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Abstract: In this article, we discuss that an initial-oblique derivative boundary value problem for 

nonlinear uniformly parabolic complex equation of second order 

A0 −Re[Quzz +A1uz ]− u−ut = A3 +G(z, t, u, uz ) in G, 

In a multiply connected domain, the above boundary value problem will be called problem O. If the above 

complex equation satisfies the conditions similar to Condition Cl and (1.12), and the boundary conditions 

satisfy the conditions similar to (1.4)-(1.7) and (1.11) below, then we can obtain some solvability results of 

Problem O in G. 
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1. FORMULATION OF INITIAL-OBLIQUE DERIVATIVE PROBLEMS FOR SECOND ORDER 

PARABOLIC COMPLEX EQUATIONS 

Let D be an (N +1)-connected bounded domain in the z = x + iy plane C with the bounadary Γ = 

 (0 < µ < 1)
 
Without loss of generality, we may consider that D is a circular domain in 

│z│ < 1 with the boundary Γ = where  ={│z - zj│=γj}, j = 0,1,….,N, Γ0 = Γ N+1 = {│z│ 

= 1} and z = 0 є D. Denote G = D × 1, in which I = {0 < t ≤ T } ·Here T is a positive constant, and 

∂G = ∂G1 U ∂G2 is the parabolic boundary of G, where ∂G1,∂G2 are the bottom {zєD, t = 0} and 

the lateral boundary {z є Γ, t є Ī} of the domain G respectively. 

We consider the nonlinear nondivergent parabolic equation of second order  

Φ(x, y, t, u, ux,  uy ,  uxx , uxy, uyy) - ut = 0 in G,                                                (1.1) 

Where Φ is a real-valued function of x, y, t (є G), u, ux, uy, uxx, uxy, uyy(ϵ R).Under certain 

conditions, the equation (1.1) can be reduced to the complex form 

A0 - Re[Q  + A1 ] - 2u - ut = A3,                                                            (1.2) 

Where z = x + iy, Φ = Ψ(z, t, u, uz,  , ), and 
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 A0 =  Tuzz(z, t, u, , T , T )dT = A0(z, t, u, uz, uzz, ), 

Q = -2 Tuzz (z, t, u, uz,  T , T )dT = Q(z, t, u, uz,  , ), 

A1 = -2 Tuz (z, t, u, Tuz, 0, 0)dT = A1(z, t, u, uz),                                                                      (1.3) 

2 = - Tu (z, t, T u, 0, 0, 0)dT = A2(z, t, u) +│u│
σ
, 

A3 = -Ψ(z, t, 0, 0, 0, 0) = A3(z, t), 

Where σ is a positive constant (see [4]). 

Suppose that the equation (1.2) satisfies the following conditions, namely 

Condition C. (1) A0(z, t, u, uz,  , ), Q(z, t, u, uz,  , ), A1(z, t, u, uz) 

A2(z, t, u), A3(z, t) are measurable for any continuously differentiable function 

u(z, t)єC
1,0

( ) and measurable functions , L2(G
*
) and satisfy the conditions 

0 < δ≤ A0 ≤ δ
-1

                                                                        (1.4) 

│Aj │≤  k0, j = 1, 2,  Lp[A3, ] ≤ k1, p > 4,                                                             (1.5) 

where G* is any closed subset in the domain G. 

(2) The above functions with respect to u є R, uz ϵ C are continuous for almost every point (z, t) ϵ 

G and    C  ϵ R. 

(3) For almost every point (z, t) є G and u є R, ,  C, V
 j
 є R, j = 1, 2, 

There is 

Ψ (z, t, u, uz, U
1
, V 

1
) - Ψ (z, t, u, uZ, U

2
, V 

2
) 

=Ã0(V
 1
 - V

 2
) - Re[  (U

1
 - U

2
)],  δ< Ã0≤δ

-1
 ,                                                                        (1.6) 

  (  +
2
)/   ≤ q < 4/3,                                                                                              (1.7) 

In (1.4)-(1.7), δ (> 0), q (≥ 1), k0, k1, p (> 4) are non-negative constants. For instance the 

nonlinear parabolic complex equation 

= G(z, t, u )+(1+ │u│
4
)u+ ut, 

G(z, t, u, uz, )=               

satisfies Condition C. In this article, the notations are the same as in References [1-8]. 

Now we explain the derivation of 3/4 in the condition (1.7). Let A = r >0,thus  
2
= 

/A =  /(r  ) = 1/r. By the requirement below, we need the inequality 

η =  [( 0 - 1)
2
+│ │

2
] <1/4, i.e.  [  +│ │

2 
-  2 0] < 1/4 – 1, 
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Oblique derivative problem for parabolic equations 

So it is sufficient that 

 <  -  i.e.  < 2r -   r
2
 = f(r). 

We can find the maximum of the function f(r) = 2r - (3r
2
) /4 on (0,∞), due to (r) = 2 - (3r)/2 = 0. 

It is easy to see that f(r) takes its maximum on (0,∞) at the point r = 4/3, and then f(4/3) = 2(4/3) - 

(3/4)(4/3)
2
 = 4/3, leading to the inequality (1.7). (see │2,4│) 

In this article, we mainly discuss the nonlinear parabolic equation of second order 

A0  Re[Quzz + A1uz] - 2u - ut = A3 + F(z, t, u, uz),                       (1.8) 

Satisfying Condition , in which the coefficients Aj (j = 0, 1, 2, 3),Q of equation (1.8) satisfy the 

conditions (1.4)–(1.7) and F(z, t, u, uz) satisfies the condition: 

(4)│F(z, u, uz) │≤ B1(z) │uz│
η
+B2(z) │u│

T
 , │Bj │≤ k0, j=1, 2,                                  (1.9)    

for positive constants η, T, K0. We can see that F(z, t, u, uz) implies the nonlinear items. 

Problem O. The so-called initial-oblique derivative boundary value problem for the equation 

(1.8) is to find a continuous solution u(z, t) ϵ C
1,0

( ) of (1.8) in satisfying the initial-boundary 

conditions 

{                       (1.10) 

Where v is the unit vector at every point on ∂G2: There is no harm in assuming that v is parallel to 

the plane t = 0. In addition, g(z), bj(z, t)(j = 1, 2) and λ(z, t) = cos(v, x) - i cos(v, y) are known 

functions satisfying the conditions 

{                  (1.11) 

In which n is the unit outward normal vector at every point on ∂G2, α(1/2 <α < 1), k0, k2, k3 are 

non-negative constants. The above initial-boundary value problem is the initial-oblique derivative 

boundary value problem (Problem O). In particular, Problem O with the condition v = n, a1(z, t) = 

1, a2(z, t) = 0 on ∂G2 is the so-called initial-Neumann boundary value Problem, which will be 

called Problem N. Problem O for (1.2) with A3(z, t) = 0 and g(z) = 0, b2(z, t) = 0 is called Problem 

O0. 
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In order to discuss the uniqueness of solutions of Problem O for the equation (1.2), we add the 

condition: For any u
j
 ϵ R, (j = 1, 2), U ϵ C; V ϵ R, there is 

Ψ(z, t, u
1
, ,  ,U, V ) - Ψ(z, t, u

2
, ,  , U, V ) 

= 0 Re[ uzz+ 1(u
1
- u

2
)z+ 2(u

1
- u

2
)] on ∂G2,                    (1.12) 

Where ), satisfy (1.7) and j(j = 1, 2) satisfy 

│ j │ < ∞ in , j = 1, 2.                                     (1.13) 

Theorem 1.1. Suppose that the equation (1:2) satisfies Condition C and (1.12).Then the solution 

u(z,t) of Problem O for (1:2) is unique. Moreover the homogenous Problem O (Problem O0) of 

equation (1.2) with A3 = 0 only has the trivial solution  E. 

Proof. Let uj (j = 1, 2) be two solutions of Problem O for (1.2). It is easy to see that u = u1(z, t) - 

u2(z, t) is a solution of the following initial-boundary value problem 

0 - Re[ uzz + 2uz] - 3u - ut = 0 in G,                      (1.14) 

                          (1.15) 

Where 

{  

                 (1.16) 

Introducing a transformation v = v(z, t) = ue
-Bt

, where B is an undetermined real constant, the 

complex equation (1.14) and the initial-boundary condition (1.15) can be reduced to the form 

 - Re[ Vzz + vz] - (  + B)v - vt = 0,                      (1.17) 

                         (1.18) 

Let the above equation be multiplied by v, thus an equation of v
2
: 

Oblique derivative problem for parabolic equations  

[ 0  - Re[  (v
2
)zz - (v

2
)t] 

= 0│vz│
2
-Re[  (vz)

2
+ 1Re(v

2
)z]+( 2+B)v

2
                      (1.19) 

Can be obtained If the maximum of v
2
 occurs at an inner point P0 є G with  

2
≠ 0, then in a 

neighborhood of , the right hand side of (1.19)≥[B - k0]v
2
. Moreover, we choose the constant B 

such that B > k0. By using the maximum principle (see [3,4]), the function v
2 

cannot take the 

positive maximum in G. If v
2
 takes the positive maximum at a point P0 є ∂G2, then we have 
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 + b1(z, t)v
2
] │P=P0 > 0.                        (1.20) 

This contradicts (1.18). Hence we derive that u = 0, i.e: u1 - u2 = 0 in . Similarly we can prove 

the other part in this theorem. 

2. A PRIOR ESTIMATE OF SOLUTIONS OF THE INITIAL-OBLIQUE DERIVATIVE PROBLEM OF SECOND                       

ORDER PARABOLIC COMPLEX EQUATIONS 

Theorem 2.1. If the equation (1.2) satisfies condition C, then the solution u(z, t) of Problem O for 

(1.2) satisfies the estimate 

[u, ]=  [│u│
σ+1

, ] ≤ M1,  ≤ M2,                      (2.1) 

Where β (0 < β ≤ α), k = k(k0, k1, k2, k3). Mj = Mj (δ, q, p, β, k, G) (j = 1, 2) are non-negative 

constants only dependent on δ, q, p, β, k, G. 

Proof. We shall prove that the following estimate holds 

1;0
[u, ]=C

1,0
[│u│

σ+1
, ] ≤ M3 = M3 (δ, q, p, β, k, G),                                   (2.2) 

If (2.2) is not true, then there exists a sequence of parabolic equations 

 - Re[Q
m 

uzz + uz] – u -  ut =   in G,                                   (2.3) 

and a sequence of initial-boundary conditions 

                           (2.4) 

with { }, {Q
m
},{  ,{ ,{ }  in G satisfying Condition C and g

m
,  satisfying 

(1.11), where { }, {Q
m
},{  ,{ ,{ } in G weakly converge to Q

0
,  , , and 

{g
m
(z)},   ,  in D, ∂G2 uniformly converge to g

0
(z),  ,  respectively, 

and the initial-boundary value problem (2.3)–(2.4) have the solution u
m
(z, t) ϵ 

1,0
( ) (m = 1, 2, 

…. ) such that 
1,0

 [u
m
, ] = Hm →∞ as m→∞. There is no harm in assuming that Hm ≥ max[k1, k2, 

k3, 1]. Let U
m
 = u

m 
/ Hm, it is easy to see that U

m
 satisfies the complex equation and initial-

boundary conditions 

{        (2.5) 

We can see that the some coefficients in the above equation and boundary conditions satisfy the 

condition C and 

│u
(m)

│
σ+1

/ Hm ≤ 1 ,  Lp[ ] ≤ 1 

Cα[g
(m)

(z)/Hm, D] ≤ 1, / Hm│≤1 
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Hence by Theorem 5.3.1, [7], we can obtain the estimates 

[u
m
, ] ≤ M4, ≤M5,                        (2.6) 

In which β (0 < β ≤ α),Mj = Mj(δ, q, p, β, k, G)(j = 4, 5) are non-negative constants. Thus from 

{U
m
}, {  we can select the subsequences { }, {  such that they uniformly converge to 

U
0
,  in  and { , {  weakly converge to   in G respectively, and U

0
 

is a solution of the following initial - boundary value problem 

{                       (2.7) 

From Theorem 1.1, we see that U
0
 = 0. However, from 

1,0
[U

m
, ] = 1, there exists a point (z*, t*) 

ϵ , such that │U
0
(z*, t*)│+ │ (z*, t*)│ > 0. This contradiction shows that the estimate (2.2) is 

true. Moreover, by using the method from (2.2) to (2.6), two estimates in (2.1) can be derived. 

Theorem 2.2. Suppose that Condition  holds. Then any solution u(z, t) of Problem O for (1.8) 

satisfies the estimates 

[u, ] = [│u
σ+1

, │] ≤ M6 ,  ≤ M7 ,                      (2.8) 

Where β (0 < β≤α),  = k1+k2+k3+k0(│uz│
η
+│u  ), Mj = Mj (δ, q, p, β, k0,G) (j = 6, 7) are non-

negative constants. 

Proof. If  = 0, i.e. k0 = k1 = k2 = k3 = 0, from Theorem 1.1, it follows that u(z) = 0 in . If  > 

0, it is easy to see that U(z) = u(z)/  satisfies the complex equation and boundary conditions  

A0  Re[QUzz + A1Uz] - 2U - Ut = [A3 + F(z, t, u, uz)]/ ,                                  (2.9) 

Oblique derivative problem for parabolic equations and  

                                     (2.10) 

Noting that 

Lp[A3(z, t)/ , ] ≤ 1, [g/ ,D] ≤ 1, [b2/ , ∂G2] ≤ 1, 

And according to the proof of Theorem 2.1, we have 

[U, ] ≤ M6, ≤M7, 

From the above estimates, it immediately follows that two estimates in (2.8) hold. 

3. SOLVABILITY OF THE INITIAL-OBLIQUE DERIVATIVE PROBLEM OF SECOND ORDER PARABOLIC 

COMPLEX EQUATIONS 

We consider the complex equation (1.8) namely the equation 

A0  - Re[Quzz ] - ut = f(z, t, u, uz), f(z, t, u, uz)= 
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= Re [Quzz + A1uz] + 2u + A3 + F(z, t, u, uz) in G,                                                (3.1) 

in which A0 = A0(z, t, u, uz, uzz),Q = Q(z, t, u, uz, uzz), A1 = A1(z, t, u, uz), 2 = A2(z, t, u)+
σ 

A3=A3(z, t). 

Theorem 3.1. Suppose that equation (1.8) satisfies Condition ,  and (1.12). 

(1) When 0 < η, T < 1, Problem O for (1.8) has a solution u(z, t) ϵ C
1,0

( ). 

(2) When min (η,T ) > 1, Problem O for (1.8) has a solution u(z, t) ϵ C
1,0

( ), provided that 

M8 = Lp[A3, ] + [g, ] + [b2, ∂G2]           (3.2) 

is small enough. 

(3) When F(z, t, u, uz) in (1.8) possesses the form 

F (z, u, uz) = ReB1uz + B2lul 
T
 in D             (3.3) 

In which 0 < T < ∞, Lp[Bj , ] ≤ k0 (< ∞, p > 4, j = 1, 2) with a positive constant k0, if T< 1, and if 

T > 1 and M8 in (3.2) is small enough, then (1.8) has a solution u(z, t) є C
1,0

( ). 

Proof. (1) Consider the algebraic equation for t 

M6[k1 + k0(t 
η
 + t 

η
) + k2 + k3] = t.              (3.4) 

Because 0 < η, T < 1, the the above equation has a solution t = M9 > 0, which is also the 

maximum of t in (0,+∞). Now, we introduce a closed, bounded and convex subset B of the 

Banach space C
1,0

( ); whose elements are of the form u(z) satisfying the condition 

C
1,0

[lu(z)l
n+1

, ]  ≤M9.              (3.5) 

We choose an arbitrary function u(z) є B and substitute it into the proper positions in the 

following equation and initial-boundary conditions (Problem O
h
) with the parameter h є [ 0, 1] 

{ – –

                                (3.6) 

where A(z, t) are any measurable functions with the condition A(z, t) ϵ Lp( ), p > 4, and b(z, t) is a 

continuously differentiable function with the condition b(z, t) є (∂G2). When h = 0, 

according to Theorem 4.3,[4], we see that there exists a solution u0(z, t) ϵ B = ( )∩ (G) 

of ProblemO
0
: Suppose that when h = h0 (0 ≤  h0 < 1), Problem O

ho
  for (3.6) is solvable. We shall 

prove that there exists a positive constant є independent of h0, such that for any h ϵ E = {│h – 

h0│≤ є, 0 ≤ h ≤ 1}, Problem O
h
 for (3.6) possesses a solution u(z,t) ϵ B: Let the above problem be 

rewritten in the form 
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{ – – –

                (3.7) 

We arbitrarily choose a function u
0
(z, t) є B and substitute it into the position of u on the right 

hand side of (3.7). It is easily seen that 

(h-h0) f(z, t, u
0
, )+ A(z,t) ϵ Lp( ), 

(h0 – h) b2(z,t) + b(z,t) ϵ (∂G2)                         (3.8) 

By the hypothesis of h0 ,there exists a solution u1(z, t) ϵ B of Problem Ohcorresponding to 

{ – – –

      (3.9) 

By using the successive iteration, we obtain a sequence of solutions um(z, t) (m =1, 2, … )ϵ 

B of Problem Oh , which satisfy 

{
–

.10) 

According to the way in the proof of Theorem 2.2, we can obtain 

C
1,0

[u
m+1

, ] = ││ u
m+1

││ ≤ ││h – h0││M10C
1,0

[u
m
, ], 

where M10 = M10(δ, q, p, β, k, G)  ≥ 0. Setting є = 1/2(M10 + 1), we have  

││u
m+1

││ = C
1,0

[u
m+1

, ] ≤ ││u
m
││ for h ϵ E, 

Hence when n ≥  m > N + 2(> 2), there are 

││u
m+1

 - u
m
││≤ 2

-N
││u

1
 - u

0
││, 

││u
n
- u

m
││≤ 2

-N
  ││u

1 
- u

0
││= 2

-N+1
││u

1
-u

0
││ 

This shows that ││ u
n
 - u

m
││→ 0 as n, m → ∞. By the completeness of the Banach space B, 

there exists u* ϵ B, such that ││ u
n
 – u

*
 ││→ 0 as n → ∞ and u* is the solution of Problem O

h
 

with h є E, Thus from the solvability of Problem O
0
, we can derive the solvability of Problem O

1
, 

in particular Problem O
1
 with A = 0 and b(z, t) = 0, i.e. Problem O for (3.1) has a solution. This 

completes the proof. 

(2) For the case min(η, T ) < 1, due to M8 in (3.2) is small enough, from  
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M6[k1 + k0(t
η
 + t

T
 ) + k2 + k3] = t, 

a solution t = M11 > 0 can be solved, which is also a maximum. Now we consider a subset B* in 

the Banach space C
1
( ), i.e. 

B* = {u(z) │C
1,0

[u, ] ≤ M11} 

and apply a similar method as before. We can prove that there exists a solution u(z) є B* =C
1,0

( ) 

of Problem O for (1.8) with the constant min(η,T ) > 1. 

(3) By using the similar method as in proofs of (1) and (2), we can verify the solvability of 

problem O for (1.8) with the conditions 0 < T < 1 and 1 < T < ∞ as in (3) of the theorem. 
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