Some Designs with Association Schemes Arising from Some Certain Corona Graphs

Sumathi .M.P.

Department of Mathematics, Mahajana First Grade College, Mysore sumathideepak@gmail.com

Abstract: In this paper, we obtain PBIB designs with association schemes which are arising from the minimum dominating sets of $(C_{3^{\circ}}K_1)$, $(C_{4^{\circ}}K_1)$ and $(C_{5^{\circ}}K_1)$, then we generalize the results to the graph $(C_{n^{\circ}}K_1)$. Further

we generalize the result to $(Cn \circ K_m)$ and $(G \circ K_m)$.

Keywords: Minimum dominating sets, association schemes, PBIB designs.

1. INTRODUCTION

In this paper by a graph, we mean a finite undirected graph without loops or multiple lines. For a graph G, let V (G) and E(G) respectively denote the point set and the line set of graph G. We say that u and v dominate each other. A set D subset of V is dominating set of G, if every vertex in V - D is adjacent to some vertex in D. The domination number $\mathbb{I}(G)$ of G is the minimum cardinality of a dominating set.

Many authors have been studied PBIBD with m-association scheme which are arising from some dominating sets of some graphs. H.B. Walikar and et rl.[8], have studied PBIBD arising from minimum dominating set of paths and cycles, Anwar and Soner [1], have studied Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs, Sharada and Soner [6], have studied relation between Partially balanced incomplete block designs arising from minimum efficient dominating sets of graph. Any undefined terms and notation, reader may refer to F.Harary [4]. We refer the reader to see [2], for more details about PBIBD and dominating set. We concern here to study PBIBD and the association scheme which can be obtained from the minimum dominating sets in some certain

 $(C_n \circ K_1)$ graph, then we generalize the graph $(C_n \circ K_n)$ and it is open area to study the same things for the other graphs.

We can obtain different PBIBD association scheme from the $(C_n \circ K_1)$ graphs by using different definitions as we will see in next sections.

2. Some PBIBD Arising from Minimum Dominating Sets of $(C_N \circ K_1)$

Definition 2.1

Given v objects a relation satisfying the following conditions is said to be an association scheme with m classes:

i. Any two objects are either first associates, or second associates,..., or mth associates, the relation of association being symmetric.

ii. Each object α has n_i ith associates, the number n_i being independent of α .

iii. If two objects α and β are ith associates, then the number of objects which are jth associates of α and kth associates of β is p^{i}_{jk} and is independent of the pair of ith associates α and β . Also $p^{i}_{jk} = p^{i}_{k}j$.

Sumathi .M.P

If we have association scheme for the v objects we can define a PBIBD as the following definition.

Definition 2.2

The PBIBD design is arrangement of v objects into b sets (called blocks) of size k where k < v such that

i. Every object is contained in exactly r blocks.

ii. Each block contains k distinct objects.

iii. Any two objects which are ith associates occur together in exactly λ_i blocks.

Proposition 2.3. A PBIBD with parameters (6, 3, 0, 4) can be obtained from minimum dominating sets of $(C_3 \circ K_1)$.

Proof. let G = (V,E) be a corona graph $(C_3 \circ K_1)$. By labelling $\{v_1, v_2, v_3, v_1^1, v_2^1, v_3^1\}$ as in Fig (1) we can define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating sets $\{v_1, v_2, v_3\}$, $\{v_1^1, v_2^1, v_3^1\}$, $\{v_2, v_1^1, v_3^1\}$, $\{v_3, v_2^1, v_1^1\}$, $\{v_1, v_2, v_3^1\}$, $\{v_2, v_3, v_1^1\}$ and $\{v_1, v_3, v_2^1\}$, and every vertex appear in 4 blocks and the size of the block is the domination number ($C_3 \circ K_1$) = 3. Any two vertices appear either exactly in zero dominating set or in two dominating sets. Then the parameters of the PBIBD is (6,3,0,4).

Proposition 2.4. A PBIBD with parameters (8, 4, 0, 8) can be obtained from minimum dominating sets of $(C_4 \circ K_1)$.

Proof. Let G = (V, E) be a Corona graph $C_4 \circ K_1$. By labelling $\{v_1, v_2, v_3, v_4, v_1^1, v_2^1, v_3^1, v_4^1\}$ as in Fig(2) we can define PBIBD as follows:

Figure2:C4 •K1

The point set is the vertices of and the block set is the minimum dominating sets { v_1, v_2, v_3, v_4 }, { $v_1^1, v_2^1, v_3^1, v_4^1$ }, { v_1, v_2^1, v_3^1, v_4^1 }, { v_2, v_3, v_4^1 }, { v_3, v_4^1 }, { v_2, v_3, v_4^1 }, { v_1, v_2^1, v_3^1, v_4^1 }, { $v_2, v_3, v_1^1, v_2^1, v_3^1$ }, { v_1, v_2, v_3, v_4^1 }, { v_2, v_3, v_1^1, v_4^1 }, { v_3, v_4, v_1^1, v_2^1 }, { v_1, v_2, v_3, v_4^1 }, { v_2, v_3, v_4, v_1^1 }, { v_1, v_2, v_3, v_4^1 }, { v_2, v_3, v_4, v_1^1 }, { v_1, v_2, v_4, v_3^1 }, { v_1, v_2, v_4, v_3^1 }, { v_1, v_2, v_4, v_3^1 }, and every vertex appear in 8 blocks and the size of the block is the domination number ($C_4 \circ K_1$) = 4. Any two vertices appear either exactly in zero dominating set or in four dominating sets. Then the parameters of the PBIBD is (8,4,0,8).

Proposition 2.5. A PBIBD with parameters (10, 5, 0, 16) can be obtained from minimum dominating sets of $(C_5 \circ K_1)$.

Proof. Let G = (V,E) be a Corona graph $(C_5 \circ K_1)$. By labelling $\{v_1, v_2, v_3, v_4, v_5, v_1^1, v_2^1, v_3^1, v_4^1, v_5^1\}$ as in Fig(3) we can define PBIBD as follows:

Figure3:C5 ° K1

The point set is the vertices and the block set is the minimum dominating sets { v_1, v_2, v_3, v_4, v_5 }, { $v_1^1, v_2^1, v_3^1, v_4^1, v_5^1$ }, { $v_1, v_2^1, v_3^1, v_4^1, v_5^1$ }, { $v_1, v_2^1, v_3^1, v_4^1, v_5^1$ }, { v_1, v_2^1, v_3^1, v_4^1 }, { v_1, v_2^1, v_3^1 }, { v_1, v_2^1, v_3^1 }, { v_1, v_2^1, v_3^1 }, { $v_1, v_2, v_3, v_4, v_5^1$ }, { $v_1, v_2, v_3, v_4, v_1^1, v_2^1$, v_1, v_2, v_3, v_4^1 , v_1^1, v_2^1 , v_1^1, v_2^1 , v_1^1, v_2^1, v_3^1 }, { $v_1, v_2, v_3, v_4, v_5, v_1^1, v_2^1$ }, { $v_1, v_2, v_3, v_4, v_1^1$, { $v_1, v_2, v_3, v_4, v_5, v_1^1, v_2^1$ }, { $v_1, v_2, v_3, v_4, v_5, v_3^1$, { $v_1, v_2, v_3, v_4, v_5, v_1^1$ }, { $v_1, v_2, v_4, v_5, v_1^1$, v_1^1 }, { $v_1, v_2, v_3, v_4, v_5, v_1^1$ }, { $v_1, v_2, v_4, v_5, v_1^1, v_3^1$ }, { $v_1, v_2, v_3, v_5, v_1^1$ }, { $v_1, v_3, v_5, v_2^1, v_4^1$ }, { $v_1, v_2, v_3, v_5, v_1^1, v_3^1$, v_1^1 , v_1^1, v_3^1, v_5^1 }, { $v_2, v_4, v_5, v_1^1, v_3^1$ }, { $v_1, v_4, v_2^1, v_3^1, v_5^1$ } and { $v_2, v_5, v_1^1, v_3^1, v_4^1$ } such that every vertex appear in 16 blocks and the size of the block is the domination number ($C_5 \circ K_1$) = 5. Any two vertices appear either exactly in zero dominating set or in eight dominating sets. Then the parameters of the PBIBD is (10,5,0,16).

Theorem 2.6. For any corona graph $(C_n \circ K_1)$, where $n \ge 3$, we can define PBIBD with the following parameters $(2n, n, 0, 2^{n-1})$.

Proof. The above theorem follows by propositions 2.3, 2.4 and 2.5.

Theorem 2.7. Let $G \cong (C_n \circ K_1)$. Then the number of minimum dominating sets are 2^n .

Proof. By labelling the vertices of the graph G, $\{v_1, v_1^1, v_2, v_2^1, \dots, v_n, v_n^1\}$ as in Fig(4).

 $Figure 4: C_n \circ K_1$

Sumathi .M.P

Let $A = \{v_1, v_2, ...v_n\}$ and $B = \{v_1^{1}, v_2^{1}, ..., v_n^{1}\}$. It is obvious that $\mathbb{I}(G) = n$. Let D(G) be the number of minimum dominating set of G, we have 2 dominating sets $S_1 = A$ and $S_2 = B$ are minimum dominating sets. Now to select the minimum dominating sets we have to select x vertices from A and y vertices from B. But from the definition of minimum dominating set, we have option only for x, the other vertices from B will be compulsory in the minimum dominating set. So if we select one vertex from A, then (n-1) vertices from B have to be selected i.e., if we select v_i from A, then (n-1) vertices from B appear in the dominating set, such that all the vertices in B except v_i^{1} . By using the probability theory we can select 1 or 2 or up to (n - 1) elements from A the other will appear.

Hence

$$\mathbf{D}(\mathbf{G}) = \binom{n}{\mathbf{1}} + \binom{n}{\mathbf{2}} + \binom{n}{\mathbf{3}} + \dots + \binom{n}{n-1} + 2$$

As we know that

$$(x + a)^{n} = \sum_{i=0}^{n} {n \choose i} a^{i} b^{n-i} \longrightarrow (1)$$

If $a = b = 1$, then $2^{n} = \sum_{i=0}^{n} {n \choose i}$

from equation (1), we get

$$\sum_{i=0}^{n} \binom{n}{i} = \binom{n}{0} + \sum_{i=1}^{n} \binom{n}{i}$$
$$\sum_{i=0}^{n} \binom{n}{i} = \binom{n}{0} + \sum_{i=0}^{n-1} \binom{n}{i} + 1$$
$$\sum_{i=0}^{n} \binom{n}{i} = 2 + \sum_{i=0}^{n-1} \binom{n}{i}$$
ore,
$$\sum_{i=0}^{n-1} \binom{n}{i} = 2^{n} - 2$$

inside and (n-1) vertices from outside which is

Therefore, $\sum_{i=0}^{n} (1)^{i} = 2^{n} - 2$ Implies $D(G) = 2^{n} - 2 + 2$ Hence $D(G) = 2^{n}$.

Lemma 2.8. Let $G \cong C_n \circ K_1$. Then every vertex v contained in 2^{n-1} minimum dominating sets. **Proof.** Let u be any vertex in G, there are 2 cases:

Case(1): Let $u \in A = \{v_1, v_2, ..., v_n\}$. To count the number of minimum dominating set which contains u, the first minimum dominating sets is A itself and the other selecting x vertices from

$$\sum_{i=1}^{n-1} \binom{n-1}{i} = 2^{n-1}$$

-1.

Hence, there is 2^{n-1} different minimum dominating set containing u. Case(2): Let $\mathbf{u} \in \mathbf{B} = \{ \mathbf{v}_1^1, \mathbf{v}_2^1, \mathbf{v}_3^1, \dots, \mathbf{v}_n^1 \}$. To count the number of minimum dominating sets which contains u, the first minimum dominating sets is B itself and the other selecting y vertices from A and (n-1) vertices from B which is $\sum_{i=1}^{n-1} \binom{n-1}{i} = 2^{n-1} - 1$.

Hence, there are 2^{n-1} different minimum dominating sets containing u.

3. Some Association Scheme Obtained from Minimum Dominating Sets of $C_{\text{N}} \circ K_1$

Theorem 3.1. From $C_3 \circ K_1$ we can get PBIBD with parameters (6, 3, 0, 2) and association scheme of 2-classes with

$$\mathbf{P}_{1} = \begin{bmatrix} p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} \end{bmatrix} \text{ and } \mathbf{P}_{2} = \begin{bmatrix} p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{2} \end{bmatrix}.$$

Proof. Let G = (V,E) be a corona graph $C_3 \circ K_1$. By labelling $\{v_1, v_2, v_3, v_1^1, v_2^1, v_3^1\}$

we can define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating sets $\{v_1, v_2, v_3\}$, $\{v_1^{1}, v_2^{1}, v_3^{1}\}$, $\{v_1, v_2^{1}, v_3^{1}\}$, $\{v_2, v_1^{1}, v_3^{1}\}$, $\{v_2, v_1^{1}, v_3^{1}\}$, $\{v_3, v_2^{1}, v_1^{1}\}$, $\{v_1, v_2, v_3^{1}\}$, $\{v_2, v_3, v_1^{1}\}$ and $\{v_1, v_3, v_2^{1}\}$. We define the association scheme as follows, for any $\alpha\beta \in V(G)$, α is first associate of β if α and β appear in zero block and α is second associate of β if α and β appear in 2 blocks. **Table 1.**

Elements	First Associates	Second Associates
v ₁	v ₁ ¹	v_2, v_3, v_2^1, v_3^1
v ₂	v_2^1	$v_1, v_3, v_1^{l}, v_3^{l}$
v ₃	v_3^{1}	$v_1, v_2, v_1^{-1}, v_2^{-1}$
v_1^{-1}	v_1	$v_2, v_3, v_2^{\ l}, v_3^{\ l}$
v_2^1	V2	$v_1, v_3, v_1^{-1}, v_3^{-1}$
v_3^1	v ₃	$v_1, v_2, v_1^{-1}, v_2^{-1}$

 $\mathbf{P}_1 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2} \end{bmatrix} \text{ and } \mathbf{P}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{2} \end{bmatrix}.$

Theorem 3.2. From $C_4 \circ K_1$ we can get PBIBD with parameters (8, 4, 0, 4) and association scheme of

2-classes with
$$P_1 = \begin{bmatrix} p_{11}^1 & p_{12}^1 \\ p_{21}^1 & p_{22}^1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$$
 and $P_2 = \begin{bmatrix} p_{21}^2 & p_{21}^2 \\ p_{21}^2 & p_{22}^2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$.

Proof. Let G = (V, E) be a corona graph $C_4 \circ K_1$. By labelling $\{v_1, v_2, v_3, v_4, v_1^1, v_2^1, v_3^1, v_4^1\}$ we can define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating sets { v_1 , v_2 , v_3 , v_4 },

 $\{ v_1^1, v_2^1, v_3^1, v_4^1 \}, \{ v_1, v_2^1, v_3^1, v_4^1 \}, \{ v_2, v_1^1, v_3^1, v_4^1 \}, \{ v_3, v_1^1, v_2^1, v_4^1 \} \{ v_4, v_1^1, v_2^1, v_3^1 \}, \{ v_1, v_2, v_3^1, v_4^1 \}, \{ v_2, v_3, v_1^1, v_4^1 \}, \{ v_3, v_4, v_1^1, v_2^1 \}, \{ v_1, v_4, v_2^1, v_3^1 \} \{ v_1, v_2, v_3, v_4^1 \}, \{ v_2, v_3, v_4, v_1^1 \}, \{ v_1, v_3, v_2^1, v_4^1 \}$ and $\{ v_2, v_4, v_1^1, v_3^1 \}.$ We define the association scheme as follows, for any

 $\alpha\beta \in V(G)$, α is first associate of β if α and β appear in zero block and α is second associate of β if α and β appear in 3 blocks.

Table	2.
-------	----

Elements	First Associates	Second Associates
v ₁	v_1^1	$v_2, v_3, v_4, v_2^1, v_3^1, v_4^1$
v ₂	v ₂ ¹	$v_1, v_3, v_4, v_1^1, v_3^1, v_4^1$
V3	v ₃ ¹	$v_1, v_2, v_4, v_1^1, v_2^1, v_4^1$
v_4	v_4^{-1}	$v_1, v_2, v_3, v_1^{-1}, v_2^{-1}, v_3^{-1}$
v_1^1	\mathbf{v}_1	$v_2, v_3, v_4, v_2^1, v_3^1, v_4^1$
v_2^1	v ₂	$v_1, v_3, v_4, v_1^1, v_3^1, v_4^1$
v_3^1	v ₃	$v_1, v_2, v_4, v_1^1, v_2^1, v_4^1$
v_4^1		$v_1, v_2, v_3, v_1^1, v_2^1, v_3^1$

 $P_1 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} \end{bmatrix} \text{ and } P_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{3} \end{bmatrix}.$

Theorem 3.3. For any corona graph $C_n \circ K_1$, there is PBIBD with the parameters $(n, k, r, \lambda_1, \lambda_2)$ where n is number of points, k is number of minimum dominating sets, r is the size of the block λ_1 is 2^{n-1} .

Proof. This Theorem follows from 2.7 and 2.8.

From the previous Theorems we can conclude that for any corona graph $C_n \circ K_1$, where $k \ge 3$, we can define PBIBD from the minimum dominating sets with 2n points and also n blocks also it is clear that the size of any block is the domination number of C_n and for any $\alpha\beta \in V(G)$, α is first associate of β if

 α and β appear in zero block and α is second associate of β if α and β appear in 2^{n-1} block with parameters (2n, n, 0, 2^{n-1}) and association scheme of 2-classes with

$$\mathbf{P}_{1} = \begin{bmatrix} p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{2}^{n-1} \end{bmatrix} \text{ and } \mathbf{P}_{2} = \begin{bmatrix} p_{21}^{2} & p_{22}^{2} \\ p_{21}^{2} & p_{22}^{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{2}^{n-1} \end{bmatrix}.$$

Theorem 3.4. From $C_3 \circ K_1$ we can get PBIBD with parameters (6, 3, 0, 2) and association scheme of

2-classes with $P_1 = \begin{bmatrix} p_{11}^1 & p_{12}^1 \\ p_{21}^1 & p_{22}^1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ and $P_2 = \begin{bmatrix} p_{11}^2 & p_{12}^2 \\ p_{21}^2 & p_{22}^2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$

Proof. let G = (V,E) be a corona graph $C_3 \circ K_1$. By labelling { v_1 , v_2 , v_3 , v_1^1 , v_2^1 , v_3^1 } we can define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating sets $\{v_1, v_2, v_3\}$, $\{v_1^1, v_2^1, v_3^1\}$, $\{v_1, v_2^1, v_3^1\}$, $\{v_2, v_1^1, v_3^1\}$, $\{v_3, v_2^1, v_1^1\}$, $\{v_1, v_2, v_3^1\}$, $\{v_2, v_3, v_1^1\}$ and $\{v_1, v_3, v_2^1\}$. We define the association scheme as follows, for any $\alpha\beta \in V(G)$, α is first associate of β if α and β appear in a cycle and α is second associate of β if otherwise.

Table	3.
-------	----

Elements	First Associates	Second Associates
\mathbf{v}_1	v ₂ , v ₃	v_1^1, v_2^1, v_3^1
v_2	v ₁ , v ₃	$v_1^{1}, v_2^{1}, v_3^{1}$
v ₃	v_1, v_2	$v_1^{1}, v_2^{1}, v_3^{1}$
v_1^1	v_2^1, v_3^1	v ₁ , v ₂ , v ₃
v_2^1	v_1^{1}, v_3^{1}	v ₁ , v ₂ , v ₃
v_3^1	v_1^1, v_2^1	v_1, v_2, v_3

 $\mathbf{P}_1 = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} \end{bmatrix} \text{ and } \mathbf{P}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{2} \\ \mathbf{2} & \mathbf{0} \end{bmatrix}.$

Theorem 3.5. From $C_4 \circ K_1$ we can get PBIBD with parameters (8, 4, 0, 4) and association scheme of

2-classes with $P_1 = \begin{bmatrix} p_{11}^1 & p_{12}^1 \\ p_{21}^1 & p_{22}^1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and $P_2 = \begin{bmatrix} p_{11}^2 & p_{12}^2 \\ p_{21}^2 & p_{22}^2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$.

Proof. let G = (V,E) be a corona graph $C_4 \circ K_1$. By labelling $\{v_1, v_2, v_3, v_4, v_1^1, v_2^1, v_3^1, v_4^1\}$ we can define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating sets { v_1 , v_2 , v_3 , v_4 },

 $\{ v_1^1, v_2^1, v_3^1, v_4^1 \}, \{ v_1, v_2^1, v_3^1, v_4^1 \}, \{ v_2, v_1^1, v_3^1, v_4^1 \}, \{ v_3, v_1^1, v_2^1, v_4^1 \} \{ v_4, v_1^1, v_2^1, v_3^1 \}, \{ v_1, v_2, v_3^1, v_4^1 \}, \{ v_2, v_3, v_1^1, v_4^1 \}, \{ v_3, v_4, v_1^1, v_2^1 \}, \{ v_1, v_4, v_2^1, v_3^1 \} \{ v_1, v_2, v_3, v_4^1 \}, \{ v_2, v_3, v_4, v_1^1 \}, \{ v_1, v_3, v_2^1, v_4^1 \}$ and $\{ v_2, v_4, v_1^1, v_3^1 \}$. We define the association scheme as follows, for any

 $\alpha\beta \in V(G)$, α is first associate of β if α and β appear in cycle and α is second associate of β if otherwise.

Table 4.

Elements	First Associates	Second Associates
v ₁	v ₂ , v ₃ , v ₄	$v_1^1, v_2^1, v_3^1, v_4^1$
v ₂	v ₁ , v ₃ , v ₄	$v_1^1, v_2^1, v_3^1, v_4^1$
v ₃	v_1, v_2, v_4	$v_1^1, v_2^1, v_3^1, v_4^1$
v_4	v_1, v_2, v_3	$v_1^1, v_2^1, v_3^1, v_4^1$
$\mathbf{v_1}^1$	v_2^1, v_3^1, v_4^1	v_1, v_2, v_3, v_4
v_2^1	$v_1^{1}, v_3^{1}, v_4^{1}$	v_1, v_2, v_3, v_4
v_3^1	$v_1^{1}, v_2^{1}, v_4^{1}$	v ₁ ,v ₂ , v ₃ , v ₄
v_4^{-1}	$v_1^{1}, v_2^{1}, v_3^{1}$	v_1, v_2, v_3, v_4
[2 0]	[0 3]	, <u>_</u> , <u>_</u> , <u>_</u> , <u>_</u> ,

 $P_1 = \begin{bmatrix} 0 & 4 \end{bmatrix}$ and $P_2 = \begin{bmatrix} 3 & 0 \end{bmatrix}$.

Theorem 3.6. From the previous theorems we can conclude that for any corona graph $C_n \circ K_1$, where

 $k \ge 3$, we can define PBIBD from the minimum dominating sets with 2n points and also n blocks also it is clear that the size of any block is the domination number of C_n and for any $\alpha\beta \in V(G)$, α is first associate of β if α and β appear in cycle and α is second associate of β if otherwise with parameters

 $(2n, n, 0, 2^{n-1})$ and association scheme of 2-classes with

$$P_{1} = \begin{bmatrix} p_{11}^{\dagger} & p_{12}^{\dagger} \\ p_{21}^{\dagger} & p_{22}^{\dagger} \end{bmatrix} = \begin{bmatrix} n-2 & 0 \\ 0 & n \end{bmatrix} \text{ and } P_{2} = \begin{bmatrix} p_{11}^{\dagger} & p_{12}^{\dagger} \\ p_{21}^{\dagger} & p_{22}^{\dagger} \end{bmatrix} = \begin{bmatrix} 0 & n-1 \\ n-1 & 0 \end{bmatrix}.$$

4. CONCLUSION

- -

We obtain PBIB designs with association schemes which are arising from the minimum dominating sets and then we generalize the results to the graph $(C_{n^{\circ}} K_1)$.

ACKNOWLEDGMENT

I thank the college and UGC for supporting this minor project MRP(S)-0154/12-13/KAMY008/UGC-SWRO by UGC grants.

REFERENCES

- [1]. Anwar Alwardi and N. D. Soner, Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs, International Journal of Mathematical Archive 2(2) (2011), 233-235.
- [2]. P. J. Cameron and J. H. Van Lint, Designs, graphs, Codes and their links, vol. 22 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1991.
- [3]. F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
- [4]. V. R. Kulli and S. C. Sigarkanti, Further results on the neighborhood number of a graph. Indian J. Pure and Appl. Math.23 (8) (1992) 575 -577.
- [5]. E. Sampathkumar and P. S. Neeralagi, The neighborhood number of a graph, Indian J. Pure and Appl. Math.16 (2) (1985) 126 132.
- [6]. Sharada.B and Soner Nandappa.D, Partially balanced incomplete block designs arising from minimum efficient dominating sets of graph, Bull.Pure Appl.Math Vol.2, No.1 (2008), 47-56.
- [7]. Sumathi. M.P and N. D. Soner Association scheme on some cycles related with minimum neighbourhood sets. My Science Vol V(1-2), Jan-Jul (2011), 23-27.
- [8]. H. B. Walikar, H. S. Ramane, B. D. Acharya, H. S. Shekhareppa and, S.Arumugum, Partially balanced incomplete block design arising from minimum dominating sets of paths and cycles. AKCE J. Graphs Combin. 4(2) (2007), 223-232.

AUTHOR'S BIOGRAPHY

Dr. Sumathi.M.P., HOD Department of Mathematics, M.F.G.C, Mysore. My area of interest is Graph Theory with research experience of 7yrs. I have published my research articles in reputed journals and presented the same in conferences. I am willing to continue my research.