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Abstract: Let R be a 2-torsion free Alternative ring with unity satisfy the following constrain:
@ )Gy)? —xy,x]=0
(p2) [(y)? — (xy)%,x] = 0. Vxy €R.
In this article we investigate and proved the commutativity of alternative ring with suitable constraints (p, )
and(p,) .
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1. INTRODUCTION

In this paper, we consider (Assing) R represents an alternative ring, C(R) the commutator, A(R) the
assosymetric ring. N(R) the set of nilpotent element. An alternative ring R is a ring in which(xx)y =
x(xy), y(xx) = (yx)x for all x, y in R, these equations are known as left and right alternative laws
respectively. An associator (x,y,z) we mean by (x,y,z) = (xy)z — x(yz)for all x,y,z € R. Aring
R is called a prime if whenever A and B are ideals of R such that AB = {0} then either A = {0} or B =
{0}. If in aring R, the identity (x,y,x) = 0i.e. (xy)x = x (yx) for all x,y in R holds then R is called
flexible. A ring R is said to be n-torsion tree if nx = 0 implies x = 0, n is any positive number for all
x € R.A non-associative rings R is an additive abelian group in which multiplication is defined, which
is distributive over addition on left as well as on right [(x +y)z=xz+yz, z(x +y) = zx +
zy,V x,y,Zz €R].

Abujabal and Khan [1] proved the commutativity of associative ring satisfies the identity (xy)? =
xy?x. Gupta [2] established that a division ring R is commutative if and only if [xy,yx] = 0. In
addition, Madana and Reddy [3] have established the commutativity of non-associative ring satisfying
the identities (xy)? = x2y% and (xy)? € Z(R)Vx,y € R.

Further, Madana Mohana Reddy and Shobha latha.[4] established the commutativity of non-associative
primitive rings satisfying the identities: x(x? + y?)+(x? + y?)x € Z(R) and x(xy)? — (xy)?x €
Z(R). Recently Madana Mohana Reddy [5] show that some results on commutativity of some 2-torsion
free non associative rings with unity satisfy:

(aB)? —af € Z(R) for allaf in R Motivated by these observation it is natural to look
commutativity of alternative rings satisfies: (p1) & (p2),

2. MAIN RESULTS
Theorem 2.1

Let R be a 2-torsion free alternative rings with unity satisfy: [(xy)? —xy,x]=0 Vx,y € R. Then
R is commutative.

Proof:

From the hypothesis : (p;) we get
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x[(xy)? — xy] = [(xy)* —xylx = 0 1)
x(x?y? — xy) = (x?y? — xy)x )
Putx = (x +1) in 2 above

(c+ D[(x+1)2%y%2 — (x+ Dy] = [(x + D3y%2 —(x + Dy](x + 1).(x + D[(x? + 2x + 1)y? —
Gy +y)] =12 +2x + Dy? — (xy + Y] (x + D(x + D(x2y? + 2xy2 +y2 —xy —y) =
(x2y? + 2xy2 + y2 —xy — y)(x + Dx(x?y?) + 2x2y% + xy? — x%y —xy + x2y? + 2xy? +
y2—xy —y=(x%y?)x + 2xy*x + y?x —xyx —yx + x’y? + 2xy? +y> —xy —y

Known by our hypothesis and using 2-torsion free we get

xy? —xy — xy = y?x — yx — xy this will be come

xy* —xy = y*x — yx (3)
(3) can be re-write as xy? + yx = y2x + xy

Puty =y + 1 inabove (3)

xy+ D2+ @+ Dx=@+D*x+x(y+1)

x?+2y+ D +yx+x=0%?+2y+ Dx+xy +x
xy?+2xy+xy+yx+x=y*x+2yx+x+xy+x

Using (3) above and collecting like terms we get: 2xy = 2yx <=> 2(xy —yx) =0

2(xy —yx) =0 (4)
xy—yx =20 2-torsion free is applied

Then xy = yx or [x,y] is commutative.

From the above R is commutative Ring and satisfy the Identities either

(xx)y = x(xy) or y(xx) = (yx)x. So Ris an Alternative rings, Hence an alternative rings with
Identity together with commutativity yields (x, x,y) = 0 = (y, x, x)in complition.

Theorem 2.2

Let R be a 2-torsion free alternative rings with unity satisfy: [(xy)? — (xy)%,x] =0 Vx,y € R.Then
R is commutative.

Proof:
From our hypothesis (p,) we get:
x[(ey)? = (ey)?] = [Gey)? = (xy)?]x = 0
x[(ey)? = (ey)?] = [Cey)? = (xy)?]x
x(x?y? —y?x?) = (x?y? — y*x®)x (5)
Putx =x+1 in (5) above
(c+ D[+ D%y? —y?(x + 1)?) = [(x + D?y? —y*(x + D?](x + 1)
O+ D%+ 2x+ Dy —y2(x2+2x+ 1) =[(x* + 2x + 1)y? —y2(x2 + 2x + D](x + 1)
(O + D (x2y? + 2xy? + y2 — y2x? — 2y%x — y?)
= (x%y? + 2xy% + y2—y?x? = 2y?x —yH)(x + 1)
x(x2y?) + 2x%y% + xy? — x(y?x?) + 2xy%x + xy? + x%y% 4+ 2xy? + y? — y2x? — 2y%x — y?
= (x2y)x + 2xy?x + yix—(y2x?)x — 2y%x? — y?x) + x%y? + 2xy? + y?—y?x? — 2y%x — y?
Using (5) and collecting like terms we get:

2x%y% + 2xy? = 2y%x + 2y?*x? <=> 2(x%y? + xy?) = 2(v*x + y*x?)
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Known we had

x*y? = y?x? (6)
Putx =x+1 in (6)

(x+1)%y% = y*(x + 1)

(2 +2x+1D)y? =y?(x?>+2x+ 1)

x2y? + 2xy? + y? = y2x? — 2y2x — y?

Apply 6 we get
2xy? = 2y*x <=> 2(xy? = y*x) =0
Apply 2-torsion free we had: xy? = y2x (7

Inserty =y +1 in (7) above

x(y+ 1% =@+ 1%

x(Y?+2y+1) =% +2y+ 1x

xy? +2xy +x = y?x + 2yx + x

Using 7 and apply 2-torsion free we get:

xy =yx or[xy]

Which is commutative.

As we seen From the above R is commutative Ring and satisfy the Identities either

(xx)y = x(xy) or y(xx) = (yx)x. So Ris an Alternative rings, Hence an alternative rings with
Identity together with commutativity yields (x, x,y) = 0 = (y, x, x)in complition.
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