Some Curious Polynomial Expressions of the Trigonometric Functions

K. Punnamchander
Warangal
johnnysneham@gmail.com

Abstract

It is noted that $\cos (4 n+1) x$ and $\cos (4 n-1) x$ are polynomials of degree $4 n+1$ and $4 n-1$ respectivelyin $\cos x$ only.It is worth noting that $\sin (4 n+1) x i s$ same $(4 n+1)^{\text {th }}$ degree polynomial as cos $(4 n+1) x$ with cos xreplaced by $\sin x$. In contrast to this $\sin (4 n-1) x$ is the same $(4 n-1)^{\text {th }}$ degree polynomial in $\sin x$ with sign reversed. i.e.IfCos $(4 n+1) x=f_{4 n+1}(\cos x)$ then $\operatorname{Sin}(4 n+1) x=f_{4 n+1}(\sin x)$ $\operatorname{Cos}(4 n-1) x=g_{4 n-1}(\cos x)$ then $\operatorname{Sin}(4 n-1) x=-g_{4 n-1}(\sin x)$. The results are proved in two ways: Employing De movire's and Binomial theorems and by using the properties of trigonometric ratios of complimentary angles.

Keywords: Trigonometric polynomials,sin (nx), $\cos (n x)$.

Introduction

For ' n ' a positive integer, $\cos (n x)$ and $\sin (n x)$ can be expressed as polynomials in $\sin x$ and $\cos x$ using Demoivre's and Binomial theorems. In this note a theorem on these polynomials is established.
Theorem Let n be a positive integer,
If $\operatorname{Cos}(4 n+1) x=f_{4 n+1}(\cos x)$ then $\operatorname{Sin}(4 n+1) x=f_{4 n+1}(\sin x)$
If $\operatorname{Cos}(4 n-1) x=g_{4 n-1}(\cos x)$ then $\operatorname{Sin}(4 n-1) x=-g_{4 n-1}(\sin x)$
where $f_{4 n+1}()$ and $g_{4 n-1}()$ are polynomials of degrees ($4 \mathrm{n}+1$) and ($4 \mathrm{n}-1$) respectively.
The results (I) and (II) are established in two diffent ways.

(I) Proof employing De moire's and Binomials:-

When n is a positive integer ,by De moivre's theorem
$\operatorname{Cosn} x+i \operatorname{Sinn} x=e^{i n x}=(\operatorname{Cos} x+i \operatorname{Sin} x)^{n}$, where $i=\sqrt{-1}$
Consider
$\operatorname{Cos}(4 n+1) x+i \operatorname{Sin}(4 n+1) x=e^{i(4 n+1) x}=(\operatorname{Cos} x+i \operatorname{Sin} x)^{4 n+1}$
Expanding the R.H.S of (1) employing Binomial theorem
$\operatorname{Cos}(4 n+1) x+i \operatorname{Sin}(4 n+1) x$

$$
=\left\{\begin{array}{l}
\left(\cos ^{4 n+1} x\right)-\binom{4 n+1}{2}\left(\cos ^{4 n-1} x\right)\left(\sin ^{2} x\right)+\binom{4 n+1}{4}\left(\cos ^{4 n-3} x\right)\left(\sin ^{4} x\right)-\binom{4 n+1}{6}\left(\cos ^{4 n-5} x\right)\left(\sin ^{6} x\right)+\ldots \ldots . \\
+\binom{4 n+1}{4 n} \cos x\left(\sin ^{4 n} x\right)
\end{array}\right\}+i
$$

K. Punnamchander

$$
\left\{\begin{array}{l}
\binom{4 n+1}{1}\left(\cos ^{4 n} x\right) \sin x-\binom{4 n+1}{3}\left(\cos ^{4 n-2} x\right)\left(\sin ^{3} x\right)+\binom{4 n+1}{5}\left(\cos ^{4 n-4} x\right)\left(\sin ^{5} x\right)-\ldots \ldots \ldots \ldots \ldots . . \tag{2}\\
+\binom{4 n+1}{4 n+1}\left(\sin ^{4 n-1} x\right)
\end{array}\right\}
$$

Equating real and imaginary parts on both sides of (2), we get
$\operatorname{Cos}(4 n+1)=$
$\left.\left\{\left(\cos ^{4 n+1} x\right)-\binom{4 n+1}{2}\left(\cos ^{4 n-1} x\right) \sin ^{2} x\right)+\binom{4 n+1}{4}\left(\cos ^{4 n-3} x\right)\left(\sin ^{4} x\right)-\binom{4 n+1}{6}\left(\cos ^{4 n-5} x\right)\left(\sin ^{6} x\right)+\ldots .+\binom{4 n+1}{4 n} \cos x\left(\sin ^{4 n} x\right)\right\}$
and
$\operatorname{Sin}(4 n+1) x=\left\{\begin{array}{l}\binom{4 n+1}{1}\left(\cos ^{4 n} x\right)(\sin x)-\binom{4 n+1}{3}\left(\cos ^{4 n-2} x\right)\left(\sin ^{3} x\right)+\ldots \ldots . . \\ \binom{4 n+1}{4 n-1}\left(\cos ^{2} x\right)\left(\sin ^{4 n-1} x\right)+\left(\sin ^{4 n+1} x\right)\end{array}\right\}$
Now the expression on the R.H.S of (3) can be written as
$\operatorname{Cos}(4 n+1) x=\left(\cos ^{4 n+1} x\right)-\binom{4 n+1}{2}\left(\cos ^{4 n-1} x\right)\left(1-\cos ^{2} x\right)+\binom{4 n+1}{4}\left(\cos ^{4 n-3} x\right)\left(1-\cos ^{2} x\right)^{2}-$

$$
\begin{align*}
& \binom{4 n+1}{6}\left(\cos ^{4 n-5} x\right)\left(1-\cos ^{2} x\right)^{3} \\
& \ldots \ldots .+(-1)^{p}\binom{4 n+1}{2 p}\left(\cos ^{4 n-2 p+1} x\right)\left(1-\cos ^{2} x\right)^{p}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .\binom{4 n+1}{4 n}(\cos x)\left(1-\cos ^{2} x\right)^{2 n} \\
& =\sum_{p=0}^{2 n}(-1)^{p}\binom{4 n+1}{2 p}(\cos x)^{4 n-2 p+1}\left(1-\cos ^{2} x\right)^{p}=f_{4 n+1}(\cos x) \ldots(\text { say }) \tag{5}
\end{align*}
$$

Also, writing the expression on the R.H.S of expression (4) in the reverse order, we get
$\operatorname{Sin}(4 n+1) x=$
$\left(\sin ^{4 n+1} x\right)-\binom{4 n+1}{4 n-1}\left(1-\sin ^{2} x\right)\left(\sin ^{4 n-1} x\right)+\ldots .+(-1)^{p}\binom{4 n+1}{2 p+1}\left(1-\sin ^{2} x\right)^{2 n-p}\left(\sin ^{2 p+1} x\right)$
............. $-\binom{4 n+1}{3}\left(1-\sin ^{2} x\right)^{2 n-1}\left(\sin ^{3} x\right)+\binom{4 n+1}{1}\left(1-\sin ^{2} x\right)^{2 n}(\sin x)$
Noting that

$$
\binom{4 n+1}{2 k}=\binom{4 n+1}{(4 n+1)-2 k} \text {, for } k=0,1,2, \ldots \ldots \ldots, 2 n
$$

Then, the expression on the R.H.S of (6) can be rewritten as
$\operatorname{Sin}(4 n+1) x=$
$\left(\sin ^{4 n+1} x\right)-\binom{4 n+1}{2}\left(1-\sin ^{2} x\right)\left(\sin ^{4 n-1} x\right)+\ldots .+(-1)^{p}\binom{4 n+1}{2 p}\left(1-\sin ^{2} x\right)^{2 n-p}\left(\sin ^{2 p+1} x\right)$

Some Curious Polynomial Expressions of the Trigonometric Functions

$$
\begin{align*}
& \ldots \ldots \ldots \ldots \ldots-\binom{4 n+1}{4 n-2}\left(1-\sin ^{2} x\right)^{2 n-1}\left(\sin ^{3} x\right)+\binom{4 n+1}{4 n}\left(1-\sin ^{2} x\right)^{2 n}(\sin x) \\
& =\sum_{p=0}^{2 n}(-1)^{p}\binom{4 n+1}{2 p}(\sin x)^{4 n-2 p+1}\left(1-\sin ^{2} x\right)^{p} \tag{7}
\end{align*}
$$

Thisexpression is the same as expression on the R.H.S of (5) with $\cos x$ replaced by $\sin x$.
we thus have
$\operatorname{Sin}(4 n+1) x=f_{4 n+1}(\sin x)$
Hence the result : If $\operatorname{Cos}(4 n+1)=f_{4 n+1}(\cos x)$ then $\operatorname{Sin}(4 n+1) x=f_{4 n+1}(\sin x)$

To establish the result (II)

Again consider
$\operatorname{Cos}(4 n-1) x+i \operatorname{Sin}(4 n-1) x=(\cos x+i \sin x)^{4 n-1}$
Expandingthe R.H.S of (8) employing Binomial theorem and equating real and imaginary parts on both sides, we get
$\operatorname{Cos}(4 n-1)=$
$\cos ^{4 n-1} x-\binom{4 n-1}{2}\left(\cos ^{4 n-3} x\right)\left(\sin ^{2} x\right)+\binom{4 n-1}{4}\left(\cos ^{4 n-5} x\right)\left(\sin ^{4} x\right)$

$=\sum_{p=0}^{2 n}(-1)^{p}\binom{4 n+1}{2 q}(\cos x)^{4 n-2 q-1}\left(1-\cos ^{2} x\right)^{q}=g_{4 n-1}(\cos x) \ldots .($ say $)$
And
$\operatorname{Sin}(4 n-1) x=$
$\binom{4 n-1}{1}\left(\cos ^{4 n-2} x\right)(\sin x)-\binom{4 n-1}{3}\left(\cos ^{4 n-4} x\right)\left(\sin ^{3} x\right)+\binom{4 n-1}{5}\left(\cos ^{4 n-6} x\right)\left(\sin ^{5} x\right)$
$\ldots \ldots .+(-1)^{q}\binom{4 n-1}{2 q+1}\left(\cos ^{4 n-2 q-2} x\right)\left(\sin ^{2 q+1} x\right) \ldots \ldots \ldots . .+\binom{4 n-1}{4 n-3}\left(\cos ^{2} x\right)\left(\sin ^{4 n-3} x\right)-\left(\sin ^{4 n-1} x\right)$
By rewriting the R.H.S of the above in the reverse order and noting that
$\binom{4 n-1}{2 k}=\binom{4 n-1}{(4 n-1)-2 k}, k=0,1,2,3, \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
We note that
$\operatorname{Sin}(4 n-1) x=$
$-\left(\sin ^{4 n-1} x\right)-\binom{4 n-1}{4 n-3}\left(\cos ^{2} x\right)\left(\sin ^{4 n-3} x\right)+\ldots \ldots . .+(-1)^{q}\binom{4 n-1}{2 q+1}\left(\cos ^{4 n-2 q-2} x\right)\left(\sin ^{2 q+1} x\right)$.
$\ldots . .-\binom{4 n-1}{5}\left(\cos ^{4 n-6} x\right)\left(\sin ^{5} x\right)+\binom{4 n-1}{3}\left(\cos ^{4 n-4} x\right)(\sin x)^{3}-\binom{4 n-1}{1}\left(\cos ^{4 n-2} x\right)(\sin x)$

K. Punnamchander

$$
\begin{equation*}
=-\sum_{q=0}^{2 n-1}(-1)^{q}\binom{4 n+1}{2 q}(\sin x)^{4 n-2 q-1}\left(1-\sin ^{2} x\right)^{q}=-g_{4 n-1}(\sin x) \tag{10}
\end{equation*}
$$

The expression (10) for $\sin (4 n-1) x$ is same as the expression (9) with $\cos x$ with replaced by $\sin x$ but for thea change in sign ..i.eSin $(4 n+1) x=-g_{4 n-1}(\sin x)$.

Hence the result : If $\operatorname{Cos}(4 n-1) x=g_{4 n-1}(\cos x)$ then $\sin (4 n-1) x=-g_{4 n-1}(\sin x)$
(II) Proof employing the trigonometric properties of complimentary angels.
i) $\quad \operatorname{Sin}\{(4 n+1) x\}=\operatorname{Sin}\left\{(4 n+1)\left(\frac{\pi}{2}-y\right)\right\}$ where $\mathrm{x}=\frac{\pi}{2}-y$

$$
=\operatorname{Sin}\left\{(2 n \pi+1)+\left(\frac{\pi}{2}-(4 n+1) y\right)\right\}
$$

$$
=\operatorname{Sin}\left\{\frac{\pi}{2}-(4 n+1) y\right\}
$$

$$
=\operatorname{Cos}(4 n+1) y=f_{4 n+1}(\cos y)
$$

$$
=f_{4 n+1}\left(\cos \left(\frac{\pi}{2}-y\right)\right)
$$

$$
=f_{4 n+1}(\sin x)
$$

ii) Similarly

$$
\begin{aligned}
\operatorname{Sin}\{(4 n-1) x\} & =\operatorname{Sin}\left\{(4 n-1)\left(\frac{\pi}{2}-y\right)\right\} \\
& =\operatorname{Sin}\left\{2 n \pi-\frac{\pi}{2}-(4 n-1) y\right\} \\
& =\operatorname{Sin}\left\{-\frac{\pi}{2}-(4 n-1) y\right\} \\
= & \operatorname{Sin}\left\{\frac{\pi}{2}+(4 n-1) y\right\} \\
= & \operatorname{Cos}(4 n-1) y \\
= & -g_{4 n-1}(\cos y) \\
= & -g_{4 n-1}\left(\cos \left(\frac{\pi}{2}-x\right)\right) \\
= & -g_{4 n-1}(\sin x) .
\end{aligned}
$$

Conclusion

The following results are proved in two ways: Employing De movire's and Binomial theorems and by using the properties of trigonometric ratios of complimentary angles.
i.e. If $\operatorname{Cos}(4 n+1) x=f_{4 n+1}(\cos x)$ then $\operatorname{Sin}(4 n+1) x=f_{4 n+1}(\sin x)$
$\operatorname{Cos}(4 n-1) x=g_{4 n-1}(\cos x)$ then $\operatorname{Sin}(4 n-1) x=-g_{4 n-1}(\sin x)$.

Acknowledgment

The author acknowledges with thanks Prof .N.Ch.PattabhiRamacharyulu (Retd),Professor ,NIT Warangal for suggesting the problem and his guidance in preparing this paper.

References

[1]. Bernad. S and Child. J.M: Higher Higheralgebra,AITBS publishers in 2006 page no. 61.
[2]. Ross Honsenberger: Mathematical morsels (Dolciani Mathematical Expostions) No. 3 (1978) problem no. 10 ,page no. 18 .

