M
n
 ( )A , then each element ( )nx M A , has the form  

  
, 1

, , , 1,2,...,
n

ij j ij

i j

x e A i j n  

Let δ:A→A, be a derivation. Setting  

, 1 , 1

( ) ( )
n n

ij ij ij ij

i j i j

D e e                                                                                                           (4) 

we obtain a well-defined linear operator D
δ
 on the algebra M

n
 ( )A . Moreover D

δ
 is a derivation 

on the algebra M
n

 ( )A  and its restriction onto the center of the algebra M
n
 ( )A  coincides with the 

given δ. Now Lemma 2.2 [1] implies the following 
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Corollary. Let M be a homogenous von Neumann algebra of type ,nI n N . Every Lie triple 

derivation L on the algebra S(M) can be uniquely represented by as a sum aL D D , 

where aD  is an inner derivation implemented by an element ( )a S M while, D  is the 

derivation of the form (4) genereted by a derivation  on the center ( )S M  identifed with S(Z). 

Now let M be an arbitrary finite von Neumann algebra of type I with the center Z. There exists a 

family { } ,n n Fz F N , of central projections from M with sup 1n
n F

z  such that the algebra M is 

∗ -isomorphic with the C
∗
 –product of von Neumann algebras z

n
M of type nI ,  respectively, n∈F, 

i.e.  

n
n F

M z M  

By Proposition 1.1 [1] we have that  

( ) ( )n

n F

S M S z M . 

Suppose that D is a derivation on S(M), and δ is its restriction onto its center S(Z). Since δ maps 

each z
n

S(Z)≅Z(S(z
n

M)) into itself, δ generates a derivation δ
n

 on z
n
S(Z) for each n∈F. Let D

δ
n

 be 

the derivation on the matrix algebra M
n
(z

n
Z(S(M)))≅S(z

n
M) defined as in (4). Put  

({ } ) { ( )},{ } ( )
nn n F n n n FD x D x x S M .                                                                               (5) 

Then the map D
δ
 is a derivation on S(M). Now Lemma 2.3 [1] implies the following 

Corollary. Let M be a finite von Neumann algebra of type I . Every Lie triple derivation L  on 

the algebra ( )S M  can be uniquely represented as a sum aL D D  where aD  is an inner 

derivation implemented by an element ( )a S M , and D  is a derivation given as (5) 
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