Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

Guochun	Wen
---------	-----

LMAM School of Mathematical Sciences Peking University Beijing 100871 China wengc@math.pku.edu.cn

Yanhui Zhang

Math. Dept Beijing Technology and Business University Beijing 100048 China zhangyanhui@th.btbu.edu.cn

Abstract: In [1], the author first proposed a well-posedness of singular Riemann-Hilbert boundary value problem for generalized analytic functions in multiply con-nected domains, and the well posedness allows that the solutions of the modified problem possess some poles in N + 1-connected domain D. In [3], the author proposed another well-posedness of the Riemann-Hilbert boundary value problem with continuous solutions for nonlinear elliptic complex equations of first order, in particular the well-posedness includes the well-posedness of the singular case of 0 < K < N. Recently, the authors of this paper proposes three kinds of new well-posedness of singular Riemann-Hilbert boundary value problem for nonlinear elliptic complex equations. We shall prove the existence of solutions for these boundary value problems.

Keywords: Singular modified Riemann-Hilbert problem, elliptic complex equations of first order, three kinds of well posedness with pole points, the existence of solutions.

AMS Mathematics Subject Classification: 30J56, 35J46, 35J60.

1. FORMULATION OF SINGULAR MODIFIED RIEMANN-HILBERT BOUNDARY VALUE PROBLEMS FOR ELLIPTIC COMPLEX EQUATIONS OF FIRST ORDER

First of all, we introduce the nonlinear elliptic equations of first order

$$\begin{cases} w_{\overline{z}} = F(z, w, w_{z}), F = Q_{1}w_{z} + Q_{2} \overline{w_{z}} + A_{1}w + A_{2} \overline{w} + A_{3}, \\ Q_{j} = Q_{j}(z, w, w_{z}), j = 1, 2, A_{j} = A_{j}(z, w), j = 1, 2, 3, \end{cases}$$
(1.1)

In a bounded N + 1 ($N \ge 1$)-connected domain D, which is the complex form of the real nonlinear elliptic system of first order equations

 $\Phi j(x, y, u, v, u_x, u_y, v_x, v_y) = 0, j = 1, 2$

Under certain conditions(see Theorem 1.2, Chapter I, [4]). There is not harm in assuming that *D* is an N + 1 ($N \ge 1$)-connected circular domain in |z| < 1 bounded by the (N + 1)- circles $\Gamma_j : |z - z_j| = r_j$, j = 0, 1, ..., N and $\Gamma_0 = \Gamma_{N+1} : |z| = 1$, $z = 0 \in D$. In this article, the notations are as the same in References [3-13]. Suppose that the complex equation (1.1) satisfies the following conditions, namely

Condition C. 1) $Q_j(z, w, U)$ (j = 1, 2), $A_j(z, w)(j = 1, 2, 3)$ are measurable in $z \in D$ for all continuous functions w(z) in $\overline{D}{0}$ and all measurable functions $U(z) \in L_{po}(\overline{D})$, and satisfy

$$L_{p}[A_{j}, \overline{D}] \leq k_{0}, j = 1, 2, L_{p}[A_{3}, \overline{D}] \leq k_{1},$$
(1.2)

where p, p_0 (2 < $p_0 \le p$), k_0 , k_1 are non-negative constants.

2) The above functions are continuous in $w \in C$ for almost every point $z \in D$, $U \in C$, and $A_j = 0$ (j = 1, 2, 3) for $z \in C \setminus D$.

3) The complex equation (1.1) satisfies the uniform ellipticity condition, i.e. for any U_1 , $U_2 \in \mathbb{C}$,

the following inequality in almost every point $z \in D$ holds:

$$\left| F(z, w, U_1) - F(z, w, U_2) \right| \le q_0 \left| U_1 - U_2 \right|,$$
(1.3)

In which q_0 (< 1) is a non-negative constant.

It is well known that a generalized analytic function in a domain D is a continuous solution of the complex equation

(1.4)

$$w_{\overline{z}} = A(z)w + B(z)\overline{w}, z \in D,$$

Where z = x + iy, $w_{\overline{z}} = [w_x + i \ w_y]/2$, A(z), $B(z) \in L_p(\overline{D})$ (p > 2); the conditions will be called Condition C₀. Obviously the complex equation (1.4) is a special case of (1.1).

Now we first formulate the new singular Riemann-Hilbert problem with the non-negative index for equation (1.1) as follows.

Problem B₁. The singular modified Riemann-Hilbert boundary value problem for (1.1) is to find a continuous solution w(z) in \overline{D} with the pole point of *n* order at the point z = 0 ($\in D$) satisfying the boundary condition:

$$\operatorname{Re}\left[\overline{\lambda(z)}w(z)\right] = r(z) + h(z), \ z \in \Gamma,$$
(1.5)

Where $\lambda(z)$, r(z) satisfy the conditions

 $C_{\alpha}[\lambda(z), \Gamma] \leq k_0, C_{\alpha}[r(z), \Gamma] \leq k_2$, in which (1.6)

 $\lambda(z) = a(z) + ib(z)$ on Γ , α (1/2 < α < 1) is a positive constant. The index K of Problems B₁ is defined by:

$$K = K_0 + K_1 + \dots + K_N = \sum_{j=0}^N \frac{1}{2\pi} \Delta_{\Gamma_j} \arg \lambda(z) \ge 0,$$
(1.7)

The partial indexes $K_j = \Delta_{\Gamma j} \arg \lambda(z)/2\pi$ (*j* =0, 1, ..., *N*) of $\lambda(z)$ are integers and

$$h(z) = \begin{cases} 0, z \in \Gamma_0, \\ h_j, z \in \Gamma_j, j = 1, \dots, N, \end{cases}$$
(1.8)

 $h_j(j = 1, ..., N)$ are unknown real constants to be determined appropriately. Moreover we assume that the solution w(z) satisfies the following point conditions

$$Im[\overline{\lambda(a_{j})}w(a_{j})] = b_{j}, j \in J = \{1, \dots, 2K+1\},$$
(1.9)

in which $a_j \in \Gamma_0$ (j = 1, ..., 2K + 1) are distinct fixed points, and $b_j(j \in J)$ are all real constants satisfying the conditions

$$\left| b_{j} \right| \leq k_{3}, j \in J, \tag{1.10}$$

herein k_3 is a non-negative constant. Problem B with $A_3(z, w) = 0$ in D, r(z) = 0 on Γ and b_j ($j \in J$) is called Problem B₀.

Next we shall introduce the other two kinds of well-posedness of new singular Riemann-Hilbert boundary value problem for the equation (1.1) as follows

Problem B₂. To find a continuous solution w(z) of the equation (1.1) in $\overline{D} \setminus \{0\}$ satis-fying the modified boundary conditions

$$Re[\lambda(z)w(z)] = r(z) + h(z), z \in \Gamma,$$

$$Im[\overline{\lambda(a_j)}w(a_j)] = b_j, j \in J = \{1, \dots, 2K\},$$

$$w(0) = \infty, w(a) = 0, w(1) = 1,$$

$$(1.11)$$

where $a \ (\epsilon \ D)$ is a point, and $\lambda(z)$, r(z), h(z) are the same as in (1.5)-(1.6), and $a_j \ (\neq 1) \ \epsilon \Gamma_0$ (j=1,..., 2K) are distinct fixed points, $b_j(j \ \epsilon \ J)$ are all real constants satisfying the conditions

$$\left| b_{j} \right| \le k_{3,j} \in J, \tag{1.12}$$

herein k_3 is a non-negative constant.

Problem B₃. To find a continuous solution w(z) of the equation (1.1) in $\overline{D} \setminus \{0\}$ with the pole point

Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

of n (> 0) order at z = 0 and the zero point of m (0 < m < n) order at $z = a (\epsilon D, a \neq 0)$ satisfying the modified boundary conditions

$$\operatorname{Re}\left[\overline{\lambda(z)}w(z)\right] = r(z) + h(z), z \in \Gamma,$$

$$\operatorname{Im}\left[\overline{\lambda(a_i)}w(a_i)\right] = b_i, j \in J = \{1, \dots, 2K+1\},$$
(1.13)

in which *n*, *m* (< *n*) are positive integers and $\lambda(z)$, *r*(*z*), *h*(*z*) are the same as in (1.5)-(1.6), and $a_j \in \Gamma_0$ (*j* $\in J = 1, ..., 2K + 1$) are distinct fixed points, b_j (*j* $\in J$) are all real constants satisfying the condition

$$\left| b_{j} \right| \le k_{3}, j \in J \tag{1.14}$$

with the constant k_3 .

In order to prove the solvability of Problem B_1 for the complex equation (1.1), we need to give a representation theorem for Problem B_1 .

Theorem 1.1. Suppose that the complex equation (1.1) satisfies Condition C, and w(z) is a solution of Problem B₁ for (1.1). Then w(z) is represented by

$$w(z) = [\Phi(\varsigma(z)) + \Psi(z)]e^{\Phi(z)},$$
(1.15)

where $\zeta(z)$ is a homeomorphism in \overline{D} , which quasiconformally maps D onto the N + 1-connected circular domain G with boundary $L = \zeta(\Gamma)$ in $\{ |\zeta| < 1 \}$, such that $\zeta(0) = 0$ and $\zeta(1) = 1$, $\Phi(\zeta)$ is an analytic function in G, $\Psi(z)$, $\Phi(z)$, $\zeta(z)$ and its inverse function $z(\zeta)$ satisfy the following estimates

$$C_{\beta}[\Psi, \overline{D}] \le k_4, \ C_{\beta}[\Phi, \overline{D}] \le k_4, \ C_{\beta}[\varsigma(z), \overline{D}] \le k_4,$$

$$(1.16)$$

$$L_{p0}\left[\left| \left| \Psi_{\overline{z}} \right| + \left| \left| \Psi_{z} \right|, \overline{D} \right] \le k_{4}; L_{p0}\left[\left| \left| \Phi_{\overline{z}} \right| + \left| \Phi_{z} \right|, \overline{D} \right] \le k_{4}, \tag{1.17}$$

$$C_{\beta}[z(\varsigma), \ \bar{G}] \le k_4, \ L_{p0}\left[\left| \chi_{\bar{z}} \right| + \left| \chi_z \right|, \ \bar{D} \right] \le k_5, \tag{1.18}$$

in which $\chi(z)$ is as stated in (1.21) below, $\beta = \min(\alpha, 1 - 2/p_0)$, p_0 ($2 < p_0 \le p$), $k_j = k_j(q_0, p_0, \beta, k_0, k_1, D)$ (j = 4, 5) are non-negative constants dependent on $q_0, p_0, \beta, k_0, k_1, D$. Moreover, the function $\Phi[\varsigma(z)]$ satisfies the estimate

$$C_{\delta}[\varsigma^{n}\Phi[\varsigma(z)], \overline{D}] \leq M_{1} = M_{1}(q_{0}, p_{0}, \beta, k, D) < \infty, \qquad (1.19)$$

and T ($\leq \min(\alpha, 1 - 2/p_0)$), $k = k(k_0, k_1, k_2, k_3)$, and M_1 is a non-negative constant dependent on q_0 , p_0 , β , k, D. Here we mention that the pole of n order at z = 0 of w(z) is denoted the pole of n order of the function $\Phi(\zeta)$ at $\zeta(0) = 0$.

Proof. We substitute the solution w(z) of Problem B₁ into the coefficients of equation (1.1) and consider the following system

$$\Phi_{\overline{z}} = Q\Phi_{z} + A, A = \begin{cases} A_{1} + A_{2}\overline{w}/w \text{ for } w(z) \neq 0, \\ 0 \text{ for } w(z) = 0 \text{ or } z \notin D, \end{cases}
\Psi_{\overline{z}} = Q\Psi_{z} + A_{3} e^{-\Phi(z)}, Q = \begin{cases} Q_{1} + Q_{2}\overline{w_{2}}/w_{z} \text{ for } w_{z} \neq 0, \\ 0 \text{ for } w_{z} = 0 \text{ or } z \notin D, \end{cases}$$

$$w_{\overline{z}} = QW_{z}, W(z) = \Phi \left[\varsigma(z) \right] \text{ in } D.$$
(1.20)

By using the continuity method and the principle of contracting mapping, we can find the solution

$$\Psi(z) = T_0 f = \frac{-1}{\pi} \iint_{D} \frac{f(\varsigma)}{\varsigma - z} d\sigma_{\varsigma}$$
(1.20)

$$\Phi(z) = T_0 g, \ \varsigma(z) = \Psi[\chi(z)], \ \chi(z) = z + T_0 h$$

of (1.20), in which f(z), g(z), $h(z) \in L_{p0}(\overline{D})$, $2 < p_0 \le p$, $\chi(z)$ is a homeomorphic solution of the third equation in (1.20), $\Psi(\chi)$ is a univalent analytic function, which con-formally maps $E = \chi(D)$ onto the domain *G* (see[1,3], and $\Psi(\varsigma)$ is an analytic function in *G* such that the function $\varsigma(z) = \Psi[\chi(z)]$ satisfies $\varsigma(0) = 0$, $\varsigma(1) = 1$. We can verify that $\Psi(z)$, $\Phi(z)$, $\varsigma(z)$ satisfy the estimates (1.16) and (1.17). It remains to prove that $z = z(\varsigma)$ satisfies the estimate in (1.18). In fact, we can find a homeomorphic solution of the last equation in (1.20) in the form $\chi(z) = z + T_0h$ such that $[\chi(z)]_z$, $[\chi(z)]_{\overline{z}} \in L_{p0}(\overline{D})$ (see[1]). By the result on conformal mappings, applying the method of Theorem

3.2, Chapter V,[4], we can prove that (1.18) is true. It is easy to see that the function $\Phi | \varsigma(z) |$ satisfies the boundary conditions

 $\operatorname{Re}[\overline{\lambda(z)}e^{\phi(z)}\Phi(\varsigma(z))]=c(z)+h(z)-\operatorname{Re}[\overline{\lambda(z)}e^{\phi(z)}\Psi(z)], z \in \Gamma$

On the basis of the estimates (1.16) and (1.18), and using the methods of Theorems 3.2–3.3, Chapter V, [3], we can prove that $\Psi[\zeta(z)]$ satisfies the estimate (1.19).

2. Unique solvability of Problems B_1 , B_2 , B_3 for generalized analytic functions

In this section, we first prove the uniqueness and solvability of Problems B_j (j = 1, 2, 3) for generalized analytic functions.

Theorem 2.1. Suppose that equation (1.4) satisfies Condition C_0 . Then the solution of Problem B_1 are existence and unique

Proof. Problem B_1 for (1.4) can be rewritten as

$$Re[\overline{\lambda(z)}[1/z^{n}]W(z)] = r(z) + h(z) \text{ in } D,$$

$$Im[\overline{\lambda(a_{j})} [1/a_{j}^{n}]W(a_{j})] = b'_{j}, j \in J = \{1, ..., 2(K+n)+1\},$$
(2.1)

Where $W(z) = w(z)/\Psi(z)$, $\Psi(z) = 1/z^n$, $b'_i(j \in J)$ are real constants with the conditions

 b'_i - k'_3 (< ∞) (*j* \in *J*). It is easy to see *W*(*z*) satisfies the complex equation

$$W_{\overline{z}} = A(z)W + [B(z)\Psi(z) / \overline{\Psi(z)}]\overline{W}, z \in D,$$
(2.2)

The index of $\lambda(z)$ $1/\overline{z^n}$ on Γ is equal to K+n (> 0), the boundary value problem (2.1),(2.2) is called Problem B₁. According to the method a before, we can derive that Problem B₁ has a unique continuous solution W(z) in \overline{D} , and then Problem B₁ for (1.4) is uniquely solvable.

Theorem 2.2. Suppose that equation (1.4) satisfies Condition C_0 . Then the solution of Problem B_2 are existence and unique.

Proof. Problem B_2 for (1.4) can be rewritten as

$$Re[\overline{\lambda(z)} [(z - a)/(1 - a)z]W(z)] = r(z) + h(z) in D,$$

(1 - a)/(1 - a)]W(1) = 1, (2.3)

Where $W(z) = w(z)/\Psi(z)$, $\Psi(z) = (z - a)/(1 - a)z$. It is easy to see W(z) satisfies the complex equation

$$W_{\overline{z}} = A(z)W + [B(z)\Psi(z)/\overline{\Psi}]\overline{W}, z \in D,$$
(2.4)

the index of $\lambda(z)\overline{(z-a)}/\overline{(1-a)z}$ on Γ is equals to K, the boundary value problem (2.3),(2.4) and the second formula of (1.11) is called Problem B'_2 , hence according to the result as in Theorem 3.3,Chapter V,[4], f we can derive that Problem B'_2 has a unique continuous solution W(z) in \overline{D} , and then Problem B₂ for (1.4) is uniquely solvable.

Theorem 2.3. Suppose that equation (1.4) satisfies Condition C_0 . Then the solution of Problem B_3 is existence and unique.

Proof. For problem B_3 for (1.4) can be rewritten as

$$Re[\overline{\lambda(z)} [(z - a)^{m}/z^{n}]W(z)] = r(z) + h(z) in D,$$

Im[$\overline{\lambda(a_{j})} [(a_{j} - a)^{m}/a_{j}^{n}]W(a_{j})] = b'_{j}, j \in J = \{1, ..., 2(n - m + K) + 1\},$ (2.5)

Where $W(z) = w(z)/\Psi(z)$, $\Psi(z) = (z - a)^m/z^n$, b'_j $(j \in J)$ are real constants with the conditions $|b'_j| \le k_3$ $(<\infty)$ $(j \in J)$. It is easy to see W(z) satisfies the complex equation

$$W_{\overline{z}} = A(z)W + [B(z)\Psi(z)/\overline{\Psi}]\overline{W}, z \in D,$$
(2.6)

That the index of $\lambda(z)\overline{(z-a)}^m/\overline{z^n}$ on Γ is equals to K + n - m(>0), the boundary value problem (2.5),(2.6) is called Problem B'₃. Moreover we can derive that Problem B'₃ has a unique continuous solution W(z) in \overline{D} , and then Problem B₃ for (1.4) is uniquely solvable.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page | 271

Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

In the following section, by using Theorem 3.3, Chapter V,[4], we can prove the solvability of Problems B_j (j = 1, 2, 3) for (1.1).

3. ESTIMATES OF SOLUTIONS AND SOLVABILITY OF PROBLEMS B_j (j = 1, 2, 3) FOR NONLINEAR ELLIPTIC COMPLEX EQUATIONS IN MULTIPLY CONNECTED DOMAINS

The singular modified Riemann-Hilbert problem (Problem B_1) can be transformed into the continuous modified Riemann-Hilbert problem (Problem B'_1) as follows.

Problem B'1. The modified Riemann-Hilbert boundary value problem for (1.1) is to find a continuous solution w (z) in \overline{D} satisfying the boundary condition:

$$\operatorname{Re}\left[\overline{\lambda(z)} / \zeta^{n} w(z)\right] = r(z) + h(z), z \in \Gamma,$$
(3.1)

Where $\lambda(z)$, r(z) satisfy the conditions

$$C_{\alpha} [\lambda(z), \Gamma] \leq k_0, C_{\alpha}[r(z), \Gamma] \leq k_2, \tag{3.2}$$

 $\lambda(z) = a(z) + ib(z)$, $|\lambda(z)| = 1$ on Γ , and α (1/2 < α < 1) is a positive constant. The index K of Problems B₁ is defined as follows:

$$K + 1 = K_0 + K_1 + \dots + K_N = \sum_{j=0}^{N} \frac{1}{2\pi} \Delta_{\Gamma_j} \arg \lambda(z) \ge 0, \qquad (3.3)$$

The partial indexes $K_j = \Delta_{\Gamma_i} \arg \lambda(z)/2\pi$ of $\lambda(z)$ are integers. And

$$h(z) = \begin{cases} 0, z \in \Gamma_0, \\ h_{j, z} \in \Gamma_{j, j} = 1, ..., N, \end{cases}$$
(3.4)

 h_j (j = 1, ..., N) are unknown real constants to be determined appropriately. Moreover we assume that the solution w(z) satisfies the following point conditions

$$Im[\lambda(a_{j})W(a_{j})] = b_{j} \ j \ \epsilon \ J = \{1, \ \dots, \ 2K + 2n + 1\},$$
(3.5)

where $a_j \in \Gamma_0$ (j =1, ..., 2K + 2n + 1) are distinct fixed points; and $b_j(j \in J)$ are all real constants satisfying the conditions

$$\left| b_{j} \right| \leq k_{3}, j \in J, \tag{3.6}$$

herein k_3 is a non-negative constant.

Theorem 3.1. Suppose that the first order complex equation (1.1) satisfies Condition C. Then any solution w(z) of Problem B₁ for the complex equation (1.1) satisfies the estimates

$$C_{\beta}[\varsigma^{n}w(z), D] \leq M_{1},$$

$$\hat{L}_{p_{0}}^{1}[w, \overline{D}] = L_{p0}\left[\left|[\varsigma^{n}w]_{\overline{z}}\right| + \left|[\varsigma^{n}w]_{z}\right|, \overline{D}\right] \leq M_{2},$$
(3.7)

in which $\beta = \min(\alpha, 1 - 2/p_0)$, $k = k(k_0, k_1, k_2, k_3)$, $M_j = M_j(q_0, p_0, \beta, k, D)$, (j = 1, 2) are positive constants.

Proof. Similarly to the proof of Theorem 1.1, the solution w(z) of Problem B_1 for (1.1) can be expressed the formula as in (1.15), hence the boundary value problem B_1 can be transformed into the boundary value problem (Problem B_1) for analytic functions

$$\operatorname{Re}[\overline{\Lambda(\varsigma)} \ \Phi(\varsigma)] = \hat{r}(\varsigma) + h(\varsigma), \varsigma \in L^{*} = \varsigma(\Gamma^{*});$$

$$\operatorname{Im}[\overline{\Lambda(a_{j}')} \Phi(a_{j}')] = b_{j}', j \in J, a_{j}' \qquad (3.8)$$
Where
$$h(\varsigma) = \{ \substack{0, \varsigma \in L0, \\ h_{j}, \varsigma \in L_{j}, j = 1, \dots, N, \\ \text{And}$$

$$\overline{\Lambda(\varsigma)} = \overline{\lambda[z(\varsigma)]} e^{\phi[z(\varsigma)]}, \ \hat{r}(\varsigma) = r[z(\varsigma)] - \operatorname{Re}\{ \overline{\lambda[z(\varsigma)]} \Psi[z(\varsigma)] e^{\phi[z(\varsigma)]} \},$$

$$a_{j}' = \varsigma(a_{j}), \ \hat{b}_{j} - \operatorname{Im}[\overline{\lambda(a_{j})} \Psi(a_{j})], j \in J$$

Guochun Wen & Yanhui Zhang

By (1.5), (1.9), it can be seen that $\Lambda(\varsigma)$, $\hat{r}(\varsigma)$, $\hat{b}_i (j \in J)$ satisfy the conditions

$$C_{\alpha\beta}[\Lambda(\zeta), L] \le M_3, C_{\alpha\beta}[\hat{r}(\zeta), L] \le M_3, |\hat{b}_j| \le M_3, j \in J,$$
(3.9)

Where $M_3 = M_3(q_0, p_0, \beta, k, D)$. If we can prove that the solution $\Phi(\zeta)$ of Problem \tilde{B}_1 satisfies the estimate

$$\mathbf{C}_{\alpha\beta}[\zeta^{\mathbf{n}}\Phi(\zeta),\,\overline{\mathbf{G}}] \le \mathbf{M}_4,\tag{3.10}$$

in which $G = \zeta(D)$, $M_4 = M_4(q_0, p_0, \beta, k, D)$, then from the representation (3.3) of the solution w(z) and the estimates about $\Phi(z)$, $\Psi(z)$, $\zeta(z)$ and its inverse function $z(\zeta)$, the estimates in (3.5) can be derived.

(3.11)

It remains to prove that (3.10) holds. For this, we first verify the boundedness of $\zeta^n \Phi(\zeta)$, i.e.

$$\mathbb{C}[\varsigma^{n}\Phi(\varsigma), \overline{\mathsf{G}}] \leq \mathsf{M}_{5} = \mathsf{M}_{5}(\mathsf{q}_{0}, \mathsf{p}_{0}, \beta, \mathsf{k}, \mathsf{D}).$$

Suppose that (3.11) is not true. Then there exist sequences of functions $\{\Lambda_l(\varsigma)\}, \{\hat{r}_l(\varsigma)\}, \{\hat{b}_{jl}\}$ satisfying the same conditions as $\Lambda(\varsigma), \hat{r}(\varsigma), \hat{b}_j$, and $\Lambda_l(\varsigma), \hat{r}_l(\varsigma), \hat{b}_{jl}$ uniformly converge to $\Lambda_0(\varsigma),$ $\hat{r}_0(\varsigma), \hat{b}_{j0}$ (j ϵ J) on L respectively. For the solution $\Phi_l(\varsigma)$ of the boundary value problem (Problem $\widetilde{B_1}$) corresponding to $\Lambda_1(\varsigma), \hat{r}_1(\varsigma), \hat{r}_{j1}$ (j ϵ J) we have $I_l = C[\Phi_l(\varsigma), \overline{G}] \to \infty$ as $n \to \infty$. There is no harm in assuming that $I_l \ge 1, l = 1, 2, \ldots$ Obviously $\widetilde{\Phi}_l(\varsigma) = \Phi_l(\varsigma)/I_l$ satisfies the boundary conditions

$$\operatorname{Re}[\overline{\Lambda_1(\varsigma)} \ \widetilde{\Phi}_i(\varsigma)] = [\widehat{r}_1(\varsigma) + h(\varsigma)]/I_l, \ \varsigma \in L^*,$$

$$\operatorname{Im}[\overline{\Lambda_1(a_l')} \,\check{\Phi}_l(a_l')] = \widehat{b}_{jl} / I_l, \ j \in J,$$

Applying the Schwarz formula, the Cauchy formula and the method of symmetric ex-tension (see Theorems 3.2-3.3, Chapter V, [3]), the estimate

$$C_{\alpha\beta}[\zeta^{n}\tilde{\Phi}_{l}(\zeta),\bar{G}] \leq M_{6}$$

$$(3.12)$$

Can be obtained, where $M_6 = M_6(q_0, p_0, \beta, k, D)$. Thus we can select a subsequence of $\{\tilde{\Phi}_1(\zeta)\}$, which uniformly converge to an analytic function $\tilde{\Phi}_0(\zeta)$ in G, and $\tilde{\Phi}_0(\zeta)$ satisfies the homogeneous boundary conditions

$$\operatorname{Re}[\overline{\Lambda_0(\varsigma)} \ \widetilde{\Phi}_0(\varsigma)] = h(\varsigma), \ \varsigma \in L^*,$$

 $\text{Im}[\overline{\Lambda_0(a'_J)}\ \check{\Phi}_0(a'_j)] = 0, \ j \in J,$

On the basis of the uniqueness theorem, we conclude that $\tilde{\Phi}_0(\varsigma) = 0$, $\varsigma \in \overline{G}$. However, $C[\varsigma^n \tilde{\Phi}_1(\varsigma), \overline{G}] = 1$ from $C[\varsigma^n \tilde{\Phi}_1(\varsigma), \overline{G}] = 1$, it follows that there exists a point $\varsigma_* \in \overline{G}$; such that $C[\varsigma^n * \tilde{\Phi}_0(\varsigma_*)] = 1$, This contradiction proves that (3.11) holds. Afterwards using the method which leads from $C[\varsigma^n \tilde{\Phi}_1(\varsigma), \overline{G}] = 1$ to (3.12), the estimate (3.7) can be derived.

For verifying the existence of solutions of Problem B₁ for the complex equation (1.1), we need to add the following condition. For any continuous functions $w_1(z)$, $w_2(z)$ in $\overline{D\setminus\{0\}}$ and $[\varsigma(z)]^n U(z) \in L_{p0}(\overline{D})$, there is

$$F(z, w_1, U) - F(z, w_2, U) = \widetilde{Q}(z, w_1, w_2, U)U + \widetilde{A}(z, w_1, w_2, U)(w_1 - w_2),$$
(3.13)

where $| \tilde{Q}(z, w_1, w_2, U) \le q_0(< 1), L_p[\tilde{A}(z, w_1, w_2, U), \overline{D}] \le k_0$. When (1.1) is linear, (3.1) obviously holds. Moreover we first prove the existence of solutions of Problem B₁ for equation (1.1) with $F(z, w, w_z) = 0$ in $D_{1/m} = \{ |z| < 1/m \} U \{ |z - a| < 1/m \}$, i.e.

$$w_{\bar{z}} = F_{1/m}(z, w, w_z), F_{1/m}(z, w, w_z) = \begin{cases} F(z, w, w_z), z \in D_m = D \setminus D_{1/m} \\ 0, z \in D_{1/m} \end{cases}$$
(3.14)

By the Leray-Schauder theorem, where *m* is a sufficiently large positive integer.

Theorem 3.2. Suppose that equation (1.1) satisfies Condition C and (3.13). Then the singular Riemann-Hilbert problem (Problem B_1) for (3.14) has a solution.

Proof. In order to find a solution w(z) of Problem B₁ for equation (3.14), we consider the equation (3.14) with the parameter $t \in [0, 1]$

Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

$$w_{\overline{z}} = tF(z, w, w_z), F(z, w, w_z) = Q_1w_z + Q_2\overline{w}_{\overline{z}} + A_1w + A_2\overline{w} + A_3 \text{ in } D,$$
(3.15)

and introduce a bounded open set B_M of Banach space $B = C_\beta(D_m) \cap L^1_{p0}(D_m)$, whose elements are functions w(z) satisfying the condition

$$w(z) \in C_{\beta}(D_{m}) \cap L^{1}_{p0}(D_{m}) : C_{\beta}[w, D_{m}] + L^{1}_{p0}[w, D_{m}]$$

= $C_{\beta}[w(z), D_{m}] + L_{p0}[|w_{\overline{z}}| + |w_{z}|, D_{m}] < M_{7},$ (3.16)

where $M_7 = 1 + M_1 + M_2$, M_1 , M_2 , β are constants as similar to (3.7). We choose an arbitrary function $W(z) \in \overline{B}_M$ and substitute it in the position of w in $F(z, w, w_z)$, Applying the method in the proof of Theorem 1.1.2, [12], a solution $w(z) = \Phi(z) + \Psi(z) = W(z) + T(tF)$ of Problem B₁ for the complex equation

$$w_{\overline{z}} = tF(z, W, W_z) \tag{3.17}$$

Can be found. Noting that $tF[z, W(z), W_z] \in L_{p0}(\overline{D})$, the above solution of Problem B₁ for (3.17) is unique. Denoting by $w(z) = \tilde{T}[W, t]$ ($0 \le t \le 1$) the mapping from W(z) to w(z), from Theorem 3.2, we know that if w(z) is a solution of Problem B for the equation

$$w_{\bar{z}} = tF(z, w, w_z) \text{ in } D,$$
 (3.18)

then the function w(z) satisfies the estimate

$$C_{\beta}[w, D_m)] < M_7$$

(

Set $B_0 = B_M \times [0, 1]$. In the following we verify the three conditions of the Leray-Schauder theorem:

(1) For every $t \in [0, 1]$, $\tilde{T}[W, t]$ continuously maps the Banach space *B* into itself, and is completely continuous in $\overline{B_M}$. In fact, we arbitrarily select a sequence $W_n(z)$ in $\overline{B_M}$, n = 0, 1,2, ..., such that $C_{\beta}[W_n - W_0, D_m] \to 0$ as $n \to \infty$. By Condition C, we see that $L_{p0}[F(z, W_n, W_{nz}) - F(z, W_0, W_{0z}))$, $\overline{D}] \to 0$ as $n \to \infty$. Moreover, from $w_n = \tilde{T}[W_n, t]$, $w_0 = \tilde{T}[W_0, t]$, it is easy to see that $w_n - w_0$ is a solution of Problem B for the following complex equation

$$(w_n - w_0)_{\overline{z}} = t[F(z, W_n, W_{nz}), -F(z, W_0, W_{0z})] \text{ in } D, \qquad (3.20)$$

and then we can obtain the estimate

$$C_{\beta}[w_{n} - w_{m}, D_{m})] \leq 2k_{0}C_{\beta}[W_{n}(z) - W_{0}(z), D_{m}].$$
(3.21)

Hence $C_{\beta}[w_n - w_0, D_m] \to 0$ as $n \to \infty$. In addition for $W_n(z) \in \overline{B_M}$, n = 1, 2, ..., we have $w_n = \tilde{T}[W_n, t], w_m = \tilde{T}[W_n, t], W_n, W_m \in \overline{B_M}$, and then

$$(w_n - w_m)_{\overline{z}} = t[F(z, W_n, W_{nz}) - F(z, W_m, W_{mz}] \text{ in } D, \qquad (3.22)$$

Where L_{p0} [$F(z, W_n, W_{nz}) - F(z, W_m, W_{mz})$, \overline{D}] $\leq 2k_0M_7$. Hence similarly to the proof of Theorem 3.1, we can obtain the estimate

$$C_{\beta}[w_{n} - w_{m}, D_{m}] \leq M_{7}M_{8},$$

Where $M_8 = M_8(q_0, p_0, \beta, k, D)$. Thus there exists a function $w_0(z) \in \overline{B_M}$, from $\{w_n(z)\}$ we can choose a subsequence $\{w_{nk}(z)\}$ such that $C_\beta[w_{nk} - w_0, D_m] \to 0$ as $k \to \infty$. This shows that $w = \tilde{T}[W, t]$ is completely continuous in $\overline{B_M}$. Similarly we can prove that for $W(z) \in \overline{B_M}$, $\tilde{T}[W, t)$ is uniformly continuous with respect to $t \in [0, 1]$.

- (2) For t = 0, it is evident that w = $\tilde{T}[W, 0] = \Phi(z) \in B_M$.
- (3) From the estimate (3.7), we see that $w = \tilde{T} [W, t]$ ($0 \le t \le 1$) does not have a solution w(z) on the boundary $\partial B_M = \overline{B_M} \setminus B_M$.

Hence by the Leray-Schauder theorem, we know that there exists a function $w(z) \in \overline{B_M}$, such that $w(z) = \tilde{T}[w(z), t]$, and the function $w(z) \in C_{\beta}(D_m)$ is just a solution of Problem *B* for the complex equation (3.14).

Theorem 3.3. Suppose that equation (1.1) satisfies Condition C and (3.13). Then Problem B_1 for (1.1) have a solution.

Proof. According to Theorem 3.2, we have proved that Problem B₁ for (3.14) have a solution $w_{1/m}(z)$, let $m \to \infty$, we can derive that $w_0(z)$ is the solution Problem B₁ for (1.1).

Theorem 3.4. Suppose that equation (1.1) satisfies Condition C and (3.13). Then Problem B_j (j=2, 3) for (1.1) have a unique solution.

Proof. We first verify the unique solvability of Problem B_3 for (1.1). As stated in the proof of Theorem 2.3, the boundary conditions (1.13) can be reduced to the following boundary conditions

$$\operatorname{Re}[\overline{\lambda(z)} [(\varsigma - \varsigma(a))^m / \varsigma^n] W(z)] = r(z) + h(z) \text{ in } D,$$

$$\operatorname{Im}[\overline{\lambda(a_{j})}[\zeta(a_{j}) - \zeta(a))^{m}/(\zeta(a_{j}))^{n}]W(a_{j})] = b_{j}, j \in J,$$

Where $W(z) = w(z)/\Psi(z)$, $\Psi(z) = (\varsigma - \varsigma a)^m/\varsigma^n$, $b_j'(j \in J)$ are real constants. It is easy to see W(z) satisfies the complex equation

$$w_{\overline{z}} = Q_1 W_z + Q_2 \overline{w}_{\overline{z}} - [Q_1 \Psi'(z) - A] W - [Q_2 \overline{\Psi'(z)} - B(z) \Psi(z) / \overline{\Psi}] \overline{W} + A_3 \Psi(z), z \in D,$$

which index of $\lambda(z)\overline{(\varsigma(z)-\varsigma(a))^m}/\varsigma^n$ on Γ equals to K + n - m(>0), by Theorem 3.3, the solvability of the boundary value problem (1.13) for (1.1) is verified.

Similarly we can prove the solvability of Problem B₂ for (1.1). From the solvability of Problem B₂ for (1.1), we can derive the existence of the homeomorphic solution for the nonlinear complex equation (1.1) with A(z, w) = B(z, w) = C(z, w) = 0 in *D* from the domain *D* mapping to the *N*+1 - connected rectilinear slit domain *G*, the so-called *N*+1 - connected rectilinear slit domain means a domain whose boundary consists of *N* +1 rectilinear slits L_j (j = 0, 1, ..., N) with the oblique angles θ_j (j = 0, 1, ..., N) respectively, where we must choose $\lambda(z) = e^{-i(\arg \theta_j + \pi/2)}$, θ_j (j = 0, 1, ..., N) are real constants, in this case, the index K = 0.

Finally we give the conclusion in this paper, namely the singular Riemann-Hilbert problem with the nonnegative index for elliptic complex equations of first can be trans-formed into the non-singular Riemann-Hilbert problem with the nonnegative index for the corresponding complex equations of first order, due to we can handle the non-singular boundary value problem, then the corresponding results of non-singular boundary value problem can be derived.

REFERENCES

- [1] Vekua I.N., Generalized analytic functions. Pergamon, Oxford, 1962.
- [2] Bitsadze A.V., Some classes of partial diferential equations. Gordon and Breach, New York, 1988.
- [3] Wen G.C., Conformal mappings and boundary value problems. Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI, 1992.
- [4] Wen G.C., Linear and nonlinear elliptic complex equations. Shanghai Scientific and Technical Publishers, Shanghai, 1986 (Chinese).
- [5] Wen G.C., Tai C.W. and Tian M.Y., Function theoretic methods of free boundary problems and their applications to mechanics. Higher Education Press, Beijing, 1996 (Chinese).
- [6] Wen G.C., Approximate methods and numerical analysis for elliptic complex equations. Gordon and Breach, Amsterdam, 1999.
- [7] Wen G.C., Linear and nonlinear parabolic complex equations. World Scientific Publishing Co., Singapore, 1999.
- [8] Wen G.C. and Zou B.T., Initial-boundary value problems for nonlinear parabolic equations in higher dimensional domains. Science Press, Beijing, 2002.
- [9] Wen G.C., Linear and quasilinear complex equations of hyperbolic and mixed type. Taylor & Francis, London, 2002.
- [10] Huang S., Qiao Y.Y. and Wen G.C., Real and complex Clipord analysis. Springer-Verlag, Heidelberg, 2005.
- [11] Wen G.C., Elliptic, hyperbolic and mixed complex equations with parabolic degeneracy. World Scientific, Singapore, 2008.
- [12] Wen G.C., Chen D.C. and Xu Z.L., Nonlinear complex analysis and its applications. Mathematics Monograph Series 12, Science Press, Beijing, 2008.
- [13] Wen G.C., Recent progress in theory and applications of modern complex analysis. Science Press, Beijing, 2010.