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1. INTRODUCTION 

Let na be a given infinite series with sequence of its nth partial sums { }ns . Let { }np be a 

sequences of non-negative, non increasing real constants such that 
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For a positive real sequence { }nq q , we define an increasing sequence { }nr  such that 
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denotes the convolution product where 
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The sequence-to-sequence transformation 
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defences the sequence { }nt  of the | , , |n nN p q - mean of the sequence { }ns , (Borwein [2]). 

If nt s as n  , then the series na  is said to be | , , |n nN p q -summable to s . 

Again let na  be a given infinite series with partial sum { }ns  and 
,

nt
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th
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mean of order ( , )   with 1     of the sequence { }ns
 
such that, 
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where O( )nA n       and 
0 1A   .  

If 
,

nt s   as n  . Then the series na  is said to be ( , , )C    summable to s . The product 

of ( , , )n nN p q -summability with ( , , )C   -summability defines ( , , )n nN p q ( , , )C    

summability and denoted by
,

pq nN C 
 and 

If     
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    as n                                     (1.6) 

Then the series na  is said to summable to s  by ( , , )( , , )n nN p q C   -summability method. 

In the case when 1  and 1nq  n N  , then the method ( , , )( , , )n nN p q C    reduces to 

( , )nN p ( , )C  and if 1np n N    and, 1   then the method ( , , )n nN p q  reduces to 

( , )( , )nN q C   method. it is known ( , , )n nN p q  and ( , , )C    methods are regular (Hardy [3]). 

It is suppose that ( , , )( , , )n nN p q c    is regular throughout this paper. 

Let ( )f t  be a periodic function with period 2 , integrable in the sence of Lebesgue over 

( , )   then 
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Is the Fourier series associated with f . 

We use the following notation throughout this paper. 

( ) ( ) ( ) 2 ( )t f x t f x t f x       
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2. KNOWN RESULT 

Dealing with ( , , )( , )n nN p q E z  summability method of a Fourier series,Padhy et al [4] estabi -

lished the following theorem. 

Theorem 2.1 

Let { },{ }n np q  and { }nr  be sequences satisfying (1.2), (1.2) and  
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                                                                     (2.1) 

And ( )  as a n n                                                                                                            (2.2) 

where ( )t  is positive, non increasing function of t , then the Fourier series 
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  is 

summable ( , , )(E, Z)n nN p q  at the point t . 
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3. MAIN RESULT 

In this paper, we have estabilished a theorem on ( , , )( , , )n nN p q C   product summability of 

Fourier series. 

Theorem 3.1. Let { },{ }n np q   and{ }nr   be sequences satisfying (1.1), (1.2) and 

0
( ) | (u) | O ,  as O

(1/ )

t t
t du t

t
 



 
   

 
                                                                        (3.1) 

And ( )  as n n                                                                                                            (3.2) 

where ( )t  be a positive, non-increasing function of t . 

The Fourier series 
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  is summable ( , , )n nN p q ( , , )C    at the point t . 

4. REQUIRED LEMMA 

We have required the following lemmas to prove the theorem. 

Lemma 4.1 
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For 
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, we have (Boose [1]) 
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Lemma 4.2 

| ( ) | O(1/ ),  for  1/nk t t n t     
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Proof: 

For 
1

t
n

  , we have by Jordon's lemma,  

sin( / 2) , ( / ), sin 1.t t nt   

Then  

1
1 2

0 0 2

sin( )1
| ( ) |

2 sin

n k
n k k

n k v v t
k vn k

v tp q
k t A A

r A

 

 




 


  

 

1

0 0

1

2

n k
n k k

k v v

k vn k

p q
A A

r A t

 

 








 

 
  

 
 

 

0

1

2

n k k
k

kn k

p q
A

r A

 

 







 
 

O(1/ )t
 

5. PROOF OF THE THEOREM 

If ( ; )ns f x  is the n-th partial sum of the Fourier series 
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 of ( )f t  then by using Riemann–

Lebesgue theorem, we have (Titchmarch [5]). 
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If 
,

pq nN C 
 denote the ( , , )( , , )n nN p q C    transform of ( ; )ns f x , we have 
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In order to prove the theorem, it is sufficient to show that 
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Using second mean value theorem for the integral in the 2
nd

 term as ( )n  is monotonic 
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by using Riemann-Lebesgue theorem and the regularity condition of the method of summability. 

Thus 
, ( ) O(1)   as   pq nN C f x n      

This completes the proof of the theorem. 

6. CONCLUSION 

In this paper a more general result for summability of Fourier series is established which will be 

enrich the Literature of Fourier series. 
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