Some Designs with Association Schemes Arising from Some Certain Corona Graphs

Sumathi .M.P.
Department of Mathematics, Mahajana First Grade College, Mysore
sumathideepak@gmail.com

Abstract

In this paper, we obtain PBIB designs with association schemes which are arising from the minimum dominating sets of $\left(C_{3}{ }^{\circ} K_{l}\right),\left(C_{4}{ }^{\circ} K_{l}\right)$ and $\left(C_{5}{ }^{\circ} K_{l}\right)$, then we generalize the results to the graph ($C_{n}{ }^{\circ} K_{l}$). Further we generalize the result to ($C n_{\circ} K_{m}$) and ($G \circ K_{m}$).

Keywords: Minimum dominating sets, association schemes, PBIB designs.

1. Introduction

In this paper by a graph, we mean a finite undirected graph without loops or multiple lines. For a graph G , let $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ respectively denote the point set and the line set of graph G . We say that u and v dominate each other. A set D subset of V is dominating set of G, if every vertex in V - D is adjacent to some vertex in D. The domination number $[(G)$ of G is the minimum cardinality of a dominating set.
Many authors have been studied PBIBD with m-association scheme which are arising from some dominating sets of some graphs. H.B. Walikar and et rl.[8], have studied PBIBD arising from minimum dominating set of paths and cycles, Anwar and Soner [1], have studied Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs, Sharada and Soner [6], have studied relation between Partially balanced incomplete block designs arising from minimum efficient dominating sets of graph. Any undefined terms and notation, reader may refer to F.Harary [4]. We refer the reader to see [2], for more details about PBIBD and dominating set. We concern here to study PBIBD and the association scheme which can be obtained from the minimum dominating sets in some certain
$\left(\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{1}\right)$ graph, then we generalize the graph $\left(\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{\mathrm{n}}\right)$ and it is open area to study the same things for the other graphs.
We can obtain different PBIBD association scheme from the ($\mathrm{C}_{\mathrm{n}}{ }^{\circ} \mathrm{K}_{1}$) graphs by using different definitions as we will see in next sections.

2. Some PBIBD Arising from Minimum Dominating Sets of ($\mathbf{C}_{\mathrm{N}} \cdot \mathbf{K}_{\mathbf{1}}$)

Definition 2.1

Given v objects a relation satisfying the following conditions is said to be an association scheme with m classes:
i. Any two objects are either first associates, or second associates,..., or $\mathrm{m}^{\text {th }}$ associates, the relation of association being symmetric.
ii. Each object α has n_{i} ith associates, the number n_{i} being independent of α.
iii. If two objects α and β are ith associates, then the number of objects which are jth associates of α and kth associates of β is $\mathrm{p}_{\mathrm{jk}}^{\mathrm{i}}$ and is independent of the pair of ith associates α and β. Also $\mathrm{p}^{\mathrm{i}}{ }_{\mathrm{jk}}=\mathrm{p}_{\mathrm{k}}^{\mathrm{i} j}$.

If we have association scheme for the v objects we can define a PBIBD as the following definition.

Definition 2.2

The PBIBD design is arrangement of v objects into b sets (called blocks) of size k where $\mathrm{k}<\mathrm{v}$ such that
i. Every object is contained in exactly r blocks.
ii. Each block contains k distinct objects.
iii. Any two objects which are ith associates occur together in exactly λ_{i} blocks.

Proposition 2.3. A PBIBD with parameters (6, 3, 0, 4) can be obtained from minimum dominating sets of $\left(\mathrm{C}_{3} \circ \mathrm{~K}_{1}\right)$.
Proof. let $G=(V, E)$ be a corona graph $\left(C_{3} \circ K_{1}\right)$. By labelling $\left\{v_{1}, v_{2}, v_{3}, v_{1}{ }^{1}, v_{2}{ }^{1}, v_{3}{ }^{1}\right\}$ as in Fig (1) we can define PBIBD as follows:

Figure1:C3 ${ }^{\circ} \mathrm{K}_{1}$
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}{ }^{1}\right.$, $\left.\mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{3},, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}\right\}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}\right\}$, and every vertex appear in 4 blocks and the size of the block is the domination number $\left(\mathrm{C}_{3} \circ \mathrm{~K}_{1}\right)=3$. Any two vertices appear either exactly in zero dominating set or in two dominating sets. Then the parameters of the PBIBD is $(6,3,0,4)$.

Proposition 2.4. A PBIBD with parameters ($8,4,0,8$) can be obtained from minimum dominating sets of $\left(\mathrm{C}_{4} \cdot \mathrm{~K}_{1}\right)$.
Proof. Let $G=(V, E)$ be a Corona graph $C_{4} 。 K_{1}$. By labelling $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{1}{ }^{1}, v_{2}{ }^{1}, v_{3}{ }^{1}, v_{4}{ }^{1}\right\}$ as in $\operatorname{Fig}(2)$ we can define PBIBD as follows:

Figure2: $\mathrm{C}_{4} \cdot \mathrm{~K}_{1}$

The point set is the vertices of and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$, $\left\{\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}\left\{\mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}\right\}, \quad\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}$ and $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}$, and every vertex appear in 8 blocks and the size of the block is the domination number $\left(\mathrm{C}_{4} \cdot \mathrm{~K}_{1}\right)=4$. Any two vertices appear either exactly in zero dominating set or in four dominating sets. Then the parameters of the PBIBD is $(8,4,0,8)$.
Proposition 2.5. A PBIBD with parameters $(10,5,0,16)$ can be obtained from minimum dominating sets of ($\mathrm{C}_{5}{ }^{\circ} \mathrm{K}_{1}$).
Proof. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a Corona graph $\left(\mathrm{C}_{5} \circ \mathrm{~K}_{1}\right)$. By labelling $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right.$, $\left.\mathrm{v}_{5}{ }^{1}\right\}$ as in $\operatorname{Fig}(3)$ we can define PBIBD as follows:

Figure3:C5 ${ }^{\circ} \mathrm{K}_{1}$
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$, $\left\{\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\}\left\{\mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\}$, $\left\{\mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\}$, $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\}$, $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right.$, $\left.\mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{2}{ }^{1}\right\}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{4}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}$, $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}^{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\}\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{5}{ }^{1}\right\}$ and $\left\{v_{2}, v_{5}, v_{1}{ }^{1}, v_{3}{ }^{1}, v_{4}{ }^{1}\right\}$ such that every vertex appear in 16 blocks and the size of the block is the domination number $\left(\mathrm{C}_{5} \circ \mathrm{~K}_{1}\right)=5$. Any two vertices appear either exactly in zero dominating set or in eight dominating sets. Then the parameters of the PBIBD is $(10,5,0,16)$.
Theorem 2.6. For any corona graph $\left(C_{n} \circ K_{1}\right)$, where $n \geq 3$, we can define PBIBD with the following parameters ($2 \mathrm{n}, \mathrm{n}, 0,2^{\mathrm{n}-1}$).
Proof. The above theorem follows by propositions 2.3, 2.4 and 2.5.
Theorem 2.7. Let $\mathrm{G} \cong\left(\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{1}\right)$. Then the number of minimum dominating sets are 2^{n}.
Proof. By labelling the vertices of the graph $G,\left\{\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}, \mathrm{v}_{2}{ }^{1}, \ldots \ldots \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}{ }^{1}\right\}$ as in $\operatorname{Fig}(4)$.

Figure $4: \mathbf{C n}_{\mathbf{n}} \circ \mathrm{K}_{1}$

Let $A=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ and $B=\left\{v_{1}{ }^{1}, v_{2}{ }^{1}, \ldots v_{n}{ }^{1}\right\}$. It is obvious that $\square(G)=n$. Let $D(G)$ be the number of minimum dominating set of G, we have 2 dominating sets $S_{1}=A$ and $S_{2}=B$ are minimum dominating sets. Now to select the minimum dominating sets we have to select x vertices from A and y vertices from B. But from the definition of minimum dominating set, we have option only for x, the other vertices from B will be compulsory in the minimum dominating set. So if we select one vertex from A, then ($n-1$) vertices from B have to be selected i.e., if we select v_{i} from A, then ($n-1$) vertices from B appear in the dominating set, such that all the vertices in B except $v_{i}{ }^{1}$. By using the probability theory we can select 1 or 2 or \ldots. up to ($n-1$) elements from A the other will appear.
Hence
$\mathrm{D}(\mathrm{G})=\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\ldots \ldots+\binom{n}{n-1}+2$
As we know that
$(x+a)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$
If $\mathrm{a}=\mathrm{b}=1$, then $2^{\mathrm{n}}=\sum_{i=0}^{n}\binom{n}{i}$
from equation (1), we get

$$
\begin{aligned}
& \sum_{i=0}^{n}\binom{n}{i}=\binom{n}{0}+\sum_{i=1}^{n}\binom{n}{i} \\
& \sum_{i=0}^{n}\binom{n}{i}=\binom{n}{0}+\sum_{i=0}^{n-1}\binom{n}{i}+1
\end{aligned}
$$

$$
\sum_{i=0}^{n}\binom{n}{i}_{=2}+\sum_{i=0}^{n-1}\binom{n}{i}
$$

Therefore, $\sum_{i=0}^{n-1}\binom{n}{i}=2^{n}-2$
Implies $\quad D(G)=2^{n}-2+2$
Hence $\quad D(G)=2^{n}$.
Lemma 2.8. Let $G \cong C_{n} \circ K_{1}$. Then every vertex v contained in 2^{n-1} minimum dominating sets.
Proof. Let u be any vertex in G, there are 2 cases:
Case(1): Let $u \in A=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$. To count the number of minimum dominating set which contains u , the first minimum dominating sets is A itself and the other selecting x vertices from inside and $(\mathrm{n}-1)$ vertices from outside which is $\sum_{i=1}^{n-\mathbf{1}}\binom{n-\mathbf{1}}{i}=2^{\mathrm{n}-1}-1$.
Hence, there is $2^{\mathrm{n}-1}$ different minimum dominating set containing u.
Case(2): Let $u \in B=\left\{v_{1}{ }^{1}, v_{2}{ }^{1}, v_{3}{ }^{1}, \ldots . v_{n}{ }^{1}\right\}$. To count the number of minimum dominating
sets which contains u, the first minimum dominating sets is B itself and the other selecting y vertices from A and $(n-1)$ vertices from B which is $\sum_{i=1}^{n-1}\binom{n-\mathbf{1}}{i}=2^{n-1}-1$.
Hence, there are 2^{n-1} different minimum dominating sets containing u.

3. Some Association Scheme Obtained from Minimum Dominating Sets of $\mathrm{C}_{\mathrm{N}} \circ \mathrm{K}_{1}$

Theorem 3.1. From $\mathrm{C}_{3} \circ \mathrm{~K}_{1}$ we can get PBIBD with parameters ($6,3,0,2$) and association scheme of 2-classes with

$$
\mathrm{P}_{1}=\left[\begin{array}{ll}
p_{11}^{1} & p_{12}^{1} \\
p_{21}^{1} & p_{22}^{1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right] \text { and } \mathrm{P}_{2}=\left[\begin{array}{ll}
p_{11}^{2} & p_{12}^{2} \\
p_{21}^{2} & p_{22}^{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right] .
$$

Proof. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a corona graph $\mathrm{C}_{3} \circ \mathrm{~K}_{1}$. By labelling $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}$ we can define PBIBD as follows:
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}{ }^{1}\right.$, $\left.\mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{3},, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}\right\}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}\right\}$. We define the association scheme as follows, for any $\alpha \beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if α and β appear in zero block and α is second associate of β if α and β appear in 2 blocks.

Table 1.

Elements	First Associates	Second Associates
v_{1}	$\mathrm{v}_{1}{ }^{1}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$
v_{2}	$\mathrm{v}_{2}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}$
v_{3}	$\mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}$
$\mathrm{v}^{1}{ }^{1}$	v_{1}	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$
$\mathrm{v}_{2}{ }^{1}$	v_{2}	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}$
$\mathrm{v}^{1}{ }^{1}$	v_{3}	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}$

$P_{1}=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}\mathbf{0} & \mathbf{1} \\ 1 & 2\end{array}\right]$.
Theorem 3.2. From $\mathrm{C}_{4} \cdot \mathrm{~K}_{1}$ we can get PBIBD with parameters ($8,4,0,4$) and association scheme of
2-classes with $\mathrm{P}_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 3\end{array}\right]$ and $\mathrm{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{ll}0 & \mathbf{1} \\ 1 & 3\end{array}\right]$.
Proof. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a corona graph $\mathrm{C}_{4} \circ \mathrm{~K}_{1}$. By labelling $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}$ we can define PBIBD as follows:
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}\left\{\mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}$ and $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}$. We define the association scheme as follows, for any
$\alpha \beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if α and β appear in zero block and α is second associate of β if α and β appear in 3 blocks.
Table 2.

Elements	First Associates	Second Associates
V_{1}	$\mathrm{V}_{1}{ }^{1}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
V_{2}	$\mathrm{v}_{2}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
V_{3}	$\mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
V_{4}	$\mathrm{v}_{4}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$
$\mathrm{v}_{1}{ }^{1}$	V_{1}	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
$\mathrm{v}_{2}{ }^{1}$	V_{2}	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
$\mathrm{v}_{3}{ }^{1}$	V_{3}	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
$\mathrm{v}_{4}{ }^{\text {I }}$	V_{4}	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$

$P_{1}=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & 3\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}\mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{3}\end{array}\right]$.
Theorem 3.3. For any corona graph $C_{n} \circ K_{1}$, there is PBIBD with the parameters ($n, k, r, \lambda_{1}, \lambda_{2}$) .where n is number of points, k is number of minimum dominating sets, r is the size of the block λ_{1} is $2^{\mathrm{n}-1}$.

Proof. This Theorem follows from 2.7 and 2.8.
From the previous Theorems we can conclude that for any corona graph $C_{n} \circ K_{1}$, where $k \geq 3$, we can define PBIBD from the minimum dominating sets with 2 n points and also n blocks also it is clear that the size of any block is the domination number of C_{n} and for any $\alpha \beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if
α and β appear in zero block and α is second associate of β if α and β appear in $2^{\mathrm{n}-1}$ block with parameters ($2 \mathrm{n}, \mathrm{n}, 0,2^{\mathrm{n}-1}$) and association scheme of 2-classes with
$\mathrm{P}_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 2^{n-1}\end{array}\right]$ and $\mathrm{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1 & 2^{n-1}\end{array}\right]$.
Theorem 3.4. From $C_{3} \circ K_{1}$ we can get PBIBD with parameters $(6,3,0,2)$ and association scheme of
2-classes with $\mathrm{P}_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $\mathrm{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$.
Proof. let $G=(V, E)$ be a corona graph $C_{3} \circ K_{1}$. By labelling $\left\{v_{1}, v_{2}, v_{3}, v_{1}{ }^{1}, v_{2}{ }^{1}, v_{3}{ }^{1}\right\}$ we can define PBIBD as follows:
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}{ }^{1}\right.$, $\left.\mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{3},, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}\right\}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}\right\}$. We define the association scheme as follows, for any $\alpha \beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if α and β appear in a cycle and α is second associate of β if otherwise.
Table 3.

Elements	First Associates	Second Associates
v_{1}	$\mathrm{v}_{2}, \mathrm{v}_{3}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{\mathrm{l}}$
v_{2}	$\mathrm{v}_{1}, \mathrm{v}_{3}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{\mathrm{l}}$
v_{3}	$\mathrm{v}_{1}, \mathrm{v}_{2}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$
$\mathrm{v}_{1}{ }^{1}$	$\mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
$\mathrm{v}_{2}{ }^{1}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
$\mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$

$P_{1}=\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & 3\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$.
Theorem 3.5. From $\mathrm{C}_{4} \circ \mathrm{~K}_{1}$ we can get PBIBD with parameters (8, 4, 0, 4) and association scheme of
2-classes with $\mathrm{P}_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$ and $\mathrm{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right]$.
Proof. let $G=(V, E)$ be a corona graph $C_{4} 。 K_{1}$. By labelling $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{1}{ }^{1}, v_{2}{ }^{1}, v_{3}{ }^{1}, v_{4}{ }^{1}\right\}$ we can define PBIBD as follows:
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}\left\{\mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{1}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}\right\},\left\{\mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{3}{ }^{1}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}\right\}$ and $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}\right\}$. We define the association scheme as follows, for any
$\alpha \beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if α and β appear in cycle and α is second associate of β if otherwise.

Table 4.

Elements	First Associates	Second Associates
V_{1}	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
V_{2}	$\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
V_{3}	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{4}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
V_{4}	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$
$\mathrm{v}_{1}{ }^{1}$	$\mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{v}_{4}$
$\mathrm{v}_{2}{ }^{1}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{3}{ }^{1}, \mathrm{v}_{4}{ }^{1}$	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$
$\mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{4}{ }^{1}$	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$
$\mathrm{v}_{4}{ }^{1}$	$\mathrm{v}_{1}{ }^{1}, \mathrm{v}_{2}{ }^{1}, \mathrm{v}_{3}{ }^{1}$	$\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$
$y_{1}=\left[\begin{array}{ll} 2 & 0 \\ 0 & 4 \end{array}\right]$	$P_{2}=\left[\begin{array}{ll} 0 & \mathbf{3} \\ \mathbf{3} & 0 \end{array}\right]$	

Theorem 3.6. From the previous theorems we can conclude that for any corona graph $C_{n} \circ K_{1}$, where
$\mathrm{k} \geq 3$, we can define PBIBD from the minimum dominating sets with 2 n points and also n blocks also it is clear that the size of any block is the domination number of C_{n} and for any $\alpha \beta \in \mathrm{V}(\mathrm{G})$, α is first associate of β if α and β appear in cycle and α is second associate of β if otherwise with parameters
($2 \mathrm{n}, \mathrm{n}, 0,2^{\mathrm{n}-1}$) and association scheme of 2-classes with
$\mathrm{P}_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{cc}n-2 & 0 \\ 0 & n\end{array}\right]$ and $\mathrm{P}_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{cc}0 & n-1 \\ n-1 & 0\end{array}\right]$.

4. CONCLUSION

We obtain PBIB designs with association schemes which are arising from the minimum dominating sets and then we generalize the results to the graph $\left(\mathrm{C}_{\mathrm{n}}{ }^{\circ} \mathrm{K}_{1}\right)$.

ACKNOWLEDGMENT

I thank the college and UGC for supporting this minor project $\operatorname{MRP}(S)-0154 / 12-$ 13/KAMY008/UGC-SWRO by UGC grants.

REFERENCES

[1]. Anwar Alwardi and N. D. Soner, Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs, International Journal of Mathematical Archive 2(2) (2011), 233-235.
[2]. P. J. Cameron and J . H. Van Lint, Designs, graphs, Codes and their links, vol. 22 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1991.
[3]. F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[4]. V. R. Kulli and S. C. Sigarkanti, Further results on the neighborhood number of a graph. Indian J. Pure and Appl. Math. 23 (8) (1992) 575-577.
[5]. E. Sampathkumar and P. S. Neeralagi, The neighborhood number of a graph, Indian J. Pure and Appl. Math. 16 (2) (1985) 126-132.
[6]. Sharada.B and Soner Nandappa.D, Partially balanced incomplete block designs arising from minimum efficient dominating sets of graph, Bull.Pure Appl.Math Vol.2, No. 1 (2008), 4756.
[7]. Sumathi. M.P and N. D. Soner Association scheme on some cycles related with minimum neighbourhood sets. My Science Vol V(1-2), Jan-Jul (2011), 23-27.
[8]. H. B. Walikar, H. S. Ramane, B. D. Acharya, H. S. Shekhareppa and, S.Arumugum, Partially balanced incomplete block design arising from minimum dominating sets of paths and cycles. AKCE J. Graphs Combin. 4(2) (2007), 223-232.

AUTHOR'S BIOGRAPHY

Dr. Sumathi.M.P. , HOD Department of Mathematics, M.F.G.C, Mysore. My area of interest is Graph Theory with research experience of 7 yrs. I have published my research articles in reputed journals and presented the same in conferences. I am willing to continue my research.

