On the Cubic Equation with Four Unknowns
 $$
x^{3}+y^{3}=31\left(k^{2}+3 s^{2}\right) z^{2}
$$

M.A. Gopalan
Professor, Department of Mathematics, SIGC, Trichy, Tamilnadu mayilgopalan@gmail.com
\section*{E. Premalatha}
Assistant Professor, Department of Mathematics, National College, Trichy, Tamilnadu premalathaem@gmail.com

S. Vidhyalakshmi
Professor, Department of Mathematics, SIGC, Trichy, Tamilnadu vidhyasigc@gmail.com C. Nithya
M.Phil Student,
Department of Mathematics, SIGC, Trichy, Tamilnadu

Abstract

The homogeneous cubic equation with four unknowns represented by the Diophantine equation $x^{3}+y^{3}=31\left(k^{2}+3 s^{2}\right) z w^{2}$ is analyzed for its patterns of non - zero integral solutions. A few interesting properties between the solutions and special numbers are presented.

Keywords: Cubic equation with four unknowns, Integral solutions.
2010 Subject Classification: 11D25

1. Introduction

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-15] for cubic equations with four unknowns. This communication concerns with yet another interesting equation $x^{3}+y^{3}=31\left(k^{2}+3 s^{2}\right) z w^{2}$ representing the homogeneous cubic equation with four unknowns for determining its infinitely many non-zero integral points. Also a few interesting properties are presented.

2. NOTATIONS USED

- $\mathrm{t}_{\mathrm{m}, \mathrm{n}}$ - Polygonal number of rank n with size m .
- $\mathrm{P}_{\mathrm{n}}^{\mathrm{m}} \quad$ - Pyramidal number of rank n with size m .
- gn_{a} - Gnomonic number of rank a
- so_{n} - Stella octangular number of rank n
- $\operatorname{pr}_{\mathrm{n}} \quad$ - Pronic number of rank n
- $\mathrm{CP}_{\mathrm{m}, \mathrm{n}}$ - Centered pyramidal number of rank n with size m .

2.1 Method of Analysis

The cubic diophantine equation with four unknowns to be solved for getting non-zero integral solutions is

$$
\begin{equation*}
x^{3}+y^{3}=31\left(k^{2}+3 s^{2}\right) z w^{2} \tag{1}
\end{equation*}
$$

Introduction of the transformation
$\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}$ and $z=2 u v$

M.A. Gopalan et al.

in (1) leads to $u^{2}+3 v^{2}=31\left(k^{2}+3 s^{2}\right) z w^{2}$
Now, we solve (3) through different methods and thus obtain different patterns of solutions to (1).

2.1.1 Pattern -I

Assume $w=w(a, b)=a^{2}+3 b^{2}$
where a and b are non zero distinct integers
Write 31 as $31=(2+i 3 \sqrt{3})(2-i 3 \sqrt{3})$
Using (4) \& (5) in (3) and applying the method of factorization, define
$u+i \sqrt{3} v=(2+i 3 \sqrt{3})(k+i \sqrt{3} s)(a+i \sqrt{3} b)^{2}$
Equating the real and imaginary parts, we have

$$
\begin{aligned}
& u=k\left(2 a^{2}-6 b^{2}-18 a b\right)+s\left(-9 a^{2}+27 b^{2}-12 a b\right) \\
& v=k\left(3 a^{2}-9 b^{2}+4 a b\right)+s\left(2 a^{2}-6 b^{2}-18 a b\right)
\end{aligned}
$$

Hence in view of (2), the values of x, y, z are given by

$$
\begin{align*}
& x=x(k, s, a, b)=k\left(5 a^{2}-15 b^{2}-14 a b\right)+s\left(-7 a^{2}+21 b^{2}-30 a b\right) \\
& y=y(k, s, a, b)=k\left(-a^{2}+3 b^{2}-22 a b\right)+s\left(-11 a^{2}+33 b^{2}+6 a b\right) \tag{6}\\
& z=z(k, s, a, b)=k\left(4 a^{2}-12 b^{2}-36 a b\right)+s\left(-18 a^{2}+54 b^{2}-24 a b\right)
\end{align*}
$$

Thus (4) and (6) represent the non zero integral solutions to (1).
A few interesting properties observed are as follows:

1. $x(1,1, a, 1)+5 y(1,1, a, 1)+t_{126, a} \equiv 1(\bmod 185)$
2. $x(k, s, a, 1)-k t_{12, a}+s t_{16, a}+15 k-21 s \equiv 0(\bmod 2 a)$
3. $x\left(k, k, t_{3, a}, t_{3, a+2}\right)+5 y\left(k, k, t_{3, a}, t_{3, a+2}\right)=-62 k\left(2 t_{3, a}-3 \operatorname{Pr}_{a+2}+2 P t_{a}\right)$
4. $[x(k, s, a, b)+y(k, s, a, b)]^{2}=z^{2}(k, s, a, b)$

2.1.2 Pattern -II

Rewrite (3) as $u^{2}+3 v^{2}=31\left(k^{2}+3 s^{2}\right) z w^{2} * 1$
Write 1 as $\quad 1=\frac{1}{4}(1+i \sqrt{3})(1-i \sqrt{3})$
Following the procedure similar to pattern-I, the corresponding non-zero distinct integral solutions of (1) are found to be

$$
\begin{aligned}
& x=x(k, s, a, b)=k\left(-a^{2}+3 b^{2}-22 a b\right)+s\left(-11 a^{2}+33 b^{2}+6 a b\right) \\
& y=y(k, s, a, b)=k\left(-6 a^{2}+18 b^{2}-8 a b\right)+s\left(-4 a^{2}+12 b^{2}+36 a b\right) \\
& z=z(k, s, a, b)=k\left(-7 a^{2}+21 b^{2}-30 a b\right)+s\left(-15 a^{2}+45 b^{2}+42 a b\right)
\end{aligned}
$$

along with (4).

Properties:

1. $x(-1,1,3, b)+z(-1,1,3, b)-c t_{54, b} \equiv-164(\bmod 246)$
2. $7 x(1, s, a, a-1)-z(1, s, a, a-1)+20\left(S_{a}-1\right)+8 t_{3, a} \equiv 0(\bmod 62)$
3. $x(-11,1, a, a+1)-2 C t_{248, a}+2=0$
4. $31\left\{6 x(1,1, a(a+1), a+2)-y(1,1, a(a+1), a+2)+744 P_{a}^{3}+62\left(\operatorname{Pr}_{a}\right)^{2}\right\} \quad$ is \quad a Nasty number.

2.1.3 Pattern -III

Instead of (5), write 31 as

$$
31=\frac{1}{4}(7+i 5 \sqrt{3})(7-i 5 \sqrt{3})
$$

Following the procedure similar to pattern-I, and performing a few calculations, the corresponding non-zero distinct integral solutions of (1) are given by

$$
\begin{aligned}
& x=x(k, s, a, b)=k\left(6 a^{2}-18 b^{2}-8 a b\right)+s\left(-4 a^{2}+12 b^{2}-36 a b\right) \\
& y=y(k, s, a, b)=k\left(a^{2}-3 b^{2}-22 a b\right)+s\left(-11 a^{2}+33 b^{2}-6 a b\right) \\
& z=z(k, s, a, b)=k\left(7 a^{2}-21 b^{2}-30 a b\right)+s\left(-15 a^{2}+45 b^{2}-42 a b\right)
\end{aligned}
$$

along with (4).

Properties:

1. $x(5,3,2, b(b+1))+54\left(\operatorname{Pr}_{b}\right)^{2}+2 c t_{296, b} \equiv 0(\bmod 74)$
2. $z(1,1, a, a(a+1))-96\left(t_{3, a}\right)^{2}+144 P_{a}^{5}+t_{18, a} \equiv a(\bmod 7)$
3. $7 y\left(k, s, a, 2 a^{2}-1\right)-z\left(k, s, a, 2 a^{2}-1\right)+124 k S O_{a} \equiv 0(\bmod 62)$
4. $93\left\{x(k, 1,(a+1), a)-6 y(k, 1,(a+1), a)-124 k \operatorname{Pr}_{a}+186 t_{4, a}\right\}$ is a Nasty number.

2.1.4 Pattern -IV

Instead of (8), write 1 as

$$
1=\frac{1}{49}(1+i 4 \sqrt{3})(1-i 4 \sqrt{3})
$$

Following the procedure similar to pattern-III, and performing a few calculations, the corresponding non-zero distinct integral solutions of (1) are

$$
\begin{aligned}
& x=x(k, s, a, b)=k\left(-70 a^{2}+210 b^{2}-1064 a b\right)+s\left(-532 a^{2}+1596 b^{2}+420 a b\right) \\
& y=y(k, s, a, b)=k\left(-301 a^{2}+903 b^{2}-322 a b\right)+s\left(-161 a^{2}+483 b^{2}+180 a b\right) \\
& z=z(k, s, a, b)=k\left(-371 a^{2}+1113 b^{2}-1386 a b\right)+s\left(-693 a^{2}+2079 b^{2}+2226 a b\right)
\end{aligned}
$$

Properties:

1. $x(-1,1, a, a(a+1))-1386\left(\operatorname{Pr}_{a}\right)^{2}-2968 P_{a}^{5}-t_{36, a} \equiv a(\bmod 16)$
2. $x(k, s, a, b)+y(k, s, a, b)-z(k, s, a, b)=0$
3. $[x(k, s, a, b)+y(k, s, a, b)]^{2}-z^{2}(k, s, a, b)=0$
4. $12\left(x^{2}(k, s, a, b)+y^{2}(k, s, a, b)\right)-6 z^{2}(k, s, a, b)$ is a Nasty number.

3. Conclusion

To conclude, one may search for other patterns of solutions and their corresponding properties.

ACKNOWLEDGEMENTS

*The finicial support from the UCG, New Delhi (F-MRP-5122/14(SERO/UCG) dated march 2014) for a part of this work is gratefully acknowledged.

References

[1] L.E. Dickson, History of Theory of numbers, vol.2, Diophantine analysis, New York, Dover, 2005.
[2] L.J. Mordell, Diophantine Equations, Academic press, New York, 1969.

M.A. Gopalan et al.

[3] Carmichael.R.D, The Theory of numbers and Diophantine Analysis, New York, Dover, 1959.
[4] M.A.Gopalan and S.Premalatha , Integral solutions of $(x+y)\left(x y+w^{2}\right)=2\left(k^{2}+1\right) z^{3}$, Bulletin of pure and applied sciences, Vol.29E(No.2),Pp 197-202, 2009.
[5] M.A.Gopalan and V.pandiChelvi, Remarkable solutions on the cubic equation with four unknows $x^{3}+y^{3}+z^{3}=28(x+y+z) w^{2}$, Antarctica J.of maths, Vol.4, No.4, Pp 393-401, 2010.
[6] M.A. Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknows $x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}$,Impact.J.Sci.Tech, Vol.4, No. 3 ,Pp 53-60, 2010.
[7] M.A.Gopalan and S.Premalatha , On the cubic Diophantine equation with four unknows $(x-y)\left(x y-w^{2}\right)=2\left(n^{2}+2 n\right) z^{3}$, International Journal of mathematical sciences,Vol.9, No.1-2, Jan-June, Pp 171-175, 2010.
[8] M.A.Gopalan and J.KaligaRani, Integral solutions of $x^{3}+y^{3}+(x+y) x y=z^{3}+w^{3}+(z+w) z w, \quad$ Bulletin of pure and applied sciences, Vol.29E(No.1),Pp 169-173, 2010.
[9] M.A.Gopalan and S.Premalatha, Integral solutions of $(x+y)\left(x y+w^{2}\right)=2(k+1) z^{3}$, The Global Journal of applied mathematics and Mathematical sciences, Vol.3, No.1-2, Pp 51-55, 2010.
[10] M.A.Gopalan, S.Vidhyalakshmi and S.Mallika, Observation on the cubic equation with four unknows $x y+2 z^{2}=w^{3}$, The global journal of mathematics and mathematical sciences, Vol.2,No.1,Pp 69-74, 2012.
[11] M.A.Gopalan, S.Vidhyalakshmi and S.Mallika, Observation on the cubic equation with four unknows $2\left(\mathrm{x}^{3}+\mathrm{y}^{3}\right)=\mathrm{z}^{3}+\mathrm{w}^{2}(\mathrm{x}+\mathrm{y})$, IJAMP, Vol.4, No.2, Pp 103-107, Jul-Dec 2012.
[12] M.A.Gopalan, S.Vidhyalakshmi and G.Sumathi, On the homogeneous cubic equation with four unknows $\mathrm{x}^{3}+\mathrm{y}^{3}=14 \mathrm{z}^{3}-3 \mathrm{w}^{2}(\mathrm{x}+\mathrm{y})$, Discovery, Vol.2, No.4, Pp 17-19, Oct- 2012.
[13] M.A.Gopalan and K.Geetha , Observation on the cubic equation with four unknows $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{xy}(\mathrm{x}+\mathrm{y})=\mathrm{z}^{3}+2(\mathrm{x}+\mathrm{y}) \mathrm{w}^{2}$, International Journal of pure and applied mathematics sciences,Vol.6,No.1,Pp 25-30, 2013.
[14] M.A.Gopalan, S.Vidhyalaksmi and N.Thiruniraiselvi, On homogeneous cubic equation with four unknowns $\left(\mathrm{x}^{3}+\mathrm{y}^{3}\right)=21 \mathrm{zw}^{2}$, Cayley J.Math, Vol 2(2), Pp 163-168, 2013.
[15] M.A.Gopalan, S.Vidhyalaksmi and A.Kavitha, Observations On the homogeneous cubic equation with four unknowns $(x+y)\left(2 x^{2}+2 y^{2}-3 x y\right)=\left(k^{2}+7\right) z^{2}$, Bessel J.Math, Vol 4(1),Pp 1-6,2014

