Total coloring of $\boldsymbol{S}(\boldsymbol{n}, m)$-graph

Dr.S. Sudha
Professor
Ramanujan Institute
for Advanced study in Mathematics
University of Madras
Chennai, India.
ssudha50@sify.com

K. Manikandan
Research Scholar
Ramanujan Institute
for Advanced study in Mathematics
University of Madras
Chennai, India.
kmanimaths1987@gmail.com

Abstract

In this paper, we have defined a new graph called $S(n, m)$-graph for evenn $\geq 2 m+2$ and for odd $m>1$ and found the lower and upper bound for the total chromatic number of $S(n, m)$-graphs. We have also found the total chromatic number ofS $(n, 2)$ for all $n \geq 6$ and $S(n, 3)$ for odd $n \geq 7$.

Keywords: Total Coloring, $S(n, m)$-graphs

1. Introduction

For the past three decades many researchers have worked on total coloring of graphs. Borodin [1] has discussed the total coloring of graphs. Sudha and K.Manikandan [3] have discussed the total coloring and (k, d)-total coloring of prisms Y_{n}. Prisms Y_{n} with $2 n$ nodes are characterized as generalized Peteresen graphs $P(n, 1)$. H.P.Yap [4] also has defined and discussed the total coloring of graphs. We have defined a new graph $S(n, m), n \geq 2 m+2, m \geq$ 3and the definition follows:
The graph $S(n, m)$ consists of n vertices denoted as $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. The edges are defined as follows:
(i) v_{i} is adjacent to v_{i+m} and v_{n} is adjacent to v_{1}
(ii) v_{i} is adjacent to v_{i+m} if $i+m<n$
(iii) v_{i} is adjacent to v_{i+n-m} if $i+m \geq n$.

This graph is a quartic graph and it is both Eulerian and Hamiltonian. The concept of this type of a new graph was introduced by S.Sudha.

Definition 1: A total coloring is a coloring on the vertices and edges of a graph such that
(i) no two adjacent vertices have the same color
(ii) no two adjacent edges have the same color
(iii) no edge and its end vertices are assigned with the same color.

In this paper, we have considered the graph $\mathrm{S}(\mathrm{n}, \mathrm{m})$ and obtained the upper and lower bound for the total chromatic number.

2. Total Coloring of $S(n, m)$-Graphs

Theorem 1: The total-chromatic number $\chi_{t c}(S(n, m))$ is 6 for $n \geq 2 m+2$ and odd $m \geq 3$.
Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\{\mathrm{n}-1\}}, \mathrm{v}_{\mathrm{n}}$ be the vertices of the graph $\mathrm{S}(\mathrm{n}, \mathrm{m})$ and its edges are defined as
(i) v_{i} is adjacent to v_{i+m} and v_{n} is adjacent to v_{1}
(ii) v_{i} is adjacent to v_{i+m} if $i+m<n$
(iii) v_{i} is adjacent to v_{i+n-m} if $i+m \geq n$.

Let the coloring set of $S(n, m)$ be the set $\{1,2,3, \ldots\}$.
We define the function f_{1} from $V(S(n, m))$ to the set $\{1,2,3, \ldots\}$ as follows:
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}}\right)= \begin{cases}1, & \mathrm{i}-\text { odd, } 1 \leq \mathrm{i} \leq \mathrm{n} \\ 2, & \mathrm{i}-\text { even, } 1 \leq \mathrm{i} \leq \mathrm{n}\end{cases}$
We define the function f_{2} from $\mathrm{E}(\mathrm{S}(\mathrm{n}, \mathrm{m}))$ to the set $\{1,2,3, \ldots\}$ as follows:
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}3, & i-\text { odd, } 1 \leq i \leq n-1 \\ 4, & i-\text { even, } 1 \leq i \leq n-1\end{cases}$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=4$
$f_{2}\left(v_{i} v_{i+m}\right)= \begin{cases}5, & i-\text { odd, } 1 \leq i \leq n-m \\ 6, & i-\text { even, } 1 \leq i \leq n-m\end{cases}$
$f_{2}\left(v_{i} v_{i+n-m}\right)= \begin{cases}5, & i-\text { even, } 1 \leq i \leq m \\ 6, & i-\text { odd, } 1 \leq i \leq m\end{cases}$
By using the above pattern of coloring, the graph $\mathrm{S}(\mathrm{n}, \mathrm{m})$ admit total coloring. The total-chromatic number for $\mathrm{S}(\mathrm{n}, \mathrm{m}), \chi \operatorname{tc}(\mathrm{S}(\mathrm{n}, \mathrm{m}))=6$.

Illustration 1:

Figure 1. $S(12,5)$
The graph $S(12,5)$ consists of 12 vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}, \mathrm{v}_{11}, \mathrm{v}_{12}$ which are assigned with the colors 1,2,1,2,1,2,1,2,1,2,1,2 respectively. The outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}, v_{6} v_{7}, v_{7} v_{8}, v_{8} v_{9}, v_{9} v_{10}, v_{10} v_{11}, v_{11} v_{12}$ and $v_{12} v_{11}$, $\mathrm{v}_{11} \mathrm{v}_{4}, \mathrm{v}_{4} \mathrm{v}_{9}, \mathrm{v}_{9} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{7}, \mathrm{v}_{7} \mathrm{v}_{12}, \mathrm{v}_{12} \mathrm{v}_{5}, \mathrm{v}_{5} \mathrm{v}_{10}, \mathrm{v}_{10} \mathrm{v}_{3}$, are assigned colors $3,4,3,4,3,4,3,4,3,4,3,4$ and theinner edges $\mathrm{v}_{1} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{11}, \mathrm{v}_{3} \mathrm{v}_{8}, \mathrm{v}_{3} \mathrm{v}_{8}$ are assigned with colors $5,6,5,6,5,6,5,6,5,6,5,6$ respectively. The total-chromatic number ofS $(12,5), \chi_{\text {tc }}(S(12,5))=6$.

Theorem 2: The total-chromatic number $\chi_{\mathrm{tc}}(\mathrm{S}(\mathrm{n}, 2))(\mathrm{n} \geq 6)$ is 5 for $\mathrm{n} \equiv 0(\bmod 6)$ andis 6 for $\mathrm{n} \not \equiv \mathrm{O}(\bmod 6)$.
Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\{\mathrm{n}-1\}}, \mathrm{v}_{\mathrm{n}}$ be the vertices of the graph $\mathrm{S}(\mathrm{n}, 2)$ and its edges be denoted by $\left(v_{i} v_{i+1}\right),\left(v_{i} v_{i+2}\right),\left(v_{i} v_{i+n-2}\right)$ for $i=1,2,3, \ldots$ and $\left(v_{n} v_{1}\right)$.
Let f_{1} be a function that maps $V(S(n, 2))$ to the set $\{1,2,3, \ldots\}$ and f_{2} be a function that maps $E(S(n, 2))$ to the set $\{1,2,3, \ldots\}$ in such a way that f_{1} and f_{2} satisfy the condition of total coloring.
There are six cases:
(i) $\mathrm{n} \equiv 0(\bmod 6)$
(ii) $\mathrm{n} \equiv 2(\bmod 6)$
(iii) $n \equiv 4(\bmod 6)$
(iv) $n \equiv 1(\bmod 6)$
(v) $n \equiv 3(\bmod 6)$
(vi) $\mathrm{n} \equiv 5(\bmod 6)$

Case (i): Let $\mathrm{n} \equiv 0(\bmod 6)$
$f_{1}\left(v_{i}\right)= \begin{cases}1, & \text { foralli } \equiv 1(\bmod 3), 1 \leq i \leq n \\ 2, & \text { foralli } \equiv 2(\bmod 3), 1 \leq i \leq n \\ 3, & \text { foralli } \equiv 0(\bmod 3), 1 \leq i \leq n\end{cases}$
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}4, & i-\text { odd, } 1 \leq i \leq n-1 \\ 5, & i-\text { even, } 1 \leq i \leq n-1\end{cases}$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)=2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+2}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}+1}\right), 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)$
By using the above pattern, the graph $S(n, 2)$ for $n \equiv 0(\bmod 6)$ admit total coloring.
The total-chromatic number of $S(n, 2), \chi_{t c}(S(n, 2))=5$.
Case (ii):Let $n \equiv 2(\bmod 6)$
$f_{1}\left(v_{i}\right)= \begin{cases}1, & \text { foralli } \equiv 1(\bmod 3), 1 \leq i \leq n-2 \\ 2, & \text { foralli } \equiv 2(\bmod 3), 1 \leq i \leq n-2 \\ 3, & \text { foralli } \equiv 0(\bmod 3), 1 \leq i \leq n-2\end{cases}$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}-1}\right)=4$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)=5$
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}6, & i-\text { odd, } 1 \leq i \leq n-3 \\ 5, & i-\text { even, } 1 \leq i \leq n-3\end{cases}$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-2} \mathrm{v}_{\mathrm{n}-1}\right)=1$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)=2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=3$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+2}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}+1}\right), 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)$
By using the above pattern, the graph $S(n, 2)$ admit total coloring.
The total-chromatic number of $S(n, 2), \chi_{t c}(S(n, 2))=6$.
Case(iii): Let $n \equiv 4(\bmod 6)$
$f_{1}\left(v_{i}\right)= \begin{cases}1, & \text { foralli } \equiv 1(\bmod 3), 1 \leq i \leq n-1 \\ 2, & \text { foralli } \equiv 2(\bmod 3), 1 \leq i \leq n-1 \\ 3, & \text { foralli } \equiv 0(\bmod 3), 1 \leq i \leq n-1\end{cases}$
$f_{1}\left(v_{n}\right)=4$
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}5, & i-\text { odd, } 1 \leq i \leq n-1 \\ 6, & i-\text { even, } 1 \leq i \leq n-1\end{cases}$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=6$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+2}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}+1}\right), 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)$

By using the above pattern, the graph $\mathrm{S}(\mathrm{n}, 2)$ admit total coloring.
The total-chromatic number of $S(n, 2), \chi_{t c}(S(n, 2))=6$.
Case (iv): Let $\mathrm{n} \equiv 1(\bmod 6)$
$f_{1}\left(v_{i}\right)= \begin{cases}1, & \text { for all } i \equiv 1(\bmod 3), 1 \leq i \leq n-1 \\ 2, & \text { for all } i \equiv 2(\bmod 3), 1 \leq i \leq n-1 \\ 3, & \text { for all } i \equiv 0(\bmod 3), 1 \leq i \leq n-1\end{cases}$
$f_{1}\left(v_{n}\right)=4$
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}5, & i-\text { odd, } 3 \leq i \leq n-2 \\ 6, & i-\text { even, } 4 \leq i \leq n-1\end{cases}$
$\mathrm{f}_{2}\left(v_{1} v_{2}\right)=6$
$f_{2}\left(v_{2} v_{3}\right)=4$
$f_{2}\left(v_{n} v_{1}\right)=5$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+2}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}+1}\right), 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)$
By using the above pattern, the graph $S(n, 2)$ admit total coloring.
The total-chromatic number of $S(n, 2), \chi_{t c}(S(n, 2))=6$.
Case(v): Let $n \equiv 3(\bmod 6)$
$f_{1}\left(v_{i}\right)= \begin{cases}1, & \text { for all } i \equiv 1(\bmod 3), 1 \leq i \leq n-1 \\ 2, & \text { for all } i \equiv 2(\bmod 3), 1 \leq i \leq n-1 \\ 3, & \text { for all } i \equiv 0(\bmod 3), 1 \leq i \leq n-1\end{cases}$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)=6$
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}4, & i-\text { odd, } 1 \leq i \leq n-1 \\ 5, & i-\text { even, } 1 \leq i \leq n-1\end{cases}$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=6$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+2}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}+1}\right), 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)$
By using the above pattern, the graph $S(n, 2)$ admit total coloring.
The total-chromatic number of $S(n, 2), \chi_{t c}(S(n, 2))=6$.
Case(vi): Let $n \equiv 5(\bmod 6)$
$f_{1}\left(v_{i}\right)=\left\{\begin{array}{l}1, \text { for all } i \equiv 1(\bmod 3), 1 \leq i \leq n-2 \\ 2, \text { for all } i \equiv 2(\bmod 3), 1 \leq i \leq n-2 \\ 3, \text { for all } i \equiv 0(\bmod 3), 1 \leq i \leq n-2\end{array}\right.$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}-1}\right)=4$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)=5$
$f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}6, & i-\text { odd, } 1 \leq i \leq n-2 \\ 5, & i-\text { even, } 1 \leq i \leq n-2\end{cases}$
$f_{2}\left(v_{n-1} v_{n}\right)=2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=3$
$\mathrm{f}_{2}\left(\mathrm{~V}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+2}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}+1}\right), 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right)=\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)$

By using the above pattern, the graph $S(n, 2)$ admit total coloring.
The total-chromatic number of $S(n, 2), \chi_{t c}(S(n, 2))=6$.

Illustration2:

Figure 2. $S(8.2)$
The graph $S(8,2)$ consists of 8 vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}$ which are assigned with the colors $1,2,3,1,2,3,4,5$ respectively. The outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}, v_{6} v_{7}, v_{7} v_{8}$ and $v_{8} v_{1}$ are assigned with colors $6,5,6,5,6,1,2,3$ and the inner edges $\mathrm{v}_{1} \mathrm{v}_{3}, \mathrm{v}_{3} \mathrm{v}_{5}, \mathrm{v}_{5} \mathrm{v}_{7}, \mathrm{v}_{7} \mathrm{v}_{1}, \mathrm{v}_{2} \mathrm{v}_{4}, \mathrm{v}_{4} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{8}, \mathrm{v}_{8} \mathrm{v}_{2}$ are assigned with colors $2,1,3,5,3,2,4,1$ respectively. The total-chromatic number of $S(8,2), \chi_{t c}(S(8,2))=6$.
Theorem 3: The total-chromatic number $\left(\chi_{t c}(S(n, 3))\right.$ is 7 for $n \equiv 0(\bmod 6)$ and is 6 for $n \not \equiv 0(\bmod 6)$.

Proof: Let $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$ be the vertices of the graph $S(n, 3)$ and its edges be denoted by $\left(\mathrm{v}_{\mathrm{i}} v_{i+1}\right),\left(v_{i} v_{i+2}\right),\left(v_{i} v_{i+n-2}\right)$ for $i=1,2,3, \ldots$ and $\left(v_{n} v_{1}\right)$.

Let f_{1} be a function that maps $V(S(n, 3))$ to the set $\{1,2,3, \ldots\}$ and f_{2} be a function that maps $E(S(n, 3))$ to the set $\{1,2,3, \ldots\}$ in such a way that f_{1} and f_{2} satisfy the condition of total coloring.
Case(i): For odd $n \geq 7$ and $n \not \equiv 0(\bmod 3)$
$f_{1}\left(v_{i}\right)= \begin{cases}1, & \text { for all } 1 \leq i \leq n-4, i-\text { odd } \\ 2, & \text { for all } 1 \leq i \leq n-3, i-\text { even } \\ 3, & \text { for all } i=n-2, n\end{cases}$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}-1}\right)=4$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}3, \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}-4, \mathrm{i}-\text { odd } \\ 4, \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}-3, \mathrm{i}-\text { even }\end{array}\right.$
$f_{2}\left(v_{n-2} v_{n-1}\right)=2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)=1$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=2$
The edges of the form $f_{2}\left(v_{i} v_{i+3}\right)$ for $i=1,2,3, \ldots,(n-3)$. Takes the coloring pattern as 5,6,5,6, ... 5,6.

The last three of the edges are colored given below.
$f_{2}\left(v_{n-8} v_{n-5}\right)=5$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-5} \mathrm{v}_{\mathrm{n}-2}\right)=1$
$f_{2}\left(v_{n-2} v_{1}\right)=6$
By using the above pattern, the graph $S(n, 3)$ admit total coloring.

The total-chromatic number of $S(n, 3), \chi_{t c}(S(n, 3))=6$.
Case(ii): For odd $n \geq 9$ andn $\equiv 0(\bmod 3)$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}4, \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}-4, \mathrm{i}-\text { odd } \\ 5, \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}-3, \mathrm{i}-\text { even }\end{array}\right.$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}-2}\right)=3$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}-1}\right)=4$
$\mathrm{f}_{1}\left(\mathrm{v}_{\mathrm{n}}\right)=3$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}3, \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}-4, \mathrm{i}-\text { odd, } 1 \leq \mathrm{i} \leq \mathrm{n}-3 \\ 5, \text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}-3, \mathrm{i}-\text { even, } 1 \leq \mathrm{i} \leq \mathrm{n}-3\end{array}\right.$
$f_{2}\left(v_{n-2} v_{n-1}\right)=2$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)=1$
$\mathrm{f}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)=2$
$f_{2}\left(v_{i} v_{i+3}\right)= \begin{cases}5, & i-\text { odd, } 1 \leq i \leq n-3 \\ 6, & i-\text { even, } 1 \leq i \leq n-3\end{cases}$
$f_{2}\left(v_{i} v_{i+n-3}\right)=7,1 \leq i \leq 3$.
Now with this type of coloring, the graph $\mathrm{S}(\mathrm{n}, 3)$ is total coloring.
The total-chromatic number of $S(n, 3), \chi_{t c}(S(n, 3))=6$.

Illustration 3:

Figure3. $S(11,3)$
The graph $S(11,3)$ consists of 11 vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}$ which are assigned with the colors $1,2,1,2,1,2,1,2,3,4,3$ respectively. The outer edges $\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{3}, \mathrm{v}_{3} \mathrm{v}_{4}, \mathrm{v}_{4} \mathrm{v}_{5}, \mathrm{v}_{5} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{7}, \mathrm{v}_{7} \mathrm{v}_{8}, \mathrm{v}_{8} \mathrm{v}_{9}, \mathrm{v}_{9} \mathrm{v}_{10}, \mathrm{v}_{10} \mathrm{v}_{11}$ and $\mathrm{v}_{11} \mathrm{v}_{1}$ are assigned with colors $3,4,3,4,3,4,3,4,2,1,2$ and the inner edges $\mathrm{v}_{1} \mathrm{v}_{4}, \mathrm{v}_{4} \mathrm{v}_{7}, \mathrm{v}_{7} \mathrm{v}_{10}, \mathrm{v}_{10} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{5}, \mathrm{v}_{5} \mathrm{v}_{8}, \mathrm{v}_{8} \mathrm{v}_{11}, \mathrm{v}_{11} \mathrm{v}_{3}, \mathrm{v}_{3} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{9}, \mathrm{v}_{9} \mathrm{v}_{1}$ are assigned with colors $5,6,5,6,5,6,5,6,5,1,6$ respectively. The total-chromatic number of $S(11,3), \chi_{\mathrm{tc}}(\square(11,3))=6$.

3. CONCLUSION

We have found that the lower and upper bound for the total chromatic number of $S(n, m)$, in general, satisfies $5 \leq \chi_{\mathrm{tc}}(\mathrm{S}(\mathrm{n}, \mathrm{m})) \leq 7$. The total-chromatic number for $\mathrm{S}(\mathrm{n}, \mathrm{m})$ when m takes the value 2 and 3 are also discussed.

REFERENCES

[1] O. V. Borodin, "The star coloring of graphs", Discrete Math., 25; 211-236, 1979.
[2] J. A. Bondy, U.S.R. Murty, "Graph theory with applications", 1982.
[3] H. P. Yap, "Total colorings of Graphs", Lectures Notes in Mathematics 1623, SpringerVerlag, Berlin(1996).
[4] Andrea hackmann And Arnfriedkhemnitz "Circular Total Coloring of Graphs"
[5] S.Sudha and K. Manikandan, "Total coloring and (k, d)-total coloring of prisms", accepted for publication (2013).

Authors' Biography

Dr.S.Sudha has got her Ph.D., in 1984. She has got 35 yearsof teaching and research experience. She is currently working as a Professor in Mathematics at the Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005. Her fields of interest are Computational Fluid Dynamics, Graph Theory, Fuzzy Graphs and Queueing Theory. She has published more than 25 articles in journals. She has also published some books.

K.Manikandan is a Ph.D. Research scholar atRamanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600005.He has published one article in a journal.

