Representation of Pre A* - Algebra by a Partially Order

D. Kalyani
Lecturer in Mathematics
Government College for Women Guntur - 522 001. A.P., India satyakalyani27@gmail.com

Dr.B. Rami Reddy
Head of the dept. of Mathematics
Hindu College
Guntur, AP. India
rbhavanamr@rediffmail.com

Dr. J.Venkateswara Rao
Professor of Mathematics
Mekelle University
Mekelle, Ethiopia
venkatjonnalagadda@yahoo.co.in

A.Satyanarayana
Lecturer in Mathematics
A.N.R College
Gudiwada, A.P. India
asnmat1969@yahoo.in

Received: 19-10-2013
Revised: 12-11-2013
Accepted: 23-11-2013

Abstract

This manuscript is a study on Pre-A*-algebra A in view of it is like a partially ordered set. Using a binary operation in Pre-A*-algebra, an observation is made on Pre A^{*}-Algebra as a partially ordered set with respect to binary operation \wedge and obtained corresponding results. It is also make available an equivalent condition for a Pre A^{*}-algebra become a Boolean algebra.

Keywords: A*-algebra, Pre-A*-algebra, Boolean algebra, Partially ordered set, Ada, Homomorphism.
AMS subject classification (2000):06E05, 06E25, 06E99, 06B10

1. Introduction

In a draft manuscript entitled "The Equational theory of Disjoint Alternatives", E. G. Manes (1989) introduced the concept of Ada (Algebra of disjoint alternatives) $\left(A, \wedge, \nu,(-)^{\prime},(-)_{\pi}, 0,1,2\right)$ which is however differs from the definition of the Ada of E. G. Manes (1993) later paper entitled "Adas and the equational theory of if-then-else". While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras A ($\wedge, \vee ‘)$ introduced by Fernando Guzman and Craig C. Squir (1990). P. Koteswara Rao (1994) first introduced the concept of A*-algebra $\left(A, \wedge, \vee, *,(-)^{\sim}(-)_{\pi}, 0,1,2\right)$ not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation but also introduced the concept of A*-clone, the If-ThenElse structure over A*-algebra and Ideal of A*-algebra.
J.Venkateswara Rao (2000) introduced the concept Pre A*-algebra $\left(A, \wedge, \vee,(-)^{\sim}\right)$ analogous to Calgebra as a reduct of A*- algebra. Venkateswara Rao.J, Praroopa.Y (2006) made a structural study on Boolean algebras and Pre A*-Algebras.
Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*algebra are regular extensions of Boolean logic to 3 truth values, where the third truth value stands for an undefined truth value. The Pre A*- algebra structure is denoted by $\left(A, \wedge, \vee,(-)^{\sim}\right)$ where A is non-empty set, \wedge, \vee are binary operations and $(-)^{\sim}$ is a unary operation.

In this paper we define a relation \leq on Pre A^{*}-algebra with respect to the binary operation \wedge, we discuss the properties of a Pre A*-algebra like a poset. We find the necessary conditions for a poset to become a lattice. We also present a equivalent condition for a Pre A^{*}-algebra become a Boolean algebra. For any $\mathrm{a} \in \mathrm{A}$ define $A_{a}=\{\mathrm{x} \in \mathrm{A} / \mathrm{a} \wedge \mathrm{x}=\mathrm{x}\}$ and $x^{a}=\mathrm{a} \wedge \mathrm{x}^{\sim}$ then $\left(A_{a}, \wedge, \vee,{ }^{\mathrm{a}}\right)$ OARC
is a Pre A^{*}-algebra. We also define a mapping $\alpha_{a, b}$ from A_{b} to A_{a} by $\alpha_{a, b}(\mathrm{x})=\mathrm{a} \wedge \mathrm{x}$ for all $\mathrm{x} \in A_{b}$ is a homomorphism of $\operatorname{Pre} \mathrm{A}^{*}$-algebras.

Preliminaries

1.1. Definition: The relation R on a set A is called a partial order on A when $R(\leq)$ is reflexive, anti-symmetric, and transitive. Under these conditions, the set A is called a partially ordered set or a poset. Frequently we write (A, R) or (A, \leq) to denote that A is partially ordered by the relation $\mathrm{R}(\leq)$. Since the relation \leq on the set of real numbers is the prototype of a partial order it is common to write \leq to represent an arbitrary partial order can be described as follows:

1. For all $\mathrm{a} \in \mathrm{A}, \mathrm{a} \leq \mathrm{a} \quad$ (reflexive)
2. For all $\mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \leq \mathrm{b}, \mathrm{b} \leq \mathrm{a}$, then $\mathrm{a}=\mathrm{b} \quad$ (anti symmetry)
3. For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}, \mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$, then $\mathrm{a} \leq \mathrm{c} \quad$ (transitivity)

Two elements a and b in A are said to be comparable under \leq if either $\mathrm{a} \leq \mathrm{b}$ or $\mathrm{b} \leq \mathrm{a}$; otherwise they are incomparable. If every pair of elements of A are comparable, then we say that the partially ordered set is totally ordered.
1.2. Definition: An algebra $\left(A, \wedge, \vee,(-)^{\sim}\right)$ where A is a non-empty set with $1, \wedge, \vee$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying
(a) $x^{\sim}=x \quad \forall x \in A$
(b) $x \wedge x=x, \quad \forall x \in A$
(c) $x \wedge y=y \wedge x, \quad \forall x, y \in A$
(d) $(x \wedge y)^{\sim}=x^{\sim} \vee y^{\sim} \quad \forall x, y \in A$
(e) $x \wedge(y \wedge z)=(x \wedge y) \wedge z, \quad \forall x, y, z \in A$
(f) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z), \quad \forall x, y, z \in A$
(g) $x \wedge y=x \wedge\left(x^{\sim} \vee y\right), \quad \forall x, y \in A$ is called a Pre A^{*}-algebra.
1.1. Example: $\mathbf{3}=\{0,1,2\}$ with operations $\wedge, \vee,(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

\wedge	0	1	2
0	0	0	2
1	0	1	2
2	2	2	2

\vee	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

x	x^{\sim}
0	1
1	0
2	2

1.1. Note: The elements $0,1,2$ in the above example satisfy the following laws:
(a) $2^{\sim}=2$
(b) $1 \wedge x=x$ for all $x \in \mathbf{3}$
(c) $0 \vee \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in \mathbf{3}$
(d) $2 \wedge x=2 \vee x=2$ for all $x \in 3$.
1.2. Example: $\mathbf{2}=\{0,1\}$ with operations $\wedge, \vee(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

Representation of Pre A* - Algebra by a Partially Order

\wedge	0	1		\vee	0	1		x	x^{\sim}
	0	0		0	1		0	1	
1	0	1		1	1	1		1	0

1.2. Note :(i) $(2, \vee, \wedge,(-))$ is a Boolean algebra. So every Boolean algebra is a Pre A^{*} algebra.
(ii) The identities 1.2 (a) and $1.2(\mathrm{~d})$ imply that the varieties of Pre A^{*}-algebras satisfies all the dual statements of $1.2(\mathrm{~b})$ to $1.2(\mathrm{~g})$.
1.3. Definition: Let A be a Pre A^{*}-algebra. An element $x \in A$ is called a central element of A if $x \vee x^{\sim}=1$ and the set $\left\{\mathrm{x} \in \mathrm{A} / x \vee x^{\sim}=1\right\}$ of all central elements of A is called the centre of A and it is denoted by $\mathrm{B}(\mathrm{A})$.
1.1. Theorem: [Satyanarayana.A, (2012)] Let A be a Pre A^{*}-algebra with 1, then $B(A)$ is a Boolean algebra with the induced operations $\wedge, \vee,(-)^{\sim}$
1.1. Lemma: [Satyanarayana.A, (2012)] Every Pre A^{*}-algebra with 1 satisfies the following laws
(a) $x \vee 1=x \vee x^{\sim}$
(b) $x \wedge 0=x \wedge x^{\sim}$
1.2. Lemma: [Satyanarayana.A, (2012)] Every Pre A^{*}-algebra with 1 satisfies the following laws.
(a) $x \wedge\left(x^{\sim} \vee x\right)=x \vee\left(x^{\sim} \wedge x\right)=x$
(b) $\left(x \vee x^{\sim}\right) \wedge y=(x \wedge y) \vee\left(x^{\sim} \wedge y\right)$
(c) $(x \vee y) \wedge z=(x \wedge z) \vee\left(x^{\sim} \wedge \mathrm{y} \wedge \mathrm{z}\right)$

1. 4. Definition: Let $\left(A_{1}, \vee, \wedge,(-)^{\sim}\right)$ and $\left(A_{2}, \vee, \wedge,(-)^{\sim}\right)$ be a two Pre A^{*} - algebras. A mapping $f: A_{1} \rightarrow A_{2}$ is called a Pre A^{*}-homomorphism if
(i) $f(a \wedge b)=f(a) \wedge f(b)$
(ii) $f(a \vee b)=f(a) \vee f(b)$
(iii) $f\left(a^{\sim}\right)=(f(a))^{\sim}$

The homomorphism $f: A_{1} \rightarrow A_{2}$ is onto, then f is called epimorphism.
The homomorphism $f: A_{1} \rightarrow A_{2}$ is one-one then f is called monomorphism
The homomorphism $f: A_{1} \rightarrow A_{2}$ is one-one and onto then f is called an isomorphism, and A_{1}, A_{2} are isomorphic, denoted in symbol $A_{1} \cong A_{2}$.

2. Pre A*- Algebra as a Poset with Respect to Binary Operation \wedge

2. 1 Definition: Let A be a Pre A^{*}-algebra. Define a relation $\leq o n A$ by $x \leq y$ if and only if $y \wedge x$ $=x \wedge y=x$.
3. 1 Lemma: If A is a Pre A^{*}-algebra, then (A, \leq) is a poset.

Proof: Since $x \wedge x=x, x \leq x$ for all $x \in A$
Therefore \leq is reflexive.
Suppose that $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}, \mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$.
Then we have $y \wedge x=x \wedge y=x$ and $z \wedge y=y \wedge z=y$.
Now $x=x \wedge y=x \wedge y \wedge z=x \wedge z . \Rightarrow x \wedge z=z \wedge x=x$
Therefore, $\mathrm{x} \leq \mathrm{z}$. This shows that \leq is transitive.
Suppose that $x, y \in A, x \leq y$ and $y \leq x \Rightarrow y \wedge x=x \wedge y=x$ and $y \wedge x=x \wedge y=y$.
International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

This shows that $\mathrm{x}=\mathrm{y}$. Therefore \leq is anti-symmetric. Hence (A, \leq) is poset.
2. 1 Note: If A is a Pre A^{*}-algebra with $1,0,2$ then $x \leq 1(x \wedge 1=1 \wedge x=x)$, for all $x \in A$ and $2 \leq x$ $(x \wedge 2=2 \wedge x=2)$. This shows that 1 is the greatest element and 2 is the least element of the poset. The Hasse diagram of the poset (A, \leq) is given by

Diagram 2.1

We have $\mathrm{A} \times \mathrm{A}=\left\{\mathrm{a}_{1}=(1,1), \quad \mathrm{a}_{2}=(1,0), \quad \mathrm{a}_{3}=(1,2), \quad \mathrm{a}_{4}=(0,1), \quad \mathrm{a}_{5}=(0,0)\right.$, $\left.\mathrm{a}_{6}=(0,2), \mathrm{a}_{7}=(2,1), \mathrm{a}_{8}=(2,0), \mathrm{a}_{9}=(2,2)\right\}$ is a Pre A^{*}-algebra under point wise operation and A $\times \mathrm{A}$ is having four central elements and remaining are non central elements, among that $\mathrm{a}_{9}=(2,2)$ is satisfying the property that $\mathrm{a}_{9}{ }^{\sim}=\mathrm{a}_{9}$. The Hasse diagram is of the poset $(\mathrm{A} \times \mathrm{A}, \leq)$ given below

Observe that, $x \leq a_{1}, x \wedge a_{1}=a_{1} \wedge x=x$ and $a_{9} \leq x\left(x \wedge a_{9}=a_{9} \wedge x=a_{9}\right)$ for all $x \in A \times A$. This shows that a_{1} is the greatest element and a_{9} is the least element of $A \times A$.

We have $\mathbf{2} \times \mathbf{3}=\left\{a_{1}=(1,1), a_{2}=(0,0), a_{3}=(1,0), a_{4}=(0,1), a_{5}=(2,2)\right.$,
$\left.a_{6}=(1,2)\right\}$ is a Pre A^{*}-algebra under point wise operation having four central elements, two noncentral elements and no element is satisfying the property that $\mathrm{a}^{\sim}=\mathrm{a}$.
The Hasse diagram for $(\mathbf{2} \times \mathbf{3}, \leq)$ as given below

Observe that, $x \leq a_{1}$, that is, $x \wedge a_{1}=a_{1} \wedge x=x$ and $a_{5} \leq x\left(x \wedge a_{5}=a_{5} \wedge x=a_{5}\right)$ for all $x \in \mathbf{2} \times \mathbf{3}$. This shows that a_{1} is the greatest element and a_{5} is the least element of $\mathbf{2} \times \mathbf{3}$.
2. 1. Theorem: In the partially ordered set (A, \leq), for any $x \in A$, supremum of $\left\{x, x^{\sim}\right\}=x \vee x^{\sim}$ and infimum $\left\{x, x^{\sim}\right\}=x \wedge x^{\sim}$.

Proof: We have $\left(x \vee x^{\sim}\right) \wedge x=x$ and $x^{\sim} \wedge\left(x \vee x^{\sim}\right)=x^{\sim}$
Therefore $\mathrm{x} \leq \mathrm{x} \vee \mathrm{X}^{\sim}$ and $\mathrm{x}^{\sim} \leq \mathrm{x} \vee \mathrm{x}^{\sim}$
Hence $x \vee x^{\sim}$ is an upper bound of $\left\{x, x^{\sim}\right\}$
Suppose n is an upper bound of $\left\{x, x^{\sim}\right\}$
That is, $\mathrm{x} \leq \mathrm{n}, \mathrm{x}^{\sim} \leq \mathrm{n} \Rightarrow \mathrm{n} \wedge \mathrm{x}=\mathrm{x}$, and $\mathrm{n} \wedge \mathrm{x}^{\sim}=\mathrm{x}^{\sim}$
Now $n \wedge\left(x \vee x^{\sim}\right)=(n \wedge x) \vee\left(n \wedge x^{\sim}\right)=x \vee x^{\sim}$
This shows that $\mathrm{x} \vee \mathrm{x}^{\sim} \leq \mathrm{n}$
Therefore $x \vee x^{\sim}$ is a least upper bound of $\left\{x, x^{\sim}\right\}$
This shows that supremum of $\left\{x, x^{\sim}\right\}=x \vee x^{\sim}$
Again we have $\left(x \wedge x^{\sim}\right) \wedge x=x \wedge x^{\sim}$ and $\left(x \wedge x^{\sim}\right) \wedge x^{\sim}=x \wedge x^{\sim}$
Therefore $\mathrm{x} \wedge \mathrm{x}^{\sim} \leq \mathrm{x}$ and $\mathrm{x} \wedge \mathrm{x}^{\sim} \leq \mathrm{x}^{\sim}$
Hence $x \wedge x^{\sim}$ is a lower bound of $\left\{x, x^{\sim}\right\}$
Suppose m is a lower bound of $\left\{x, x^{\sim}\right\}$
That is, $m \leq x, m \leq x^{\sim} \Rightarrow m \wedge x=m$, and $m \wedge x^{\sim}=m$
Now $m \wedge\left(x \wedge x^{\sim}\right)=(m \wedge x) \wedge x^{\sim}=m \wedge x^{\sim}=m$
This shows that $m \leq x \wedge x^{\sim}$
Therefore $x \wedge x^{\sim}$ is a greatest lower bound of $\left\{x, x^{\sim}\right\}$
This shows that infimum of $\left\{x, x^{\sim}\right\}=x \wedge x^{\sim}$
2. 2. Theorem: In a poset (A, \leq) with 1 , for any $x, y \in A, \operatorname{Inf}\{x, y\}=x \wedge y$.

Proof: We have $(x \wedge y) \wedge x=x \wedge y$ and $(x \wedge y) \wedge y=x \wedge y$
Therefore $x \wedge y \leq x$ and $x \wedge y \leq y$.
Hence $x \wedge y$ is a lower bound of $\{x, y\}$
Suppose m is a lower bound of $\{x, y\}$
That is, $m \leq x, m \leq y \Rightarrow m \wedge x=m$ and $m \wedge y=m$
Now $m \wedge(x \wedge y)=(m \wedge x) \wedge y=m \wedge y=m$.
This shows that $m \leq x \wedge y$
Therefore $x \wedge y$ is a greatest lower bound of $\{x, y\}$
This shows that infimum of $\{x, y\}=x \wedge y$.
In general for a Pre A^{*}-algebra with 1 , $x \vee y$ need not be the l.u.b of $\{x, y\}$ in (A, \leq). For example $2 \vee x=2 \wedge x=2, \forall x \in A$ is not a least upper bound. However we have the following theorem.
2. 3. Theorem: In a poset (A, \leq) with 1 , for any $x, y \in B(A), \sup \{x, y\}=x \vee y$.

Proof: If $x, y \in B(A)$, then we have, $x \wedge(x \vee y)=x$ and $y \wedge(x \vee y)=y$
This shows that $x \leq x \vee y$ and $y \leq x \vee y$
Hence $x \vee y$ is an upper bound of $\{x, y\}$

D. Kalyani et al.

Suppose z is an upper bound of $\{\mathrm{x}, \mathrm{y}\}$, then $\mathrm{z} \wedge \mathrm{x}=\mathrm{x}, \mathrm{z} \wedge \mathrm{y}=\mathrm{y}$
Now $z \wedge(x \vee y)=(z \wedge x) \vee(z \wedge y)=x \vee y$
Therefore, $\mathrm{x} \vee \mathrm{y} \leq \mathrm{z}$.
Hence $\sup \{x, y\}=x \vee y$.
2.4 Theorem: In the poset (A, \leq), if $x, y \in B(A)$, then $x \vee y \leq x \vee x^{\sim}$.

Proof: $\left(x \vee x^{\sim}\right) \wedge(x \vee y) \quad=\{x \wedge(x \vee y)\} \vee\left\{x^{\sim} \wedge(x \vee y)\right\}$

$$
=x \vee\left(x^{\sim} \wedge y\right)
$$

$$
=x \vee y
$$

Therefore $\mathrm{x} \vee \mathrm{y} \leq \mathrm{x} \vee \mathrm{x}^{\sim}$
2.5. Theorem: In the poset (A, \leq), if $x \leq y$, then for any $z \in A$,
(a) $\mathrm{z} \wedge \mathrm{X} \leq \mathrm{z} \wedge \mathrm{y}$
(b) $\mathrm{z} \vee \mathrm{x} \leq \mathrm{z} \vee \mathrm{y}$

Proof: If $x \leq y$, then $x \wedge y=x$
(a) $(\mathrm{z} \wedge \mathrm{x}) \wedge(\mathrm{z} \wedge \mathrm{y})=\{(\mathrm{z} \wedge \mathrm{x}) \wedge \mathrm{z}\} \wedge \mathrm{y}=(\mathrm{z} \wedge \mathrm{x}) \wedge \mathrm{y}=\mathrm{z} \wedge \mathrm{x}$.

Therefore $\mathrm{z} \wedge \mathrm{x} \leq \mathrm{z} \wedge \mathrm{y}$
(b) $(\mathrm{z} \vee \mathrm{x}) \wedge(\mathrm{z} \vee \mathrm{y})=\mathrm{z} \vee(\mathrm{x} \wedge \mathrm{y})=\mathrm{z} \vee \mathrm{x}$

Therefore $\mathrm{z} \vee \mathrm{x} \leq \mathrm{z} \vee \mathrm{y}$
Now we are giving the following equivalent conditions for $x \leq y$.
2. 2. Lemma: In a Pre A^{*}-algebra (i) $x \leq y \Leftrightarrow x \wedge\left(x^{\sim} \vee y\right)=\left(x^{\sim} \vee y\right) \wedge x=x$
(ii) $x \leq y \Leftrightarrow y \wedge\left(y^{\sim} \vee x\right)=\left(y^{\sim} \vee x\right)=\left(y^{\sim} \vee x\right) \wedge y=x$

Proof: (i) If $x \leq y$

$$
\begin{aligned}
& \Leftrightarrow x \wedge y=x \\
& \Leftrightarrow x \wedge(x \sim y)=(x \sim \vee y) \wedge x=x
\end{aligned}
$$

(ii) If $x \leq y \Leftrightarrow y \wedge x=x$

$$
\Leftrightarrow y \wedge\left(y^{\sim} \vee x\right)=\left(y^{\sim} \vee x\right) \wedge y=x
$$

Now we prove modular type results in the following lemma.
2.3 Lemma: In the poset (A, \leq), if $x \leq y \Rightarrow x \vee(y \wedge z)=y \wedge(x \vee z)$.

Proof: Suppose $x \leq y$ then $y \wedge x=x$
Now $y \wedge(x \vee z)=(y \wedge x) \vee(y \wedge z)=x \vee(y \wedge z)$
If $x, y \in B(A)$ then by theorem 2. 3 , $\sup \{x, y\}=x \vee y$. In general $x \vee y$ need not be an upper bound of $\{x, y\}$ in poset (A, \leq). If $x \vee y$ is an upper bound of $\{x, y\}$ in poset (A, \leq), then A becomes Boolean algebra. Now we have the following theorem.
2.6. Theorem: If A is a Pre A^{*}-algebra and $x \wedge(x \vee y)=x$ for all $x, y \in A$ then (A, \leq) is a lattice.

Proof: By Theorem 2.2, we have every pair of elements have g.l.b and if $x \wedge(x \vee y)=x$ for all $x, y \in A$, then by theorem 2.3 we have every pair of elements have l.u.b. Hence (A, \leq) is a lattice.

Now we present an equivalent condition for a Pre A^{*}-algebra become a Boolean algebra.
2.7. Theorem: The following conditions are equivalent for any Pre A^{*}-algebra $\left(A, \wedge, \vee,(-)^{\sim}\right)$.
(1) A is a Boolean Algebra
(2) $x \leq x \vee y$ for all $x, y \in A$
(3) $y \leq x \vee y$ for all $x, y \in A$
(4) $x \vee y$ is an upper bound of $\{x, y\}$ in (A, \leq) for all $x, y \in A$
(5) $x \vee y$ is an supremum of $\{x, y\}$ in (A, \leq) for all $x, y \in A$
(6) $\mathrm{x} \vee \mathrm{x}^{\sim}$ is the greatest element in (A, \leq) for every $\mathrm{x} \in \mathrm{A}$

Proof: (1) \Rightarrow (2) Suppose A be a Boolean algebra
Now $x \wedge(x \vee y)=x$ (by absorption law)
Hence $x \leq x \vee y$.
(2) \Rightarrow (3) suppose $x \leq x \vee y$ then $x \wedge(x \vee y)=x$

Now $y \wedge(x \vee y)=y$. Therefore $y \leq x \vee y$.
(3) \Rightarrow (4) Suppose that $y \leq x \vee y \Rightarrow y \wedge(x \vee y)=y$

Since $y \leq x \vee y$ then $x \vee y$ is upper bound of y
Now $x \wedge(x \vee y)=x$ (by supposition)
Therefore $x \leq x \vee y \Rightarrow x \vee y$ is upper bound of x
Hence $x \vee y$ is an upper bound of $\{x, y\}$.
(4) $\Rightarrow \mathbf{(5)}$ suppose $x \vee y$ is an upper bound of $\{x, y\}$

Suppose z is an upper bound of $\{x, y\}$, then $\mathrm{x} \leq \mathrm{z}, \mathrm{y} \leq \mathrm{z}$ that is $\mathrm{x} \wedge \mathrm{z}=\mathrm{x}, \quad \mathrm{y} \wedge \mathrm{z}=\mathrm{y}$
Now $z \wedge(x \vee y)=(z \wedge x) \vee(z \wedge y)=x \vee y$
Therefore $\mathrm{X} \vee \mathrm{y} \leq \mathrm{Z}$. Hence $\sup \{\mathrm{x}, \mathrm{y}\}=\mathrm{x} \vee \mathrm{y}$.
(5) \Rightarrow (6) suppose $\sup \{\mathrm{x}, \mathrm{y}\}=\mathrm{x} \vee \mathrm{y}$ then $\mathrm{x}, \mathrm{y} \in B(A)$

Now $\sup \left\{x \vee x^{\sim}, y\right\}=x \vee x^{\sim} \vee y=x \vee x^{\sim}$
$\Rightarrow \mathrm{y} \leq \mathrm{x} \vee \mathrm{x}^{\sim}$
Therefore $\mathrm{x} \vee \mathrm{x}^{\sim}$ is the greatest element in (A, \leq).
(6) \Rightarrow (1) suppose $x \vee x^{\sim}$ is the greatest element in A then $y \leq x \vee x^{\sim}$
$\Rightarrow\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right) \wedge \mathrm{y}=\mathrm{y}$
Now $y \vee(x \wedge y)=\left[\left(x \vee x^{\sim} \wedge y\right] \vee(x \wedge y)=\left[\left(x \vee x^{\sim}\right) \vee x\right] \wedge y\right.$
$=\left(x \vee x^{\sim}\right) \wedge y=y \quad$ (by supposition)
Therefore absorption law holds hence A is a Boolean algebra.
2.8. Theorem: Let A be a pre A^{*}-algebra if $x \wedge x^{\sim}$ is the least element in
(A, \leq) for every $\mathrm{x} \in \mathrm{A}$, then A is a Boolean algebra.
Proof: Suppose $\mathrm{x} \wedge \mathrm{x}^{\sim}$ is the least element in (A, \leq) then $\mathrm{x} \wedge \mathrm{x}^{\sim} \leq \mathrm{y}$
$\Rightarrow\left(x \wedge x^{\sim}\right) \wedge y=x \wedge x^{\sim}$
Now $x \wedge(x \vee y)=\left[x \vee\left(x^{\sim} \wedge x\right)\right] \wedge(x \vee y)$
$=x \vee\left[\left(x \wedge x^{\sim}\right) \wedge y\right]$
$=\mathrm{x} \vee\left(\mathrm{x} \wedge \mathrm{x}^{\sim}\right)$ (by supposition)
$=\mathrm{x}$
Therefore $\mathrm{x} \wedge(\mathrm{x} \vee \mathrm{y})=\mathrm{x}$, absorption law holds.
Therefore A is a Boolean algebra.
2.9. Theorem: Let A be a Pre A^{*}-algebra and $\mathrm{a} \in \mathrm{A}$. Let
$A_{a}=\{\mathrm{x} \in \mathrm{A} / \mathrm{a} \wedge \mathrm{x}=\mathrm{x}\}$.Then A_{a} is closed under the operations \wedge and \vee. Also for any $\mathrm{x} \in A_{a}$ define, $x^{a}=\mathrm{a} \wedge \mathrm{x}^{\sim}$. Then $\left(A_{a}, \wedge, \vee,^{\mathrm{a}}\right)$ is a Pre A^{*}-algebra with 1 (here a is itself is the identity for \wedge in A_{a}; that is 1 in A_{a}).

Proof: Let $x, y \in A_{a}$. Then $\mathrm{a} \wedge \mathrm{x}=\mathrm{x}$ and $\mathrm{a} \wedge \mathrm{y}=\mathrm{y}$.
Now $\mathrm{a} \wedge(\mathrm{x} \wedge \mathrm{y})=(\mathrm{a} \wedge \mathrm{x}) \wedge \mathrm{y}=\mathrm{x} \wedge \mathrm{y} \Rightarrow \mathrm{x} \wedge \mathrm{y} \in A_{a}$
Also $\mathrm{a} \wedge(\mathrm{x} \vee \mathrm{y})=(\mathrm{a} \wedge \mathrm{x}) \vee(\mathrm{a} \wedge \mathrm{y})=\mathrm{x} \vee \mathrm{y} \Rightarrow \mathrm{x} \vee \mathrm{y} \in A_{a}$
Therefore A_{a} is closed under the operation \wedge and \vee.
$\mathrm{a} \wedge x^{a}=\mathrm{a} \wedge\left(\mathrm{a} \wedge \mathrm{x}^{\sim}\right)=\mathrm{a} \wedge \mathrm{x}^{\sim}=x^{a} \Rightarrow x^{a} \in A_{a}$
Thus A_{a} is closed under ${ }^{\text {a }}$.
Now for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in A_{a}$
(1) $x^{a a}=\left(a \wedge x^{\sim}\right)^{a}=a \wedge\left(a \wedge x^{\sim}\right)^{\sim}=a \wedge\left(a^{\sim} \vee x\right)=a \wedge x=x$
(2) $x \wedge x=(a \wedge x) \wedge(a \wedge x)=a \wedge x=x$
(3) $x \wedge y=(a \wedge x) \wedge(a \wedge y)=(a \wedge y) \wedge(a \wedge x)=y \wedge x$
(4) $(x \wedge y)^{a}=a \wedge(x \wedge y)^{\sim}=a \wedge\left(x \sim y^{\sim}\right)$

$$
\begin{aligned}
& =\left(a \wedge x^{\sim}\right) \vee\left(a \wedge y^{\sim}\right) \\
& =x^{a} \vee y^{b}
\end{aligned}
$$

(5) $x \wedge(y \wedge z)=(a \wedge x) \wedge\{(a \wedge y) \wedge(a \wedge z)\}$

$$
\begin{aligned}
& =a \wedge\{x \wedge(y \wedge z)\} \\
& =a \wedge\{(x \wedge y) \wedge z\}(\text { since } x, y, z \in A) \\
& =(x \wedge y) \wedge z
\end{aligned}
$$

(6) $x \wedge(y \vee z)=(a \wedge x) \wedge\{(a \wedge y) \vee(a \wedge z)\}$

$$
=\{(\mathrm{a} \wedge \mathrm{x}) \wedge(\mathrm{a} \wedge \mathrm{y})\} \vee\{(\mathrm{a} \wedge \mathrm{x}) \wedge(\mathrm{a} \wedge \mathrm{z})\}
$$

$$
=\{\mathrm{a} \wedge(\mathrm{x} \wedge \mathrm{y})\} \vee\{(\mathrm{a} \wedge(\mathrm{x} \wedge \mathrm{z})\}
$$

$$
=(x \wedge y) \vee(x \wedge z)
$$

(7) $x \wedge\left(x^{a} \vee y\right)=x \wedge\left\{\left(a \wedge x^{\sim}\right) \vee y\right\}$

$$
\begin{aligned}
& =\left\{\mathrm{x} \wedge\left(\mathrm{a} \wedge \mathrm{x}^{\sim}\right)\right\} \vee(\mathrm{x} \wedge \mathrm{y}) \\
& =\left(\mathrm{x} \wedge \mathrm{x}^{\sim}\right) \vee(\mathrm{x} \wedge \mathrm{y})(\text { since } \mathrm{a} \wedge \mathrm{x}=\mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
& =x \wedge(x \sim y) \\
& =x \wedge y
\end{aligned}
$$

Finally $\mathrm{x} \in A_{a}$ implies that $\mathrm{a} \wedge \mathrm{x}=\mathrm{x}=\mathrm{x} \wedge \mathrm{a}$. Thus $\left(A_{a}, \wedge, \vee{ }^{\mathrm{a}}{ }^{\prime}\right)$ is a Pre A^{*}-algebra with a as identity for \wedge.
2.10. Theorem: Let a, b be elements in a Pre A^{*}-algebra A such that $a \leq b$. Then the following hold.
(1) $a \wedge b=a$
(2) The map $\alpha_{a, b}: A_{b} \rightarrow A_{a}$ defined by $\alpha_{a, b}(\mathrm{x})=\mathrm{a} \wedge \mathrm{x}$ for all $\mathrm{x} \in A_{b}$ is a homomorphism of Pre A^{*}-algebras.
(3) $\alpha_{a, b}\left(\mathrm{~B}\left(A_{b}\right)\right) \subseteq \mathrm{B}\left(A_{a}\right)$
(4)If $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$ then $\alpha_{a, b}$ o $\alpha_{b, c}=\alpha_{a, c}$
(5) $\alpha_{a, a}$ is the identity map on A_{a}

Proof: Suppose that $a \leq b$
(1) We have $a \leq b \Rightarrow a \wedge b=\mathrm{a}$
(2) Let $\mathrm{x}, \mathrm{y} \in A_{b}$.Then $\alpha_{a, b}(\mathrm{x} \wedge \mathrm{y})=\mathrm{a} \wedge(\mathrm{x} \wedge \mathrm{y})$

$$
\begin{aligned}
& =(\mathrm{a} \wedge \mathrm{x}) \wedge(\mathrm{a} \wedge \mathrm{y}) \\
& =\alpha_{a, b}(\mathrm{x}) \wedge \alpha_{a, b}
\end{aligned}
$$

and $\alpha_{a, b}(\mathrm{x} \vee \mathrm{y})=\mathrm{a} \wedge(\mathrm{x} \vee \mathrm{y})$

$$
\begin{aligned}
& =(\mathrm{a} \wedge \mathrm{x}) \vee(\mathrm{a} \wedge \mathrm{y}) \\
& =\alpha_{a, b}(\mathrm{x}) \vee \alpha_{a, b}
\end{aligned}
$$

Also $\alpha_{a, b}\left(\mathrm{x}^{\mathrm{b}}\right)=\mathrm{a} \wedge \mathrm{x}^{\mathrm{b}}$

$$
\begin{aligned}
& =a \wedge\left(b \wedge x^{\sim}\right) \\
= & (a \wedge b) \wedge x^{\sim} \\
= & a \wedge x^{\sim} \\
= & a \wedge\left(a^{\sim} \vee x^{2}\right) \\
= & a \wedge(a \wedge x)^{\sim} \\
= & (a \wedge x)^{a} \\
= & \left(\alpha_{a, b}(x)\right)^{a}
\end{aligned}
$$

Therefore $\alpha_{a, b}$ is a homomorphism of Pre A^{*}-algebras.
(3) Let $\mathrm{x} \in \mathrm{B}\left(A_{b}\right)$.

Then $\mathrm{x} \vee \mathrm{x}^{\mathrm{b}}=\mathrm{b}$ (since b is identity in $\left.A_{b}\right)$ and therefore $\mathrm{b}=\mathrm{x} \vee\left(\mathrm{b} \wedge \mathrm{x}^{\sim}\right)$

$$
\begin{align*}
& \text { Now } \mathrm{b}=b \wedge b=\mathrm{b} \wedge\left(\mathrm{x} \vee\left(\mathrm{~b} \wedge \mathrm{x}^{\sim}\right)\right) \\
& =(b \wedge x) \vee\left(b \wedge x^{\sim}\right) \\
& =\mathrm{b} \wedge\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right) \tag{i}\\
& \text { Now } \alpha_{a, b}(\mathrm{x}) \vee\left[\alpha_{a, b}(\mathrm{x})\right]^{\mathrm{a}}=(\mathrm{a} \wedge \mathrm{x}) \vee(\mathrm{a} \wedge \mathrm{x})^{\mathrm{a}} \\
& =(a \wedge x) \vee\left[a \wedge(a \wedge x)^{\sim}\right] \\
& =(\mathrm{a} \wedge \mathrm{x}) \vee\left[\mathrm{a} \wedge\left(\mathrm{a}^{\sim} \vee \mathrm{x}^{\sim}\right)\right] \\
& =a \wedge\left[x \vee\left(a^{\sim} \vee x^{\sim}\right)\right] \\
& =a \wedge\left[a^{\sim} \vee\left(x \vee x^{\sim}\right)\right] \\
& =\mathrm{a} \wedge\left(x \vee x^{\sim}\right) \\
& =(\mathrm{a} \wedge \mathrm{~b}) \wedge\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right) \\
& =\mathrm{a} \wedge\left[\mathrm{~b} \wedge\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right)\right] \\
& =\mathrm{a} \wedge \mathrm{~b} \quad(\mathrm{by}(\mathrm{i})) \\
& =\mathrm{a} \text {, which is } 1 \text { in } A_{a}
\end{align*}
$$

Therefore $\alpha_{a, b}(\mathrm{x}) \in \mathrm{B}\left(A_{a}\right)$
Thus $\alpha_{a, b}\left(\mathrm{~B}\left(A_{b}\right)\right) \subseteq \mathrm{B}\left(A_{a}\right)$
(4)Let $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$
$\left[\alpha_{a, b} \circ \alpha_{b, c}\right](\mathrm{x})=\alpha_{a, b}\left[\alpha_{b, c}(\mathrm{x})\right]$

$$
\begin{aligned}
& =\alpha_{a, b}[\mathrm{~b} \wedge \mathrm{x}] \\
& =\mathrm{a} \wedge \mathrm{~b} \wedge \mathrm{x} \\
& =\mathrm{a} \wedge \mathrm{x} \\
& =\alpha_{a, c}(\mathrm{x})
\end{aligned}
$$

Therefore $\alpha_{a, b}$ o $\alpha_{b, c}=\alpha_{a, c}$
(5) $\alpha_{a, a}(\mathrm{x})=\mathrm{a} \wedge \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in A_{a}$

Then $\alpha_{a, a}$ is identity map on A_{a}.

3. Conclusion

This manuscript illustrates the nature of the Pre-A*-algebra like a partially ordered set. With respect to binary operation \wedge, defined a relation \leq on a Pre- A^{*}-algebra and observed that such a Pre-A*-algebra as a partially ordered set with respect to the relation \leq and derived corresponding results. It has been observed a necessary condition for a Pre- A^{*}-algebra to become a lattice with respect to binary operation \wedge. For any $\mathrm{a} \in \mathrm{A}$ defined a set $A_{a}=\{\mathrm{x} \in \mathrm{A} / \mathrm{a} \wedge \mathrm{x}=\mathrm{x}\}$ and $x^{a}=\mathrm{a} \wedge \mathrm{x}^{\sim}$, observed that $\left(A_{a}, \wedge, \vee,{ }^{\mathrm{a}}\right)$ is a Pre A^{*}-algebra. Also by defining a mapping $\alpha_{a, b}$ from A_{b} to A_{a} by $\alpha_{a, b}(\mathrm{x})=\mathrm{a} \wedge \mathrm{x}$ for all $\mathrm{x} \in A_{b}$, confirmed a homomorphism of Pre A^{*}-algebras.

References

[1] Fernando Guzman and Craig C.Squir (1990): The Algebra of Conditional logic, Algebra Universalis 27, 88-110.
[2] Koteswara Rao. P (1994), A*-Algebra, an If-Then-Else structures (Doctoral Thesis) Nagarjuna University, A.P., India.
[3] Manes E.G (1989): The Equational Theory of Disjoint Alternatives, Personal Communication to Prof.N.V.Subrahmanyam.
[4] Manes E.G (1993): Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30, 373-394.
[5] Venkateswara Rao.J.(2000), On A*-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.
[6] Venkateswara Rao.J, Praroopa.Y (2006) "Boolean algebras and Pre A*-Algebras", Acta Ciencia Indica (Mathematics), (ISSN: 0970-0455), 32: pp 71-76.
[7] Satyanarayana.A, (2012), Algebraic Study of Certain Classes of Pre A*-Algebras and CAlgebras (Doctoral Thesis), Nagarjuna University, A.P., India

AUTHORS' BIOGRAPHY

D.Kalyani has been working as Lecturer in Mathematics, Govt. College for Women, Guntur, Andhra Pradesh, India since 1998. Her articles (3articles) were published in international journals.

Prof.J.Venkateswara Rao has been working as a Professor of Mathematics at Mekelle University, Mekelle, Ethiopia since 2009. His total teaching experience is 21 years. He rendered his services in various positions like Professor \& Principal, Reader \& Head, Lecturer and Teaching Assistant. His articles more than 80 were published in International Journals of repute. He produced 8 Ph. Ds' and 19 M. Phils'. He was appointed as editorial board member and reviewer for a good number of International Journals. He evaluated Ph.D. theses from various Indian Universities as an external examiner.

