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1. INTRODUCTION  

Nonlinear problems may be solved with the nonlinear model equations or through linearization. State 

and parameter estimations in the paper are based on a nonlinear filtering algorithm, which applies a 

recently developed nonlinear prediction method. With this predictor both one – stage and multi – stage 

ahead predictions are achievable, giving way to nonlinear model predictive control (MPC) and 

nonlinear stochastic tracking. To solve the robust nonlinear stochastic control problem, first optimum 

control is computed with the plant model. If there are no constraints imposed on the control, the problem 

may be solved with a single step control through output fitting. However, if there are constraints to take 

into consideration, multi – step optimum control or receding horizon control gives the best result. For 

solution of the optimum stochastic control problem, the optimization method “optimized stochastic 

trajectory / output sequence tracking” (OSTT, [1])   may  be  used,  which  is  based  on  two 

– stage optimizations. However, output of the plant differs from that of the model. To make the control 

robust, the error is fed back through the negative inverse of the model to the input of the plant, forcing 

the plant output nearer to the model output. The presentation is made for discrete time control; however, 

for continuous time control the continuous process may be discretized and the corresponding discrete 

time problem may be solved. The optimal continuous control can be approximated from the optimal 

discrete control signal sequence.  

2. CONTROL SCHEMFE FOR ROBUST CONTROL 

A plant in series connection with its inverse is equivalent to the identity system, i.e. inputs and outputs 

are the same, if no disturbances act on it. The influence of external disturbances and parameter changes 
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may somewhat be compensated with feedback. Control with a good inverse model usually has large 

stability margin, assuring robust stability. Increasing the loop gain for error reduction, however, the 

tendency for oscillations usually grows. The suitable loop gain may be obtained e.g. through the “trial 

and error” method, or iterations. Further improvement can be achieved for plants with time varying 

parameters through real time estimation of parameters, and real time re-computation of the model, 

resulting in robust adaptive control with robust performance. However, in general an additional adaptive 

filter is required for plant modelling, since behaviour of plant might cause instability in the adaptation 

process [2]. If there were no disturbances, in case of error – free inverse model this control would be 

stable for all inputs, even without feedback, The parameters of the inverse model may be determined 

directly, too; however, even if stability is achieved, the parameter estimation would be biased in case 

of additive plant disturbance [3]. At the start rough estimation of the plant model is necessary to 

initialize the controller parameters and avoid instability. However, a disturbed plant may not follow the 

desired output well enough, resulting in limited applicability. In case of such a control the inverse model 

serves as disturbance canceler and plant dynamics controller at the same time. The control may be 

improved if these two functions are divided [3], as shown in Fig. 1: 

 

                          Fig1. Control scheme for robust control 

 

On the Figure R – feedforward controller, C – inverse model compensator (disturbance controller), K 

- additional feedback gain, ri=r(i) - reference, yi* - plant output, ni – plant disturbance, yi – disturbed 

plant outpt, ŷi – estimated plant output, ui – feedforward controller output, ui* - plant input, 𝑛̂𝑖  – 

estimated disturbance. Optimum tracking is computed with the R feedforward controller; however, 

the plant output will differ from the model output. To force the plant output nearer to the model output, 

the error is fed back to the plant input through the negative inverse of the model, decreasing the plant 

input, if the plant output is greater than the model output and increasing it, if the model output is greater 

than the plant output. Simulations show that an additional feedback gain, determined through trials, 

may improve the control. Accuracy of tracking depends on accuracy of the model. The input for model 

parameter estimation is taken from the output of the feedforward controller to avoid bias. For the 

optimal model 
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i.e. the optimum model output is conditional expectation of plant output. It can be seen that 
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(2) shows that the plant model is biased by the disturbance without disturbance cancellation, which may 

be carried out only with the plant input signal through feeding back the plant disturbance in such a way 

that it works against the disturbance on the plant output, as shown in Fig.1. 

3. COMPUTATIONAL METHODS FOR THE SOLUTION 

3.1 Inverse model computation 

Consider a nonlinear system given with the equations  

𝒙(𝒊 + 𝟏) = 𝒇(𝒙(𝒊),  𝒖(𝒊)) + 𝒘(𝒊),                                                             (3) 

 

𝒚(𝒊) = 𝒈(𝒙(𝒊),𝒖(𝒊)) + 𝒏(𝒊),      𝒙 ∈ 𝑹𝒏,  𝒖 ∈ 𝑹𝒑 ,  𝒚 ∈ 𝑹𝒑.                                          (4) 

In (3), (4) x(i) stands for the state vector, u(i) for the input vector,  y(i) for the output vector, w(i) for 

white process noise and n(i) for white output disturbance. The right inverse of (3), (4) is such a discrete 

time nonlinear system that when the original system is connected in series with its right inverse, the 

outputs of the original system are equal to the inputs of the inverse system. On the other hand, when the 

inverse is connected in series to the original system, the output of the left inverse is the input of the 

original system. However, such an inversion rarely can be done. The forward time shift right inverse is 

of practical interest, which uses the γ- step forward time shift    operator on the  original  

system  output.  The smallest γ, necessary for invertibility of (3), (4) has practical significance. For 

example, let the original system equation be  

x(i+1)=ax2(i)+bu(i),                                                                       (5) 

y(i+1)=x(i+1).                                                                            (6) 

In (5), (6) a, b are parameters. Now we express u(i) from (5) and (6): 

u(i)=(y(i+1)-ax2(i))/b.                                                                     (7) 

Since (7) is a noncausal expression, y(i+1) is forwarded with one step; the forwarded output of the 

original system is the uR(i) input of the inverse, 

uR(i)=y(i),                                                                               (8) 

and the input of the original system is the yR(i) output of the inverse: 

 yR(i)=(uR(i)-ax2(i))/b.                                                             (9) 

Invertibility of a given system is a basic question. The accurate process model, if known, is not 

necessarily invertible; however, for modeling purposes an invertible structure may be used. If the I/O 

map of a system is surjective, then inverse system exists. Right invertibility and surjectivity are 

equivalent [4]. However, for a unique inverse bijective mapping is needed. 

𝛿𝛾 
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3.2 State Estimation 

For state estimation, “modified extended Kalman filter” (MOD – EKF) may be used. MOD – EKF uses 

the   M – operator [5], [6] for predictions, and the EKF algorithm [7], [8] for updates. The M – 

operator has been developed on assumption of virtual sampling instants between real sampling time 

points and has the form 

𝜟𝒙̂(𝒊 + 𝟏) = ∫ 𝒇′𝒙̂∗(𝒙̂∗)𝒅𝒙̂∗𝐱̂∗(𝒊)

𝒙̂∗(𝒊−𝟏)
= 𝑴(𝜟𝐱̂(𝒊),  𝜟𝒖(𝒊)).                                           (10) 

In (10) 
'
ˆ *
x

f is derivative of the state vector and and *
x̂ is the modified (extended) state vector, 

𝒙̂∗ = [𝒙̂𝟏,  𝒙̂𝟐,  . . . 𝒙̂𝒏, 𝒖𝟏, 𝒖𝟐, . . . 𝒖𝒑]
T.                                                         (11) 

The EKF algorithm computes the variance and gain matrices and updates with the linearized model, 

but the original nonlinear equations are used to state propagation. MOD – EKF replaces the standard 

state propagation of EKF with computation with the M – operator, resulting in better prediction and 

better overall estimation. The state prediction equation for discrete time EKF has the form [7] 

)).1()11(()1(  i,/iiˆi/iˆ uxfx
                                                           (12) 

However, the M – operator uses infinite virtual sampling points to estimate the state evolution [5], [6] 

and the result is better prediction, especially for greater disturbances. The MOD – EKF algorithm uses 

the linearized model derived from (3), (4):  

,iiiiii )()()()()()1( wuBxAx 
                                                     (13) 

),()()()( iiii nxCy 
                                                                 (14) 

𝜟𝒙(𝒊) = 𝒙(𝒊) − 𝒙(𝒊 − 𝟏),  𝜟𝒖(𝒊) = 𝒖(𝒊) − 𝒖(𝒊 − 𝟏), 
 𝜟𝒚(𝒊) = 𝒚(𝒊) − 𝒚(i − 𝟏).

 

In (13), (14) A, B, C are appropriate matrices. The algorithm may be summarized in the following 

manner: 

State propagation: 

))()(()11()1( i,iˆ/iiˆi/iˆ uxMxx 
                                                      (15) 

Covariance prediction: 
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Innovation: 

)1()()(  i/iˆii yye
                                                                     (17) 

Innovation covariance:  
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                                                 (18) 

Kalman gain: 

)())1(i()1()( 1T i/iˆi/i e
 RxCiPK

                                                        (19) 

State correction: 
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)()()1()( iiii/ˆii/ˆ eKxx                                                                 (20) 

Covariance correction: 

)1())]1(()([)(  i/ii/iˆii/i PxCKIP
                                                       (21) 

 Initial conditions: 

𝒙̂(𝟎/𝟎);   𝑷(𝟎/𝟎)                                 

Assumed disturbances: 

))(0))(0( i,(,i, nw RNRN
                           

3.3 Modeling 

3.3.1 Model structures 

Process identification includes selection of the model structure and parameter estimation. Process model 

sometimes can be obtained from principles of physics. However, if no physical insight is available on 

the process, processing of measured inputs and outputs (black box modeling) has to be applied. The 

principle of modeling is to define a general nonlinear structure, like polynomial, spline [9], wavelet, 

neural network, fuzzy model [10], [11] etc., which can be formed to any concrete model through 

estimation of parameters. Black box modeling is based on the nonlinear mapping [12], [10]    

𝒚̂(𝒕, 𝜽) = 𝒈(φ(𝒕),𝜽),                                                                      (22) 

where t - time, ptˆ Ry )(  - estimated output vector,  𝝋(𝑡) ∈ 𝑹𝑑- regression vector, 𝜽 - parameter 

vector,    p
Rg  - suitable nonlinear function. The regression vector can be chosen in different ways. 

A basic possibility is to let it contain past inputs with past measured and predicted outputs, similarly to 

the linear case. Once g is selected and the number of unknown parameters is defined, parameter 

estimation may be achieved through minimization of the PI 

 ∑ ‖𝒚(𝑡)-𝒈(𝝋(𝑡),𝜽)‖𝑁
𝑡=1 .                                                          (23) 

The norm in (23) may be defined in different ways. The nonlinear function may be given for a SISO 

plant in the form of function expansion: 

.gθg (t))()(t),( kk  Θ                                                             (24) 

In (24) gk is a basis function. The (24) expression with different basis functions and regression vectors 

gives the general structure of black box modeling. State space black box models usually relate the state 

variables to each other, to the observations and excitations [13]. With the M – operator we can get 

estimates for the states and outputs in function of the model parameters, and the parameter estimation 

may be done similarly. The state space black box model may have the form for a SISO plant [14], [15], 

[16], [17], [18], [19]  

[

𝑥1(𝑡 + 𝑇)

𝑥2(𝑡 + 𝑇)

⋮
𝑥n(𝑡 + 𝑇)

] = [

𝑥1(𝑡)

𝑥2(𝑡)

⋮
𝑥n(𝑡)

] + 𝑇 [

𝑥2(𝑡)

𝑥3(𝑡)

⋮
𝝋T(𝑡)𝜽

],                                                 (25) 

where T is the sampling period, and  

   ).(001(t) t,..., xy                                                                 (26) 
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3.3.2 A possible parameter estimation method 

Assume that a structure has been selected for modeling of a given nonlinear system, but the parameters 

have to be estimated. Suppose that the process is ergodic and f, g in (3), (4) are analytic functions. 

Parameter estimation may be achieved through minimization on an N – step horizon:  

𝑚𝑖𝑛
𝒙,𝜣

∑ ∑𝑝
𝑘=1 {𝑦𝑘

𝑁−1

𝑗=0
(𝑖 − 𝑗) − 𝑦̂𝑘(𝑖 − 𝑗)}

2,                                          (27) 

where kŷ is an estimated output component. (27) is minimization of the estimated output variance. If 

,N,...jp,,...k,jiŷjiyE 1010)}()({ kk                                        (28) 

(27) is approximation of the output estimation error variance, too. Global minimum of (27) has to be 

searched not only in function of parameters, but the states at the bottom of horizon, too. The other states 

may be estimated with the M – operator. 

Recursive nonlinear parameter estimation algorithms may be obtained if the procedure is repeated at 

the new sampling instant, and estimates of states and parameters on the preceding horizon are used at 

the bottom of new horizon. Define a vector 

,mnNF,...NF,NFN T)]1()1()([)( Q                                              (29) 

where mˆ RΘ  and 

𝐹(𝑁, 𝜣̂) = ∑ ∑ {𝑦𝑘(𝑖 − 𝑗) − 𝑔𝑘(𝐱̂(𝑖 − 𝑗), 𝒖(𝑖 − 𝑗),𝜣̂)}
2

𝑝

𝑘=1

𝑁−1

𝑗=0

= ∑ ‖𝜺̂𝑖−𝑗‖
2𝑁−1

𝑗=0
.

                         (30) 

In the definition of Q(N) and F(N) some variations are possible, for example, the number of outputs 

taken into consideration for each element of Q(N) may differ in greater extent. Estimation on the new 

horizon may be improved with the  

10))()(()( 1   α,Ni'ˆNi'ˆNα nn
xxJQ                                         (31)  

relationship, which is based on the Newton iteration method. In (31) 

𝒙̂′(𝑖 − 𝑁)
𝑛

- estimate of the modified state vector (state vector extended with the parameter vector after 

the n – th iteration), 

J  - Jacobian matrix,  

.
Ni'ˆ )( 




x

Q
J                                                                    (32) 

The derivatives in (32) may be evaluated numerically. From (31) 

).()()( 11 NαNi'ˆNi'ˆ nn
QJxx

                                                 (33) 

In practice J -1 is not computed but (31) is solved for 1)(  ni'ˆ Nx . The tuned filter gives the best 
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performance. Tuning means not only good selection of filter parameters, but considerations for the form 

of PI and the used algorithm, too. If the parameters are time varying, influence of the old data may be 

decreased through use of forgetting factors [20], [21]: 

 .λ,ˆλN,F
2

ji

N

j

j 10)(
1

0

 





 εΘ                                                 (34) 

A relatively simple computation may be used for state estimation through fixed point iteration [22]. For 

the ideal case 

𝐹(𝑁) = 0,
⋮

𝐹(𝑁 − 𝑛 − 𝑚 + 1) = 0.
                                                           ( 35) 

The formula for iteration of the (35) system of equations is  

 ,Ni'ˆNNi'ˆ nn )()()( 1  
xQx                                                    (36) 

where 0≺α ≦ 1 is the learning rate. If the (36) iteration is not convergent, selecting another initial point 

and / or smaller α, it may converge. With completion of the computations for several initial state values, 

the trap of finding the neighbourhood of a local minimum may be avoided. However, in case of 

recursive computations, this may be important only at the start of computations 

3.3.3 Polynomial models 

A convenient kind of models is the polynomial model. According the approximation theorem [23], if 

f(x) is a  continuous  function  in the interval [a, b], then for any ε> 0 exists a polynomial Pn(x) of 

degree at most n, n=n(ε), such that  

|𝑓(𝑥) − 𝑃𝑛(𝑥)| < 𝜀                                                               (37) 

for all x in [a, b]. This means that arbitrarily close polynomial approximation of continuous functions 

is possible over a closed bounded interval. A particular interest is the problem of best approximation. 

The difference between f((x) and Pn(x) may be measured with the so – called maximum norm: 

)).()()()()()( xP,xd(fxPxfmaxxPxf nn
bxa

n 


                                     (38) 

The polynom of best approximation minimizes (38). It can be proved [23] that for any continuous f(x) 

function exists a Pn(x) polynomial of degree at most n, which minimizes (38). The best approximation 

polynomial is unique [24]. However, computation of it is problematical in practice. A particular 

problem is that higher order polynomials tend to be oscillatory, causing numerical instability. For the 

discrete time case, the error between sampling time points may become too large. This problem can be 

solved with application of splines, which are numerically stable in general. Approximation techniques 

can be extended for the multivariable case [24].  
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3.3.4 Spline models 

Splines (piecewise polynomials) don’t have advantages comparing with polynomials if they are used 

for  approximation of a well – behaved function (with the exception when the derivatives are also 

important, the measured data are sparse, or there are oscillatory problems (25)). The spline parameter 

computation in this paper is based on two – stage optimizations. At the start, either a decision is made 

on the degree of the spline, or the degree is finalized after some trial and error evaluations. The spline 

parameters on the first stage may either be selected or estimated from past data, and optimum control 

can be computed in function of the selected parameters and u(0) starting control signal. Assume that 

the system is at the ti-1 sampling time point and at each sampling time point new spline parameters are 

computed, together with the new control signals. The unknowns can be computed from optimization on 

the [ti-2, ti] interval.  The necessary condition for two – stage minimum in function of the a1,…am spline 

parameters and u1,…up control signals is      

∂Fi-1,i/∂a1(i-2)=0,… ∂Fi-1,i/∂am(i-2)=0, ∂Fi-1,i/∂u1(i-2)=0,…∂Fi-1,i/∂up(i-2)=0.                   (39) 

In (39) Fi-1,i is the two – stage PI, computed with the M – operator for stochastic systems, the indices 

relate to the output horizon. If the known values of a1(i-2),…am(i-2), u1(i-2),…up(i-2) are substituted to 

(39), a system of equtions is obtained with the a1(i-1),…am(i-1), u1(i-1),…up(i-1) unknowns. From the 

solution the u(i-1) control vector is obtained, together with the new spline parameters. At ti the states 

are updated and the procedure is repeated on the [ti-1,ti+1] interval. If there is no unique solution of the 

system of equations, some constraints can be   

Another possibility is search for minimum of the two – stae PI through iterations. 

There are some variations of the computed splines. For example, fitting of estimated outputs to specified 

references may be done not only at real sampling instants, but at intersample virtual sampling instants, 

too. The intrasample estimation can be done with MISLINPRED [6] or the M – operator (“M” is from 

the first letter of MISLINPRED). This can be advantageous especially if the available data are sparse.  

3.4 Optimization 

It is well known that in general the minimum of a PI on a finite horizon is not equal with the sum of 

one – stage minima, but can be computed through a sequence of two – stage optimizations. The 

consecutive             two – stage sections overlap each other on one stage, the second stage of 

the preceding section and the first stage of the new section is common [26] . Consequently, solution of 

the multi – step optimum control problem may  be obtained through a sequence of two – stage 

optimizations. The practical working out has led to the optimization method “optimized trajectory 

tracking” (OTT) for deterministic systems and “optimized stochastic trajectory / output sequence 

tracking” [1] for stochastic systems. The finite horizon state space and I/O control problem can be 

solved with these optimization methods through a sequence of optimizations on a section of two stages. 

For optimum linear state space control, solution of the optimum infinite horizon control problem 

(computation of the steady state optimum feedback gain) can be derived through limit value calculation 

of the result of two – stage optimization [1]. Solution of the stochastic control problem is based on the 

principle “direct stochastic optimum tracking”. The principle states that an estimated optimum 
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stochastic trajectory (or output sequence) can be obtained with step – by – step optimum extension of a 

part of the estimated optimum trajectory (output sequence). With these principles and methods solution 

of the linear optimum stochastic state space and I/O, finite and infinite horizon control problems can be 

obtained [1], [27]. For the nonlinear case, assume a nonlinear process described with the state and output 

equations (3), (4), and with Gaussian zero mean disturbances and with time invariant parameters. The 

control problem may be solved through either linearization or with the original nonlinear equations. 

The linearized model for linearizable plants may be given in the form of (13), (14). This model behaves 

like a linear system with time varying parameters. However, if parameters of the nonlinear plant are 

constant and known, parameters of the linearized model can be computed and thus they can be 

considered as known. The PI for increments in a MIMO finite horizon nonlinear stochastic optimum 

tracking problem may have the form 

,ii

iiiEF

N

i

T

N

i

T
N,













1

1

1

)}1()1(

)}((i))({)}())(({{

uRu

rxyQrxy

                                     (40) 

where Q and R are appropriate weighting matrices. In (40) indices of F refer to the output horizon. 

E{x(0)} is supposed to be known. The optimization problem may be solved similarly to the linear case, 

taking into consideration the computed operating point dependent values of parameters at each sampling 

time instant. It can be shown that the feedback solution [1], [27] can be given in the form 

 𝛥𝒖(𝑖) = −𝑲(𝑖)𝛥𝒙̂(𝑖) + 𝒗{𝛥𝒓(𝑖 + 1), 𝛥𝒓(𝑖 + 2)}.                             (41) 

In (41) ))2()(()(  iˆ,iˆi xxKK is the time varying optimum feedback gain and 𝒗{𝛥𝒓(𝑖 + 1), 𝛥𝒓(𝑖 +

2)}is the command input. (41) follows from minimization of the two – stage PI and arrangement of the 

terms, which are all linear, obtained through elimination of )1(  ix̂ and )1(  iu  [1]. The control 

signal increment and the K(i) optimum local feedback gain are the same as in the corresponding 

deterministic system, if the disturbances are white with zero mean and appear in separated terms in the 

model, and the estimated actual and preceding operating point values are the same in both systems. The 

solution can be interpreted as the best choice with respect to a  two – stage PI, if the system is in a 

certain state and has a certain past. To get the (41) solution, future states and outputs are estimated with 

the M – operator predictor. Following each update of states, update of state increments and parameters 

is also necessary.  

For infinite horizon control the steady state optimum feedback gain can be obtained through limit value 

calculation [1], [27] as 

.n...j,
iˆ

iˆ
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iˆ,iˆlimi
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)2(
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








x

x
K

xxKK

                                                   (42) 

K(i) and K∞(i)are operating point and reference dependent local gains. With (42), the optimum infinite 

horizon control law is 
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.i,iiˆii )}2()1({)()()(   rrvxKu                                              (43) 

Before optimizing on the new two – stage section, the states are updated at the beginning of section 

with     MOD – EKF. If updated values are used at the end of first stage, the optimization gives the 

feedforward solution [27]. The signals of the original system have to be reconstructed from the solution 

for increments.  Through application of the two – stage optimization concept, optimum control of the 

nonlinear process respect to a suitable PI is possible not only around an operating point, but on a horizon, 

too.  

If the original nonlinear equations are used for optimization and there are no constraints to take into 

consideration, the necessary control maybe computed from evaluation of 

1,-0,1,...i  ).1()}())/1(({ NiiiE  rYxg                                               (44) 

where Y(i) is the measurement vector. (44) may be solved through computation with the M – operator. 

However, if constraints are imposed on the control, the (44) fitting may not give the best result, the 

optimum solution may be computed through a sequence of two – stage optimizations. Assume a finite 

horizon control problem with the PI to be minimized  

𝐹1,𝑁 = ∑ 𝑓′(𝑥̂(𝑖), 𝑢(𝑖))𝑁−1
𝑖=0                                                           (45) 

 and the constraints to be taken into consideration  

.N,...,iJ,,...j,i,iˆl

K,,...k,(i,iˆd

j

k

11010))()((

10)))((





ux

ux
                                            (46) 

dk and lj
 are, as a rule, nonlinear functions. The expectation of the initial state  

0)}0({ xx ˆE   

is assumed to be known. To the solution the PI can be modified to take into account the constraints. The 

problem can be solved in principle through a series of minimizations of the two – stage PI 

𝐹𝑖+1,𝑖+2 = ∑ 𝑓′(𝑥̂(𝑙), 𝑢(𝑙))𝑖+1
𝑙=𝑖 ,             𝑙 = 0, . . . 𝑁 − 2.                                    (47) 

At the beginning of computations estimation is made for the control signal on the first stage, e.g. with 

(44). However, if the references are known in advance on a finite horizon, the optimum starting control 

signal can be obtained from solution of the corresponding MPC problem [1]. On the two – stage sections 

for optimization, the state at the end of the first stage is estimated with MOD – EKF, and at the end of 

the second stage with the      M – operator. The algorithm uses updated values everywhere when it 

is possible. u(1) and )2(ŷ can be obtained in knowledge of )1(),0( yx ˆˆ and u(0). In the next step 

optimization is made on the section )]3(),1([ yy ˆˆ  from which  u(2) and )3(ŷ can be computed. 

Following this procedure, )()( NNˆ ry  is reached through N - 1 two - section optimizations. The 

obtained output sequence, if the optimization problem has only one unique solution, is optimum in 

function of u(0), since on any )]1(),1-([ iˆiˆ yy section 1)( iŷ is optimum for given 1)( iŷ , u(i-1), or 

with other words, )(iŷ is optimum for given )]1(),1-([ iˆiˆ yy  with respect to the PI, and this is peculiarity 

of the optimum output sequence.   
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4. EXAMPLES 

Example 1: 

Consider a plant with the equations 

,iwibuiuixexpaix )()()())(()1(                                                   (48) 

).1(1()1(  in)ixiy                                                            (49) 

In (48) a, b are parameters. It is assumed that the disturbances are of normal distribution and the 

expectations, parameter values and variances are 

..;.;.b

;.a;inE;iwE

067500168050

200)}({0)}({

2
)(

2
)( 



iniw 
.                                                (50) 

Let the model structure to the design be 

 
),((1)(1)1( 2 iwi)ubixaix 

                                                     (51) 

).1()1()1(  inixiy                                                             (52) 

In (51) a1, b1 are parameters. The motivation for selection of the (51), (52) model may be the easy 

manageability, and the fact that arbitrary accuracy can be achieved with polynomials, although high 

degree polynomials may become numerically unstable [22]. To the solution first the model parameters 

are identified; this has been done as shown in section 3.3.2. The control scheme is as of Fig.1. State 

estimation may be achieved with the MOD – EKF algorithm. Evaluating the M – operator with (10),   

)).1()((1

))11()((1))()(( 22





iib

i/iˆii/ˆai,iˆ

uu

xxuxM
                                            (53) 

The state estimation algorithm with MOD – EKF can be given with the following equations: 

1))()(11)1()(1()()1( 22  iuiub/iix̂i/ix̂ai/ix̂/iix                                 (54)                                                                                                                       

)()()1(1()1( iRi/iP/i)ix̂a2/iiP w
2                                                  (55) 

)1()1()1( i/iŷiyie                                                           (56) 

 )()1()1( iRi/iPi/iR ne                                                        (57) 

)1()1()1(  iR/i/iPiK e                                                         (58) 

)1()1()1()11(  ieiKi/ix̂i/ix̂                                                 (59) 

).1())1(1()11( i/iPiKi/iP                                                     (60) 

It can be seen from (53), (54), (51), (15) and (12) that prediction with the M – operator for the 

deterministic case gives back the EKF predictor. As for the linear case, it has been proved in [5] that 

prediction with the          M – operator leads to the Kalman filter predictor.   
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Since the optimum solution is two – stage optimization based one, for optimization the PI  

𝐹𝑖+1,𝑖+2 = ∑ [{𝑦(𝑗) − 𝑟(𝑗)}
2

𝑖+2

𝑗=𝑖+1
+ 𝜆𝑢2(𝑗 − 1)]                                       (61) 

is used. In (61) r(j) is the reference and λ is the control weight. First optimum tracking is computed with 

the model, and the difference between the plant and the model output is fed back through the negative 

inverse of the model to the input of the plant, as in Fig. 1. From 

0
)(

21




 

iu

F i,i                                                                    (62) 

the next control signal can be computed in knowledge of u(i). The initial control signal has been 

estimated from one – stage optimization. Completing the computations, we get  

 

𝑢(𝑖 + 1) = −(2(𝑥̂(𝑖/𝑖) + 𝑎1(𝑥̂(𝑖/𝑖)2 − 𝑥̂(𝑖 −/𝑖 − 1)2)

+𝑏1(𝑢(𝑖)-𝑢(𝑖 − 1))-𝑟(𝑖 + 1))𝑏1 + 2𝜆𝑢(𝑖)

+2(DER(𝑖 + 1) + 2𝑎1𝑥̂(𝑖 + 1/𝑖 + 1)DER(𝑖 + 1)

-𝑏1)(𝑥̂(𝑖 + 1/𝑖 + 1) + 𝑎1(𝑥̂(𝑖 + 1/𝑖 + 1)2 − 𝑥̂(𝑖/𝑖)2)

-𝑏1𝑢(𝑖)-𝑟(𝑖 + 2)))/(2(DER(𝑖 + 1)

+2a1𝑥̂(𝑖 + 1/𝑖 + 1)DER(𝑖 + 1)-𝑏1)𝑏1),

 DER(𝑖 + 1) =
𝜕𝑥̂(𝑖+1/𝑖+1)

𝜕𝑢(𝑖−1)
.

                                                                            (63) 

DER(i+1) was numerically approximated to the simulation. The correction on the input of the plant can 

be computed as  

./b/iix̂a/iix̂yKiucorr 1))11(1-)11()1(i()1( 2                                  (64) 

To the simulation (63) and (64) were used. Various investigations have been done through simulations. 

For the process parameters of (51) the parameter estimator finds minimum at a1= 0.463 and b1= 0.563. 

If λ=0.5, the control is unstable without feedback. The control is unstable for a1=0.3 and b1=0.6. too, 

without feedback, but it becomes stable with feedback in both casas, achiving robust stability. However, 

deterioration of the process output is 45%, based on comparison of sum of error squares on a finite 

horizon. Accuracy of tracking may be improved for processes of time varying parameters if the model 

parameters are identified in real time, resulting in robust performance. Optimum value of the additional 

feedback gain is 𝐾 ≈ 1.5. 

Example 2: 

The control problem, parameters and other conditions are the same as in Example 1; however, now one 

– stage control is computed. The PI for one – stage control by application of the M – operator is 

 



Nonlinear Robust Stochastic Inverse Model Based Optimum Control 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)           Page | 29 

𝐹𝑖+1 = {𝑥̂(𝑖/𝑖) + 𝑎1(𝑥̂2(𝑖/𝑖) − 𝑥̂2(𝑖 − 1/𝑖 − 1))

+𝑏1(𝑢(𝑖) − 𝑢(𝑖 − 1)) − 𝑟(𝑖 + 1)}
2 + 𝜆𝑢2(𝑖).

                                       (65) 

Necessary condition for minimum is  

0.)(21)}1())1()((1    

))11()((1)/({2
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iubiriuiub
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F 22
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                                      (66) 

From (66) the one – stage control law is  

u(𝑖) = -{𝑥̂(𝑖/𝑖) + 𝑎1(𝑥̂2(𝑖/𝑖) − 𝑥̂2(𝑖 − 1/𝑖 − 1))

                  − 𝑏1(𝑢(𝑖 − 1) − 𝑟(𝑖 + 1)}𝑏1/(𝜆 + 𝑏1
2).

                                      (67) 

Fig.2. shows the result of simulation for reference tracking with the output:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
            Fig.2. Reference tracking with one – stage and two – stage control.  
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The simulation shows that tracking accuracy for λ=0.5 and MOD-EKF estimation deteriorates with 

22.6% on a 8 step horizon if one – stage control is used instead of two – stage one. However, if one – 

stage control with EKF estimation is used, the deterioration is 855%. All simulations were made with 

the same initial and other conditions. If disturbances are considered zero, λ=0 and the filtering algorithm 

is replaced with the expression for prediction, reference tracking is carried out with very small 

computational error, which becomes zero after a few steps, even with two – stage control.  

5. CONCLUSIONS 

The paper shows that optimum solution of the discrete time robust nonlinear stochastic control / tracking 

problem may be achieved through a sequence of two – stage stochastic optimizations, and that feedback 

of error through the inverse of the model may make the control robust. The solution may be extended 

for continuous time control through discretization of the plant and approximating the discrete time 

control signal with a continuous one; obtaining a suboptimal solution. It is also shown that the solution 

may be obtained either through linearization or with the nonlinear model, applying recently developed 

prediction and filtering methods. An example illustrates that the presented methods are applicable and 

analytical solutions may be achieved. The solution optimum for the model with the given PI and 
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estimation methods, and is working effectively for the plant. Another example clearly demonstrates that 

the two – stage optimization based solution gives better result than the one – stage optimization based 

one, and estimation with the recently developed MOD – EKF algorithm assures higher tracking 

accuracy than what can be achieved with EKF. 
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