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1. INTRODUCTION 

Let ( )n  be sequence of positive real number, let na  be a given infinite series with partial sums 

( )ns  and ( )nt  denote the n-th Cesaro means of the sequence ( )nna . Then the series na is said 

to be summable | ,1| , 1kC k   if (Flett [3]). 
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and it is said to be summable | ,1| , 1kC k    if (Seyhan [6]). 
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If we are taking , | ,1|n kn C   -summability reduces to | ,1|kC -summability. 

Let ( )np  be a sequence of positive numbers such that 
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The sequence to sequence transformation 
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defines the sequence ( )nu  of the ( , )nN p  mean of the sequences ( )ns  generated by the sequence 

of coefficients ( )np  (Hardy [4]). 

The series na  is said to be summable | , | , 1n kN p k   if (Bor [1]) 
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and it is said to summable | , , | , 1n kN p k   an d 0   if (Bor [2]) 
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where 
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and na  is said to summable | , , , | , 1, 0n kN p k     and 1    if 
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and it is said to summable | , , , | , 1, 0, 1n kN p k          
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If n
n

n

P

p
   then | , , |n kN p   -summability reduces to | , , , |n kN p   -summability and if 

n n O    and 1   then | , , , |n kN p   -summability reduces to | ,1|kC -summability. 

2. KNOWN RESULTS 

Concerning | ,1|kC -summability, Mazhar [5] has proved the following theorem. 

Theorem 2.1  

If      d (1)m O  , as m                                                                                                     (2.1) 
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then the series n na   is summable | ,1| , 1kC k  . 

And Sulaiman (7) has proved the following theorem. 

Theorem 2.2 Let ( )n  and ( )nX  be sequences of positive real numbers such that ( )nX  is non 

decreasing and condition (2.1) is satisfied  

If      ( ), ( )n n n nnp O P P O np  , as n                                                      (2.4) 

1 ( )n nO                                                                                                                                 (2.5) 

1( )n nO n    as n        (2.6) 
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then the series n n na    is summable | , | , 1n kN p k  . 

3. MAIN RESULTS 

The aim of this paper is to generalize the theorem (2.2), here I have proved the following theorem. 

Theorem 3.1 Let ( )n  and ( )nX  be sequences of positive real numbers such that ( )nX  is non 

decreasing and if the conditions (2.1), (2.4), (2.5), (2.6), (2.7) are satisfied. 
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Then the series n n na    is summable | , , , | , 1, 1n kN p k       and 0  . 

4. LEMMA  

To prove the above theorem following Lemma is required. 

Lemma 4.1 Sulaiman [7] The conditions (2.1) and (2.7) implies. 
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5. PROOF OF THE THEOREM 3.1 

Let nT  be the ( , )nN p  mean of the series
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Using Abeles transformation, we have 
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Since 
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In order to complete the proof, it is sufficient to show that  
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Applying Hölders inequality, we have 
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This completes the proof of the theorem. 

6. COROLLARY 

This theorem have the following results as corollaries. 

Corollary 6.1 

If we are taking n

n

P

p
   then the infinite series n n na    is | , , , |n kN p   -summable 

0, 1    and 1.k    

Corollary 6.2 

If we are taking 0, 1    then the infinite series n n na    is | , |n kN p -summable, 1k  . 

Corollary 6.3 

If we are taking 0, 1, n

n

P

p
      then the infinite series n n na    is | , |n kN p -summable 

1k  . 

Corollary 6.4 

If we are taking n   then the infinite series. n n na    is | ,1, , |kC   -summable 0, 1     

and 1.k    

Corollary 6.5 

If we are taking n  , 0, 1    then the infinite series n n na    is | ,1|kC -summable, 

1.k   
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7. CONCLUSION 

The results of this theorem is more general rather than the results of any other previous proved 

theorem, which will be enrich the literate of  summability theory of infinite series. 
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