Initial-Oblique Derivative Boundary Value Problem for Nonlinear Parabolic Equations of Second Order

Guochun Wen
LMAM, School of Mathematical Sciences,
Peking University, Beijing, China
wengc@math.pku.edu.cn

Abstract

In this article, we discuss that an initial-oblique derivative boundary value problem for nonlinear uniformly parabolic complex equation of second order

$A_{0} u_{z \tilde{z}}-\operatorname{Re}\left[Q u_{z z}+A_{I} u_{z}\right]-\hat{A} u-u_{t}=A_{3}+G\left(z, t, u, u_{z}\right)$ in G,
In a multiply connected domain, the above boundary value problem will be called problem O. If the above complex equation satisfies the conditions similar to Condition C^{l} and (1.12), and the boundary conditions satisfy the conditions similar to (1.4)-(1.7) and (1.11) below, then we can obtain some solvability results of Problem O in G.

Keywords: Initial-oblique derivative problem, nonlinear parabolic complex ,equations,, multiply connected domains

AMS Mathematics Subject Classification: 35K60, 35K55, 35K20
1.FORMULATION OF INITIAL-OBLIQUE DERIVATIVE PROBLEMS FOR SECOND ORDER

Parabolic Complex Equations

Let D be an $(N+1)$-connected bounded domain in the $z=x+$ iy plane C with the bounadary $\Gamma=$ $\sum_{j=0}^{N} \Gamma_{j} \epsilon C_{\mu}^{2}(0<\mu<1)$ Without loss of generality, we may consider that D is a circular domain in $|z|<1$ with the boundary $\Gamma=\sum_{j=0}^{N} \Gamma_{j}$ where $\Gamma_{j}=\left\{\left|\mathrm{z}-\mathrm{z}_{\mathrm{j}}\right|=\gamma_{\mathrm{j}}\right\}, j=0,1, \ldots, N, \Gamma_{0}=\Gamma_{N+1}=\{|z|$ $=1\}$ and $z=0 \in D$. Denote $G=D \times 1$, in which $I=\{0<t \leq T\} \cdot$ Here T is a positive constant, and $\partial G=\partial G_{1} U \partial G_{2}$ is the parabolic boundary of G, where $\partial G_{1}, \partial G_{2}$ are the bottom $\{z \in D, t=0\}$ and the lateral boundary $\{z \in \Gamma, t \in \overline{\mathrm{I}}\}$ of the domain G respectively.

We consider the nonlinear nondivergent parabolic equation of second order
$\Phi\left(\mathrm{x}, \mathrm{y}, \mathrm{t}, \mathrm{u}, \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{xx}}, \mathrm{u}_{\mathrm{xy}}, \mathrm{u}_{\mathrm{yy}}\right)-\mathrm{u}_{\mathrm{t}}=0$ in G,
Where Φ is a real-valued function of $x, y, t(\epsilon G), u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}(\epsilon \mathrm{R})$. Under certain conditions, the equation (1.1) can be reduced to the complex form
$A_{0} u_{z \tilde{z}}-\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-\hat{A}_{2} u-u_{t}=A_{3}$,
Where $z=x+\mathrm{i} y, \Phi=\Psi\left(z, t, u, u_{z}, u_{z z}, u_{z \tilde{z}}\right)$, and
$A_{0}=\int_{0}^{1} \Psi_{T u z z}\left(z, t, u, u_{z}, T u_{z z}, T u_{z \tilde{z}}\right) \mathrm{d} T=A_{0}\left(z, t, u, u_{z}, u_{z z}, u_{z \tilde{z}}\right)$,
$Q=-2 \int_{0}^{1} \Psi_{T u z z}\left(z, t, u, u_{z}, T u_{z z}, T u_{z \tilde{z}}\right) \mathrm{d} T=Q\left(z, t, u, u_{z}, u_{z z}, u_{z \tilde{z}}\right)$,
$A_{1}=-2 \int_{0}^{1} \Psi_{T u z}\left(z, t, u, T u_{z}, 0,0\right) \mathrm{d} T=A_{1}\left(z, t, u, u_{z}\right)$,
$\hat{A}_{2}=-\int_{0}^{1} \Psi_{T u}(z, t, T u, 0,0,0) \mathrm{d} T=A_{2}(z, t, u)+|u|^{\sigma}$,
$A_{3}=-\Psi(z, t, 0,0,0,0)=A_{3}(z, t)$,
Where σ is a positive constant (see [4]).
Suppose that the equation (1.2) satisfies the following conditions, namely
Condition C. (1) $A_{0}\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right), Q\left(z, t, u, u_{z}, u_{z z}, u_{z \bar{z}}\right), A_{1}\left(z, t, u, u_{z}\right)$
$A_{2}(z, t, u), A_{3}(z, t)$ are measurable for any continuously differentiable function
$u(z, t) \in C^{l, 0}(\bar{G})$ and measurable functions $u_{z z}, u_{z \bar{z}} \in L_{2}\left(G^{*}\right)$ and satisfy the conditions
$0<\delta \leq A_{0} \leq \delta^{-1}$
$\left|A_{j}\right| \leq k_{0}, j=1,2, L_{p}\left[A_{3}, \bar{G}\right] \leq k_{1}, p>4$,
where G^{*} is any closed subset in the domain G.
(2) The above functions with respect to $u \in \mathrm{R}, u_{z} \in \mathrm{C}$ are continuous for almost every point $(z, t) \in$ G and $u_{z z} \in \mathrm{C}, u_{z \bar{z}} \in \mathrm{R}$.
(3) For almost every point $(z, t) \in G$ and $u \in \mathrm{R}, u_{z}, U^{j} \in \mathrm{C}, V^{j} \in \mathrm{R}, j=1,2$,

There is
$\Psi\left(z, t, u, u_{z}, U^{1}, V^{1}\right)-\Psi\left(z, t, u, u_{Z} U^{2}, V^{2}\right)$
$=\tilde{\mathrm{A}}_{0}\left(V^{1}-V^{2}\right)-\operatorname{Re}\left[\tilde{Q}\left(U^{1}-U^{2}\right)\right], \delta<\tilde{\mathrm{A}}_{0} \leq \delta^{-1}$,
$\operatorname{Sup}_{G}\left(\widetilde{A_{0}^{2}}+|\widetilde{Q}|^{2}\right){ }_{G}^{\inf } \widetilde{A_{0}^{2}} \leq q<4 / 3$,
In (1.4)-(1.7), $\delta(>0), q(\geq 1), k_{0}, k_{1}, p(>4)$ are non-negative constants. For instance the nonlinear parabolic complex equation
$U_{z \tilde{Z}}=G\left(z, t, u, u_{z}, u_{z z}\right)+\left(1+|u|^{4}\right) u+u_{t}$,
$G\left(z, t, u, u_{z}, u_{z \bar{Z}}\right)=\left\{\begin{array}{l}u_{Z \bar{z}}^{2} / 8 \text { for }\left|u_{z z}\right| \leq 1, \\ u_{\bar{Z} \bar{Z}}^{-2} / 8 \text { for }\left|u_{z Z}\right|>1,\end{array}\right.$
satisfies Condition C. In this article, the notations are the same as in References [1-8].
Now we explain the derivation of $3 / 4$ in the condition (1.7). Let $\mathrm{A}=r \inf _{G}^{\inf } A_{0}^{2}>0$, thus ${ }_{G}^{\inf } \tilde{A}^{2}=$ ${ }_{G}^{\inf } A_{0}^{2} / A={ }_{G}^{\inf } A_{0}^{2} /\left(r{ }_{G}^{\inf } A_{0}^{2}\right)=1 / r$. By the requirement below, we need the inequality $\eta=\operatorname{Sup}_{G}\left[\left(\tilde{A}_{0}-1\right)^{2}+|\tilde{Q}|^{2}\right]<1 / 4$, i.e. $\operatorname{Sup}_{G}\left[\widetilde{A_{0}^{2}}+|\tilde{Q}|^{2}-2 \tilde{A}_{0}\right]<1 / 4-1$,

Initial-Oblique Derivative Boundary Value Problem for Nonlinear Parabolic Equations of Second Order

Oblique derivative problem for parabolic equations
So it is sufficient that
$\frac{\operatorname{Sup}_{G}\left[A_{0}^{2}+|Q|^{2}\right]}{\mathrm{r}^{2}{ }_{G}^{2 n f} A_{0}^{2}}<\frac{2}{r}-\frac{3}{4}$ i.e. $\frac{\operatorname{Sup}_{G}\left[A_{0}^{2}+|Q|^{2}\right.}{\underset{G}{i n f} A_{0}^{2}}<2 \mathrm{r}-\frac{3}{4} \mathrm{r}^{2}=\mathrm{f}(\mathrm{r})$.
We can find the maximum of the function $f(r)=2 r-\left(3 r^{2}\right) / 4$ on $(0, \infty)$, due to $f^{\prime}(r)=2-(3 r) / 2=0$. It is easy to see that $f(r)$ takes its maximum on $(0, \infty)$ at the point $r=4 / 3$, and then $f(4 / 3)=2(4 / 3)$ $(3 / 4)(4 / 3)^{2}=4 / 3$, leading to the inequality (1.7). (see $|2,4|$)

In this article, we mainly discuss the nonlinear parabolic equation of second order
$A_{0} u_{z \bar{z}} \operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-\hat{A}_{2} u-u_{t}=A_{3}+F\left(z, t, u, u_{z}\right)$,
Satisfying Condition C^{\prime}, in which the coefficients $A_{j}(j=0,1,2,3), Q$ of equation (1.8) satisfy the conditions (1.4)-(1.7) and $F\left(z, t, u, u_{z}\right)$ satisfies the condition:
(4) $\left|F\left(z, u, u_{z}\right)\right| \leq B_{1}(z)\left|u_{z}\right|^{\eta}+B_{2}(z)|u|^{\mathrm{T}},\left|B_{j}\right| \leq k_{0}, j=1,2$,
for positive constants η, T, K_{0}. We can see that $F\left(z, t, u, u_{z}\right)$ implies the nonlinear items.
Problem O. The so-called initial-oblique derivative boundary value problem for the equation (1.8) is to find a continuous solution $u(z, t) \in C^{1,0}(\bar{G})$ of (1.8) in \bar{G} satisfying the initial-boundary conditions

$$
\left\{\begin{array}{c}
u(z, 0)=g(z) \text { on } \partial G_{1}=D \tag{1.10}\\
\frac{\partial u}{\partial v}+b_{1}(\mathrm{z}, \mathrm{t}) \mathrm{u}=b_{2}(\mathrm{z}, \mathrm{t}) \text { on } \partial G_{2} \text { i. e } \\
2 \operatorname{Re}\left[\overline{\lambda(z, t)} u_{z}\right]+b_{1}(z, t) u=b_{2}(z, t) \text { on } \partial G_{2}
\end{array}\right.
$$

Where v is the unit vector at every point on ∂G_{2} : There is no harm in assuming that v is parallel to the plane $t=0$. In addition, $g(z), b_{j}(z, t)(j=1,2)$ and $\lambda(z, t)=\cos (v, x)-\mathrm{i} \cos (v, y)$ are known functions satisfying the conditions

$$
\left\{\begin{array}{c}
C_{\alpha}^{2}\left[g, \partial \Gamma_{1}\right] \leq k_{2}, \frac{\partial g}{\partial v}+b_{1}(z, 0) g=b_{2}(z, 0) \text { on } \partial G_{1} \times\{t=0\} \tag{1.11}\\
C_{\alpha, \alpha / 2}^{1,0}\left[\eta, \partial G_{2}\right]=C_{\alpha, \frac{\alpha}{2}}^{0,0}\left[\eta, \partial G_{2}\right]+C_{\alpha, \frac{\alpha}{2}}^{0,0}\left[\eta_{z}, \partial G_{2}\right] \leq k_{0}, \eta=\left\{\mathrm{b}_{1}, \lambda\right\}, \\
C_{\alpha, \alpha / 2}^{2,1}\left[b_{2}, \partial G_{2}\right] \leq k_{3}, b_{1}(z, t) \geq 0, \cos (v, n)>0 \text { on } \partial G_{2}
\end{array}\right.
$$

In which n is the unit outward normal vector at every point on $\partial G_{2}, \alpha(1 / 2<\alpha<1), k_{0}, k_{2}, k_{3}$ are non-negative constants. The above initial-boundary value problem is the initial-oblique derivative boundary value problem (Problem O). In particular, Problem O with the condition $v=n, a_{1}(z, t)=$ 1, $a_{2}(z, t)=0$ on ∂G_{2} is the so-called initial-Neumann boundary value Problem, which will be called Problem N. Problem O for (1.2) with $A_{3}(z, t)=0$ and $g(z)=0, b_{2}(z, t)=0$ is called Problem O_{0}.

In order to discuss the uniqueness of solutions of Problem O for the equation (1.2), we add the condition: For any $u^{j} \in \mathrm{R}, u_{z}^{j}(j=1,2), U \in \mathrm{C} ; V \in \mathrm{R}$, there is
$\Psi\left(z, t, u^{1}, u_{z}^{1}, U, V\right)-\Psi\left(z, t, u^{2}, u_{z}^{2}, U, V\right)$
$=\tilde{A}_{0}\left(u_{1}-u_{2}\right)_{z \bar{z}}-\operatorname{Re}\left[\tilde{Q} u_{z z}+\tilde{A}_{1}\left(u^{1}-u^{2}\right)_{z}+\tilde{A}_{2}\left(u^{1}-u^{2}\right)\right]$ on ∂G_{2},
Where $\tilde{A}_{)}, \tilde{Q}$ satisfy (1.7) and $\tilde{A}_{j}(j=1,2)$ satisfy

$$
\begin{equation*}
\left|\tilde{A}_{j}\right|<\infty \operatorname{in} \bar{G}, j=1,2 \tag{1.13}
\end{equation*}
$$

Theorem 1.1. Suppose that the equation (1:2) satisfies Condition C and (1.12). Then the solution $u(z, t)$ of Problem O for (1:2) is unique. Moreover the homogenous Problem O (Problem O_{0}) of equation (1.2) with $\mathrm{A}_{3}=0$ only has the trivial solution E.

Proof. Let $u_{j}(j=1,2)$ be two solutions of Problem O for (1.2). It is easy to see that $u=u_{1}(z, t)-$ $u_{2}(z, t)$ is a solution of the following initial-boundary value problem
$\tilde{A}_{0} u_{z \bar{z}^{-}} \operatorname{Re}\left[\tilde{Q} u_{z z}+\tilde{A}_{2} u_{z}\right]-\tilde{A}_{3} u-u_{t}=0$ in G,

$$
\left\{\begin{array}{l}
u(z, 0)=0 \text { on } D \tag{1.14}\\
\frac{\partial u}{\partial \mathrm{v}}+b_{1}(z, t) u=0 \text { on } \partial \mathrm{G}_{2}
\end{array}\right.
$$

Where

$$
\left\{\begin{array}{c}
\tilde{A}_{0}=\int_{0}^{1} \Psi_{s}(z, t, v, p, q, s) \mathrm{dT}, s=u_{2 z \bar{z}}+T\left(u_{1}-u_{2}\right)_{z \bar{z}}, q=\mathrm{u}_{2 \mathrm{zz}}+T\left(u_{1}-u_{2}\right)_{\mathrm{zz}} \\
\tilde{Q}=-2 \int_{0}^{1} \Psi_{q}(z, t, v, p, q, s) \mathrm{d} T, p=u_{2 z}+\mathrm{T}\left(u_{1}-u_{2}\right)_{\mathrm{z}}, v=u_{2}+T\left(u_{1}-u_{2}\right) \\
\tilde{A}_{1}=-2 \int_{0}^{1} \Psi_{p}(z, t, v, p, q, s) \mathrm{d} T, \tilde{A}_{2}=\int_{0}^{1} \Psi_{v}(z, t, v, p, q, s) \mathrm{d} T
\end{array}\right.
$$

Introducing a transformation $v=v(z, t)=u \mathrm{e}^{-\mathrm{Bt}}$, where B is an undetermined real constant, the complex equation (1.14) and the initial-boundary condition (1.15) can be reduced to the form

$$
\begin{align*}
& \tilde{A}_{0} v_{z \bar{z}}-\operatorname{Re}\left[\tilde{Q} V_{z z}+\tilde{A}_{1} v_{z}\right]-\left(\tilde{A}_{2}+B\right) v-v_{t}=0, \tag{1.17}\\
& \left\{\begin{array}{l}
v(z, 0)=0 \text { in } D, \\
\frac{\partial u}{\partial v}+b 1(z, t) v=0 \text { on } \partial \mathrm{G}_{2} .
\end{array}\right. \tag{1.18}
\end{align*}
$$

Let the above equation be multiplied by v, thus an equation of v^{2} :
Oblique derivative problem for parabolic equations
$\frac{1}{2}\left[\tilde{A}_{0}\left(v^{2}\right)_{z \bar{z}}-\operatorname{Re}\left[\tilde{Q}\left(v^{2}\right)_{z z}-\left(v^{2}\right)_{t}\right]\right.$
$=\tilde{A}_{0}\left|v_{z}\right|^{2}-\operatorname{Re}\left[\tilde{Q}\left(v_{z}\right)^{2}+\frac{1}{2} \tilde{A}_{1} \operatorname{Re}\left(v^{2}\right)_{z}\right]+\left(\tilde{A}_{2}+B\right) v^{2}$
Can be obtained If the maximum of v^{2} occurs at an inner point $P_{0} \in G$ with $\left|l v\left(P_{0}\right)\right|^{2} \neq 0$, then in a neighborhood of P_{0}, the right hand side of (1.19) $\geq\left[B-k_{0}\right] v^{2}$. Moreover, we choose the constant B such that $B>k_{0}$. By using the maximum principle (see $[3,4]$), the function v^{2} cannot take the positive maximum in G. If v^{2} takes the positive maximum at a point $P_{0} \in \partial G_{2}$, then we have

$$
\begin{equation*}
\left.\left[\frac{l}{2} \frac{\partial \mathrm{u}^{2}}{\partial \mathrm{v}}+b_{1}(z, t) v^{2}\right]\right|_{P=P 0}>0 \tag{1.20}
\end{equation*}
$$

This contradicts (1.18). Hence we derive that $u=0$, i.e: $u_{1}-u_{2}=0$ in \bar{G}. Similarly we can prove the other part in this theorem.

2. A PRIOR ESTIMATE OF SOLUTIONS OF THE INITIAL-OBLIQUE DERIVATIVE PROBLEM OF SECOND ORDER PARABOLIC COMPLEX EQUATIONS

Theorem 2.1. If the equation (1.2) satisfies condition C, then the solution $u(z, t)$ of Problem O for (1.2) satisfies the estimate

$$
\begin{equation*}
\widehat{\mathrm{C}}_{\beta, \beta / 2}^{1,0}[\mathrm{u}, \overline{\mathrm{G}}]=\mathrm{C}_{\beta, \beta / 2}^{1,0}\left[|\mathrm{u}|^{\sigma+1}, \overline{\mathrm{G}}\right] \leq \mathrm{M}_{1}, \quad| | \mathrm{u}| |_{\mathrm{w}_{2}^{2,1}(\mathrm{G})} \leq \mathrm{M}_{2} \tag{2.1}
\end{equation*}
$$

Where $\beta(0<\beta \leq \alpha), \mathrm{k}=\mathrm{k}\left(\mathrm{k}_{0}, \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right) . \mathrm{M}_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}}(\delta, \mathrm{q}, \mathrm{p}, \beta, \mathrm{k}, \mathrm{G})(\mathrm{j}=1,2)$ are non-negative constants only dependent on $\delta, \mathrm{q}, \mathrm{p}, \beta, \mathrm{k}, \mathrm{G}$.

Proof. We shall prove that the following estimate holds
$\widehat{\mathrm{C}}^{1 ; 0}[\mathrm{u}, \widetilde{\mathrm{G}}]=\mathrm{C}^{1,0}\left[|\mathrm{u}|^{\sigma+1}, \overline{\mathrm{G}}\right] \leq \mathrm{M}_{3}=\mathrm{M}_{3}(\delta, \mathrm{q}, \mathrm{p}, \beta, \mathrm{k}, \mathrm{G})$,
If (2.2) is not true, then there exists a sequence of parabolic equations
$A_{0}^{m} u_{z \bar{z}}-\operatorname{Re}\left[Q^{m} u_{z z}+A_{1}^{m} u_{z}\right]-\hat{A}_{2}^{m} u-u_{t}=A_{3}^{m}$ in G,
and a sequence of initial-boundary conditions

$$
\left\{\begin{array}{l}
u(z, 0)=g^{m}(z) \text { on } D, \tag{2.4}\\
\frac{\partial u}{\partial v}+b_{1}^{m} u=b_{2}^{m} \text { on } \partial G_{2},
\end{array}\right.
$$

with $\left\{A_{0}^{m}\right\}$, $\left\{Q^{m}\right\},\left\{A_{1}^{m}\right\},\left\{\hat{A}_{2}^{m}\right\},\left\{A_{3}^{m}\right\}$ in G satisfying Condition C and $g^{m}, b_{1}^{m}, b_{2}^{m}$ satisfying (1.11), where $\left\{A_{0}^{m}\right\},\left\{Q^{m}\right\},\left\{A_{1}^{m}\right\},\left\{\hat{A}_{2}^{m}\right\},\left\{A_{3}^{m}\right\}$ in G weakly converge to $A_{0}^{0}, \mathrm{Q}^{0}, A_{1}^{0}, \hat{A}_{2}^{0}, A_{3}^{0}$ and $\left.\left\{g^{m}(z)\right\}, b_{1}^{m}(z, t)\right\}, b_{2}^{m}(z, t)$ in $D, \partial G_{2}$ uniformly converge to $\mathrm{g}^{0}(\mathrm{z}), b_{l}^{0}(z, t), b_{2}^{0}(z, t)$ respectively, and the initial-boundary value problem (2.3)-(2.4) have the solution $u^{m}(z, t) \in \hat{C}^{1,0}(\bar{G})(m=1,2$, \ldots.) such that $\hat{C}^{1,0}\left[u^{m}, \bar{G}\right]=H_{m} \rightarrow \infty$ as $m \rightarrow \infty$. There is no harm in assuming that $H_{m} \geq \max \left[k_{1}, k_{2}\right.$, $\left.k_{3}, 1\right]$. Let $U^{m}=u^{m} / H_{m}$, it is easy to see that U^{m} satisfies the complex equation and initialboundary conditions

$$
\left\{\begin{array}{c}
A_{0}^{m} U_{z Z}^{m}-\operatorname{Re}\left[Q^{m} U_{z \bar{z}}^{m}+A_{1}^{m} U_{z}^{m}\right]-\hat{A}_{2}^{m} U^{m}-U_{t}^{m}=A_{3}^{m} / H_{m} \text { in } G \tag{2.5}\\
U^{m}(z, 0)=g^{m}(z)=H_{m} \text { on } D \\
\frac{\partial U^{m}}{\partial v}+b_{1}^{m} U^{m}=b_{2}^{m} / H_{m} \text { on } \partial G_{2}
\end{array}\right.
$$

We can see that the some coefficients in the above equation and boundary conditions satisfy the condition C and

$$
\begin{aligned}
& \left|u^{(m)}\right|^{\sigma+1} / \mathrm{H}_{\mathrm{m}} \leq 1, L_{p}\left[A_{3}^{(m)} / H_{m}, \bar{G}\right] \leq 1 \\
& C_{a}\left[g^{(m)}(z) / H_{m}, D\right] \leq 1,\left|b_{2}^{(m)} / H_{m}\right| \leq 1
\end{aligned}
$$

Hence by Theorem 5.3.1, [7], we can obtain the estimates
$\hat{C}_{\beta, \beta / 2}^{1,0}\left[u^{m}, \bar{G}\right] \leq M_{4},\left|\left|u^{m}\right|\right|_{W_{2}^{2,1}(G)} \leq M_{5}$,
In which $\beta(0<\beta \leq \alpha), M_{j}=M_{j}(\delta, q, p, \beta, k, G)(j=4,5)$ are non-negative constants. Thus from $\left\{U^{m}\right\},\left\{U_{z}^{m}\right\}$ we can select the subsequences $\left\{U^{m_{k}}\right\},\left\{U_{Z}^{m_{k}}\right\}$ such that they uniformly converge to U^{0}, U_{z}^{0} in \bar{G} and $\left\{U_{z \bar{z}}^{m_{k}}\right\},\left\{U_{z z}^{m_{k}}\right\},\left\{U_{t}^{m_{k}}\right\}$ weakly converge to $U_{z \bar{z}}^{0}, U_{z z}^{0}, U_{t}^{0}$ in G respectively, and U^{0} is a solution of the following initial - boundary value problem

$$
\left\{\begin{array}{c}
A_{0}^{0} U_{z \tilde{Z}}^{0}-\operatorname{Re}\left[Q^{0} U_{z z}^{0}+A_{l}^{0} U_{z z}^{0}+\tilde{A}_{2}^{0} U^{0}\right]-U_{t}^{0}=0 \text { in } \mathrm{G} \\
\mathrm{U}^{0}(z, 0)=0 \text { on } \mathrm{D}, \tag{2.7}\\
\frac{\partial U_{0}}{\partial v}+b_{l}^{o} \mathrm{U}^{0}=0 \text { on } \partial \mathrm{G}_{2} .
\end{array}\right.
$$

From Theorem 1.1, we see that $U^{0}=0$. However, from $\hat{\mathcal{C}}^{1,0}\left[U^{m}, \bar{G}\right]=1$, there exists a point $\left(z^{*}, t^{*}\right)$ $\epsilon \bar{G}$, such that $\left|U^{0}\left(z^{*}, t^{*}\right)\right|+\left|U_{z}^{0}\left(z^{*}, t^{*}\right)\right|>0$. This contradiction shows that the estimate (2.2) is true. Moreover, by using the method from (2.2) to (2.6), two estimates in (2.1) can be derived.

Theorem 2.2. Suppose that Condition C^{\prime} holds. Then any solution $u(z, t)$ of Problem O for (1.8) satisfies the estimates
$\widehat{\mathrm{C}}_{\beta, \beta / 2}^{1,0}[\mathrm{u}, \overline{\mathrm{G}}]=\mathrm{C}_{\beta, \beta / 2}^{1,0}\left[\left|\mathrm{u}^{\sigma+1}, \overline{\mathrm{G}}\right|\right] \leq \mathrm{M}_{6} k^{\prime}, \quad| | \mathrm{u}| |_{\mathrm{w}_{2}^{2,1}(\mathrm{G})} \leq \mathrm{M}_{7} k^{\prime}$,
Where $\beta(0<\beta \leq \alpha), k^{\prime}=\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{0}\left(\left|\mathrm{u}_{\mathrm{z}}\right|^{\eta}+|\mathrm{u}|^{T}\right), \mathrm{M}_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}}\left(\delta, \mathrm{q}, \mathrm{p}, \beta, \mathrm{k}_{0}, \mathrm{G}\right)(\mathrm{j}=6,7)$ are nonnegative constants.

Proof. If $k^{\prime}=0$, i.e. $k_{0}=k_{1}=k_{2}=k_{3}=0$, from Theorem 1.1, it follows that $u(z)=0$ in \bar{G}. If $k^{\prime}>$ 0 , it is easy to see that $U(z)=u(z) / k^{\prime}$ satisfies the complex equation and boundary conditions

$$
\begin{equation*}
A_{0} U_{z \bar{z}} \operatorname{Re}\left[Q U_{z z}+A_{1} U_{z}\right]-\hat{A}_{2} U-U_{t}=\left[A_{3}+F\left(z, t, u, u_{z}\right)\right] / k^{\prime}, \tag{2.9}
\end{equation*}
$$

Oblique derivative problem for parabolic equations and

$$
\left\{\begin{array}{l}
U(z, 0)=\frac{g(z)}{k^{*}}, z \in D, \tag{2.10}\\
\frac{\partial U}{\partial v}+b_{1}(z, t) U=\frac{b_{z}(z, t)}{k^{*}},(z, t) \in \partial G_{2} .
\end{array}\right.
$$

Noting that

$$
L_{p}\left[A_{3}(z, t) / k^{\prime}, \bar{G}\right] \leq 1, C_{\alpha}^{1}\left[g / k^{\prime}, D\right] \leq 1, C_{\alpha, \alpha / 2}^{1,0}\left[b_{2} / k^{\prime}, \partial G_{2}\right] \leq 1,
$$

And according to the proof of Theorem 2.1, we have

$$
\hat{C}_{\beta, \beta / 2}^{1,0}[U, \bar{G}] \leq M_{6},\|U\|_{W_{2}^{2,1}(G)} \leq M_{7},
$$

From the above estimates, it immediately follows that two estimates in (2.8) hold.

3. Solvability of the inttial-oblique derivative problem of second order parabolic COMPLEX EQUATIONS

We consider the complex equation (1.8) namely the equation
$A_{0} u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}\right]-u_{t}=f\left(z, t, u, u_{z}\right), f\left(z, t, u, u_{z}\right)=$ Order
$=\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]+\hat{A}_{2} u+A_{3}+F\left(z, t, u, u_{z}\right)$ in G,
in which $A_{0}=A_{0}\left(z, t, u, u_{z}, u_{z z}\right), Q=Q\left(z, t, u, u_{z}, u_{z z}\right), A_{1}=A_{1}\left(z, t, u, u_{z}\right), \hat{A}_{2}=A_{2}(z, t, u)+|u|^{\sigma}$ $A_{3}=A_{3}(z, t)$.

Theorem 3.1. Suppose that equation (1.8) satisfies Condition C^{\prime}, and (1.12).
(1) When $0<\eta, T<1$, Problem O for (1.8) has a solution $u(z, t) \in C^{1,0}(\bar{G})$.
(2) When $\min (\eta, T)>1$, Problem O for (1.8) has a solution $u(z, t) \in C^{1,0}(\bar{G})$, provided that
$M_{8}=L_{p}\left[A_{3}, \bar{G}\right]+C_{\alpha}^{2}[\mathrm{~g}, \bar{D}]+C_{\alpha, \alpha / 2}^{2,1}\left[\mathrm{~b}_{2}, \partial \mathrm{G}_{2}\right]$
is small enough.
(3) When $F\left(z, t, u, u_{z}\right)$ in (1.8) possesses the form
$F\left(z, u, u_{z}\right)=\operatorname{Re} B_{1} u_{z}+B_{2} 1 u 1^{T}$ in D
In which $0<T<\infty, L_{p}\left[B_{j}, \bar{D}\right] \leq k_{0}(<\infty, p>4, j=1,2)$ with a positive constant k_{0}, if $T<1$, and if $T>1$ and M_{8} in (3.2) is small enough, then (1.8) has a solution $u(z, t) \in C^{1,0}(\bar{G})$.

Proof. (1) Consider the algebraic equation for t
$M_{6}\left[k_{1}+k_{0}\left(t^{\eta}+t^{\eta}\right)+k_{2}+k_{3}\right]=t$.
Because $0<\eta, T<1$, the the above equation has a solution $t=M_{9}>0$, which is also the maximum of t in $(0,+\infty)$. Now, we introduce a closed, bounded and convex subset B of the Banach space $C^{1,0}(\bar{G})$; whose elements are of the form $u(z)$ satisfying the condition
$C^{1,0}\left[1 u(z) l^{n+1}, \bar{G}\right] \leq M_{9}$.
We choose an arbitrary function $u(z) \in B$ and substitute it into the proper positions in the following equation and initial-boundary conditions (Problem O^{h}) with the parameter $h \in[0,1]$

$$
\left\{\begin{array}{c}
\mathrm{A}_{0} u_{z \tilde{z}}-\operatorname{Re}\left[u_{z z}\right]-\mathrm{u}_{\mathrm{t}}-\operatorname{hf}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}, \mathrm{u}_{\mathrm{z}}\right)=\mathrm{A}(\mathrm{z}, \mathrm{t}),(\mathrm{z}, \mathrm{t}) \in \mathrm{G} \tag{3.6}\\
u(z, 0)=g(z), z \in D \\
\frac{\partial u}{\partial v}+h b_{1}(z, t) u=b(z, t),(z, t) \in \partial G_{2}
\end{array}\right.
$$

where $A(z, t)$ are any measurable functions with the condition $A(z, t) \in L_{p}(\bar{G}), p>4$, and $b(z, t)$ is a continuously differentiable function with the condition $b(z, t) \in C_{\beta, \beta / 2}^{1,0}\left(\partial G_{2}\right)$. When $h=0$, according to Theorem 4.3,[4], we see that there exists a solution $u_{0}(z, t) \in B=\hat{C}_{\beta, \beta / 2}^{1,0}(\bar{G}) \cap W_{2}^{2.1}(G)$ of ProblemO ${ }^{0}$: Suppose that when $h=h_{0}\left(0 \leq h_{0}<1\right)$, Problem $\mathrm{O}^{h o}$ for (3.6) is solvable. We shall prove that there exists a positive constant ϵ independent of h_{0}, such that for any $h \in E=\{\mid h-$ $\left.h_{0} \mid \leq \epsilon, 0 \leq h \leq 1\right\}$, Problem O^{h} for (3.6) possesses a solution $u(z, t) \in B$. Let the above problem be rewritten in the form

$$
\left\{\begin{array}{c}
\mathrm{A}_{0} u_{z \bar{z}}-\operatorname{Re}\left[\mathrm{Q} u_{z z}\right]-\mathrm{u}_{\mathrm{t}}-\mathrm{h}_{0} \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}, \mathrm{u}_{\mathrm{z}}\right)=\left(\mathrm{h}-\mathrm{h}_{0}\right) \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}, \mathrm{u}_{\mathrm{z}}\right)+\mathrm{A}(\mathrm{z}, \mathrm{t}) \text { in } \mathrm{G}, \tag{3.7}\\
u(z, 0)=g(z) \text { on } D, \\
\frac{\partial u}{\partial v}+h_{0} b_{1} u=\left(\mathrm{h}_{0}-\mathrm{h}\right) b_{1}+b(z, t) \text { on } \partial G_{2}
\end{array}\right.
$$

We arbitrarily choose a function $u^{0}(z, t) \in B$ and substitute it into the position of u on the right hand side of (3.7). It is easily seen that
$\left(\mathrm{h}-\mathrm{h}_{0}\right) \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}^{0}, u_{z}^{0}\right)+\mathrm{A}(\mathrm{z}, \mathrm{t}) \in \mathrm{L}_{\mathrm{p}}(\bar{G})$,
$\left(\mathrm{h}_{0}-\mathrm{h}\right) \mathrm{b}_{2}(\mathrm{z}, \mathrm{t})+\mathrm{b}(\mathrm{z}, \mathrm{t}) \in C_{\alpha, \alpha / 2}^{0,0}\left(\partial \mathrm{G}_{2}\right)$
By the hypothesis of h_{0}, there exists a solution $u^{\prime}(z, t) \in B$ of Problem O^{t} corresponding to

$$
\left\{\begin{array}{c}
\mathrm{A}_{0} u_{z \bar{z}}-\operatorname{Re}\left[\mathrm{Q} u_{z z}\right]-\mathrm{u}_{\mathrm{t}}-\mathrm{h}_{0} \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}, \mathrm{u}_{\mathrm{z}}\right)=\left(\mathrm{h}-\mathrm{h}_{0}\right) \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}^{0}, \mathrm{u}_{\mathrm{z}}^{0}\right)+\mathrm{A}(\mathrm{z}, \mathrm{t}) \text { in } \mathrm{G}, \tag{3.9}\\
u(z, t)=g(z) \text { inD }, \\
\frac{\partial u}{\partial{ }_{2}}+h_{0} b_{1} u=\left(\mathrm{h}_{0}-\mathrm{h}\right) u^{0}+b(z, t) \text { on } \partial G_{2}
\end{array}\right.
$$

By using the successive iteration, we obtain a sequence of solutions $u^{m}(z, t)(m=1,2, \ldots) \epsilon$ B of Problem O^{n}, which satisfy

$$
\left\{\begin{array}{c}
A_{0} u_{z \overline{\mathrm{z}}}^{\mathrm{m}+1}-\operatorname{Re}\left[Q \mathrm{u}_{z z}^{\mathrm{m}+1}\right]-u_{\mathrm{tz}}^{\mathrm{m}+1}-h_{0} \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}^{\mathrm{m}+1}\right)=\left(\mathrm{h}-\mathrm{h}_{0}\right) \mathrm{f}\left(\mathrm{z}, \mathrm{t}, \mathrm{u}^{\mathrm{m}}\right)+\mathrm{A}(\mathrm{z}, \mathrm{t}) \text { in } \mathrm{G} \\
\mathrm{U}^{\mathrm{m}+1}(\mathrm{z}, 0)=\mathrm{g}(\mathrm{z}) \text { on } \mathrm{D} . \tag{3.10}\\
\frac{\partial \mathrm{U}^{\mathrm{m}+1}}{\partial v}+\mathrm{h}_{0} \mathrm{~b}_{1} \mathrm{u}^{\mathrm{m}+1}=\left(\mathrm{h}_{0}-\mathrm{h}\right) \mathrm{b}_{1} \mathrm{u}^{\mathrm{m}}+\mathrm{b}(\mathrm{z}, \mathrm{t}) \text { on } \partial \mathrm{G}_{2}, \mathrm{~m}=1,2, \ldots
\end{array}\right.
$$

According to the way in the proof of Theorem 2.2, we can obtain
$\mathrm{C}^{1,0}\left[\mathrm{u}^{\mathrm{m}+1}, \bar{G}\right]=\left|\left|\mathrm{u}^{\mathrm{m}+1}\right|\right| \leq\left|\left|\mathrm{h}-\mathrm{h}_{0}\right|\right| \mathrm{M}_{10} \mathrm{C}^{1,0}\left[\mathrm{u}^{\mathrm{m}}, \bar{G}\right]$,
where $M_{10}=M_{10}(\delta, q, p, \beta, k, G) \geq 0$. Setting $\epsilon=1 / 2\left(M_{10}+1\right)$, we have
$\left|\left|u^{m+1}\right|\right|=C^{1,0}\left[u^{m+1}, \bar{G}\right] \leq \frac{1}{2}| | u^{m}| |$ for $h \in E$,
Hence when $n \geq m>N+2(>2)$, there are

$$
\begin{aligned}
& \left|\left|u^{m+1}-u^{m}\right|\right| \leq 2^{-N}| | u^{1}-u^{0}| |, \\
& \left|\left|u^{n}-u^{m}\right|\right| \leq 2^{-N} \sum_{j=1}^{\infty} 2^{-j}| | u^{1}-u^{0}| |=2^{-N+1}| | u^{1}-u^{0}| |
\end{aligned}
$$

This shows that $\left|\left|u^{n}-u^{m}\right|\right| \rightarrow 0$ as $n, m \rightarrow \infty$. By the completeness of the Banach space B, there exists $u^{*} \in B$, such that $\left|\left|u^{n}-u^{*}\right|\right| \rightarrow 0$ as $n \rightarrow \infty$ and u^{*} is the solution of Problem O^{h} with $h \in E$, Thus from the solvability of Problem O^{0}, we can derive the solvability of Problem O^{1}, in particular Problem O^{1} with $A=0$ and $b(z, t)=0$, i.e. Problem O for (3.1) has a solution. This completes the proof.
(2) For the case $\min (\eta, T)<1$, due to M_{8} in (3.2) is small enough, from Order
$M_{6}\left[k_{1}+k_{0}\left(t^{\eta}+t^{T}\right)+k_{2}+k_{3}\right]=t$,
a solution $t=M_{11}>0$ can be solved, which is also a maximum. Now we consider a subset B_{*} in the Banach space $C^{1}(\bar{D})$, i.e.
$B_{*}=\left\{u(\mathrm{z}) \mid \mathrm{C}^{1,0}[\mathrm{u}, \overline{\mathrm{G}}] \leq \mathrm{M}_{11}\right\}$
and apply a similar method as before. We can prove that there exists a solution $u(z) \in B_{*}=C^{1,0}(\bar{G})$ of Problem O for (1.8) with the constant $\min (\eta, T)>1$.
(3) By using the similar method as in proofs of (1) and (2), we can verify the solvability of problem O for (1.8) with the conditions $0<T<1$ and $1<T<\infty$ as in (3) of the theorem.

REFERENCES

[1] Vekua I.N., Generalized Analytic Functions. Pergamon, Oxford, 1962.
[2] Alkhutov Yu. A. and Mamedov I. T., The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients. Math. USSR Sbornik, 59, 471-495 (1988)
[3] Ladyzhenskaja O. A., Solonnikov V. A, and Uraltseva N. N., Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, RI, 1968.
[4] Wen G. C., Linear and Nonlinear Parabolic Complex Equations. World Scientific Publishing Co., Singapore, 1999.
[5] Wen G. C., Approximate Methods and Numerical Analysis for Elliptic Complex Equations. Gordon and Breach, Amsterdam, 1999.
[6] Wen G. C., Conformal Mappings and Boundary Value Problems. Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI, 1992.
[7] Wen G. C., Chen D. C. and Xu Z. L., Nonlinear Complex Analysis and its Applications. Mathematics Monograph Series 12. Science Press, Beijing, 2008.
[8] Wen G. C., Recent Progress in Theory and Applications of Modern Complex Analysis. Science Press, Beijing, 2010.

