Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

Guochun Wen
LMAM
School of Mathematical Sciences
Peking University
Beijing 100871
China
wengc@math.pku.edu.cn

Yanhui Zhang
Math. Dept
Beijing Technology and Business University
Beijing 100048
China
zhangyanhui@th.btbu.edu.cn

Abstract

In [1], the author first proposed a well-posedness of singular Riemann-Hilbert boundary value problem for generalized analytic functions in multiply con-nected domains, and the well posedness allows that the solutions of the modified problem possess some poles in $N+1$-connected domain D. In [3], the author proposed another well-posedness of the Riemann-Hilbert boundary value problem with continuous solutions for nonlinear elliptic complex equations of first order, in particular the well-posedness includes the well-posedness of the singular case of $0<K<N$. Recently, the authors of this paper proposes three kinds of new well-posedness of singular Riemann-Hilbert boundary value problem for nonlinear elliptic complex equations of first order in multiply connected domains. We shall prove the existence of solutions for these boundary value problems.

Keywords: Singular modified Riemann-Hilbert problem, elliptic complex equations of first order, three kinds of well posedness with pole points, the existence of solutions.
AMS Mathematics Subject Classification: 30J56, 35J46, 35 J 60.

1. Formulation of singular modified Riemann-Hilbert boundary value PROBLEMS FOR ELLIPTIC COMPLEX EQUATIONS OF FIRST ORDER

First of all, we introduce the nonlinear elliptic equations of first order

$$
\left\{\begin{array}{l}
w_{\bar{Z}}=F\left(z, w, w_{z}\right), F=Q_{1} w_{z}+Q_{2} \overline{w_{Z}}+A_{1} w+A_{2} \bar{w}+A_{3} \tag{1.1}\\
Q_{j}=Q_{j}\left(z, w, w_{z}\right), j=1,2, A_{j}=A_{j}(z, w), j=1,2,3
\end{array}\right.
$$

In a bounded $N+1(N \geq 1)$-connected domain D, which is the complex form of the real nonlinear elliptic system of first order equations
$\Phi \mathrm{j}\left(\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}\right)=0, \mathrm{j}=1,2$
Under certain conditions(see Theorem 1.2, Chapter I, [4]). There is not harm in assuming that D is an $N+1(N \geq 1)$-connected circular domain in $|z|<1$ bounded by the $(N+1)$ - circles $\Gamma_{j}:\left|z-z_{j}\right|$ $=r_{j} j=0,1, \ldots, N$ and $\Gamma_{0}=\Gamma_{N+1}:|z|=1, z=0 \epsilon D$. In this article, the notations are as the same in References [3-13]. Suppose that the complex equation (1.1) satisfies the following conditions, namely
Condition C. 1) $Q_{j}(z, w, U)(j=1,2), A_{j}(z, w)(j=1,2,3)$ are measurable in $z \in D$ for all continuous functions $w(z)$ in $\bar{D}\{0\}$ and all measurable functions $U(z) \epsilon \mathrm{L}_{\mathrm{po}}(\bar{D})$, and satisfy

$$
\begin{equation*}
\mathrm{L}_{\mathrm{p}}\left[\mathrm{~A}_{\mathrm{j}}, \overline{\mathrm{D}}\right] \leq \mathrm{k}_{0}, \mathrm{j}=1,2, \mathrm{~L}_{\mathrm{p}}\left[\mathrm{~A}_{3}, \overline{\mathrm{D}}\right] \leq \mathrm{k}_{1}, \tag{1.2}
\end{equation*}
$$

where p, $p_{0}\left(2<p_{0} \leq p\right), k_{0}, k_{1}$ are non-negative constants.
2) The above functions are continuous in $w \in \mathrm{C}$ for almost every point $z \in D, U \in \mathrm{C}$, and $A_{j}=0(j=$ $1,2,3)$ for $z \in \mathrm{C} \backslash$.
3) The complex equation (1.1) satisfies the uniform ellipticity condition, i.e. for any $U_{1}, U_{2} \in \mathrm{C}$,
the following inequality in almost every point $z \epsilon D$ holds:
$\left|F\left(\mathrm{z}, \mathrm{w}, \mathrm{U}_{1}\right)-\mathrm{F}\left(\mathrm{z}, \mathrm{w}, \mathrm{U}_{2}\right)\right| \leq \mathrm{q}_{0}\left|\mathrm{U}_{1}-\mathrm{U}_{2}\right|$,
In which $q_{0}(<1)$ is a non-negative constant.
It is well known that a generalized analytic function in a domain D is a continuous solution of the complex equation
$\mathrm{w}_{\overline{\mathrm{z}}}=\mathrm{A}(\mathrm{z}) \mathrm{w}+\mathrm{B}(\mathrm{z}) \overline{\mathrm{w}}, \mathrm{z} \in \mathrm{D}$,
Where $z=x+i y, w_{\bar{z}}=\left[w_{x}+i w_{y}\right] / 2, A(z), B(z) \in L_{p}(\bar{D})(p>2)$; the conditions will be called Condition C_{0}. Obviously the complex equation (1.4) is a special case of (1.1).

Now we first formulate the new singular Riemann-Hilbert problem with the non-negative index for equation (1.1) as follows.

Problem \mathbf{B}_{1}. The singular modified Riemann-Hilbert boundary value problem for (1.1) is to find a continuous solution $w(z)$ in \bar{D} with the pole point of n order at the point $z=0(\in D)$ satisfying the boundary condition:
$\operatorname{Re}[\overline{\lambda(\mathrm{z})} \mathrm{w}(\mathrm{z})]=\mathrm{r}(\mathrm{z})+\mathrm{h}(\mathrm{z}), \mathrm{z} \in \Gamma$,
Where $\lambda(z), r(z)$ satisfy the conditions
$C_{\alpha}[\lambda(z), \Gamma] \leq k_{0}, C_{\alpha}[r(z), \Gamma] \leq k_{2}$, in which
(1.6)
$\lambda(z)=a(z)+i b(z)$ on $\Gamma, \alpha(1 / 2<\alpha<1)$ is a positive constant. The index K of Problems B_{1} is defined by:
$K=K_{0}+K_{1}+\ldots \ldots+K_{N}=\sum_{j=0}^{N} \frac{1}{2 \pi} \Delta_{\Gamma j} \arg \lambda(z) \geq 0$,
The partial indexes $K_{j}=\Delta_{\Gamma j} \arg \lambda(z) / 2 \pi(j=0,1, \ldots \ldots, N)$ of $\lambda(z)$ are integers and
$h(z)=\left\{\begin{array}{l}0, \mathrm{z} \in \Gamma 0, \\ \mathrm{~h}_{\mathrm{j}}, \mathrm{z} \in \Gamma_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{N},\end{array}\right.$
$h_{j}(j=1, \ldots, N)$ are unknown real constants to be determined appropriately. Moreover we assume that the solution $w(z)$ satisfies the following point conditions
$\operatorname{Im}\left[\overline{\lambda\left(a_{J}\right)} w\left(a_{j}\right)\right]=b_{j}, j \in J=\{1, \ldots \ldots, 2 K+1\}$,
in which $a_{j} \in \Gamma_{0}(j=1, \ldots \ldots, 2 K+1)$ are distinct fixed points, and $b_{j}(j \in J)$ are all real constants satisfying the conditions
$\left|b_{j}\right| \leq k_{3}, j \in J$,
herein k_{3} is a non-negative constant. Problem B with $\mathrm{A}_{3}(\mathrm{z}, \mathrm{w})=0$ in $D, r(z)=0$ on Γ and $b_{j}(j \epsilon J)$ is called Problem B_{0}.
Next we shall introduce the other two kinds of well-posedness of new singular Riemann-Hilbert boundary value problem for the equation (1.1) as follows
Problem \mathbf{B}_{2}. To find a continuous solution $w(z)$ of the equation (1.1) in $\bar{D} \backslash\{0\}$ satis-fying the modified boundary conditions
$\operatorname{Re}[\overline{\lambda(z)} w(z)]=r(z)+h(z), z \in \Gamma$,
$\operatorname{Im}\left[\overline{\lambda\left(a_{J}\right)} w\left(a_{j}\right)\right]=b_{j}, j \in J=\{1, \ldots \ldots, 2 K\}$,
$w(0)=\infty, w(a)=0, w(1)=1$,
where $a(\epsilon D)$ is a point, and $\lambda(z), r(z), h(z)$ are the same as in (1.5)-(1.6), and $a_{j}(\neq 1) \epsilon \Gamma_{0}$ $(j=1, \ldots \ldots, 2 K)$ are distinct fixed points, $b_{j}(j \epsilon J)$ are all real constants satisfying the conditions

$$
\begin{equation*}
\left|b_{j}\right| \leq k_{3, j} \in J \tag{1.12}
\end{equation*}
$$

herein k_{3} is a non-negative constant.
Problem \mathbf{B}_{3}. To find a continuous solution $w(z)$ of the equation (1.1) in $\bar{D} \backslash\{0\}$ with the pole point

Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

of $n(>0)$ order at $z=0$ and the zero point of $m(0<m<n)$ order at $z=a(\epsilon D, a \neq 0)$ satisfying the modified boundary conditions
$\operatorname{Re}[\overline{\lambda(z)} \mathrm{w}(\mathrm{z})]=\mathrm{r}(\mathrm{z})+\mathrm{h}(\mathrm{z}), \mathrm{z} \in \Gamma$,
$\operatorname{Im}\left[\overline{\lambda\left(a_{j}\right)} w\left(a_{j}\right)\right]=b_{j}, j \in J=\{1, \ldots, 2 K+1\}$,
in which $n, m(<n)$ are positive integers and $\lambda(z), r(z), h(z)$ are the same as in (1.5)-(1.6), and $a_{j} \epsilon$ $\Gamma_{0}(j \in J=1, \ldots \ldots, 2 K+1)$ are distinct fixed points, $b_{j}(j \in J)$ are all real constants satisfying the condition

$$
\begin{equation*}
\left|b_{j}\right| \leq k_{3}, j \in J \tag{1.14}
\end{equation*}
$$

with the constant k_{3}.
In order to prove the solvability of Problem B_{1} for the complex equation (1.1), we need to give a representation theorem for Problem B_{1}.

Theorem 1.1. Suppose that the complex equation (1.1) satisfies Condition C, and $w(z)$ is a solution of Problem B_{1} for (1.1). Then $w(z)$ is represented by
$w(z)=[\Phi(\varsigma(z))+\Psi(z)] e^{\Phi(z)}$,
where $\varsigma(z)$ is a homeomorphism in \bar{D}, which quasiconformally maps D onto the $N+1$-connected circular domain G with boundary $L=\varsigma(\Gamma)$ in $\{|\varsigma|<1\}$, such that $\varsigma(0)=0$ and $\varsigma(1)=1, \Phi(\varsigma)$ is an analytic function in $\mathrm{G}, \Psi(z), \Phi(z), \varsigma(z)$ and its inverse function $z(\varsigma)$ satisfy the following estimates
$C_{\beta}[\Psi, \bar{D}] \leq k_{4}, C_{\beta}[\Phi, \bar{D}] \leq k_{4}, C_{\beta}[\varsigma(z), \bar{D}] \leq k_{4}$,
$L_{p 0}\left[\left|\Psi_{\bar{z}}\right|+\left|\Psi_{z}\right|, \bar{D}\right] \leq k_{4} ; L_{p 0}\left[\left|\Phi_{\bar{z}}\right|+\left|\Phi_{z}\right|, \bar{D}\right] \leq k_{4}$,
$C_{\beta}[z(\varsigma), \bar{G}] \leq k_{4}, L_{p 0}\left[\left|\chi_{\bar{z}}\right|+\left|\chi_{z}\right|, \bar{D}\right] \leq k_{5}$,
in which $\chi(z)$ is as stated in (1.21) below, $\beta=\min \left(\alpha, 1-2 / p_{0}\right), p_{0}\left(2<p_{0} \leq p\right), k_{j}=k_{j}\left(q_{0}, p_{0}, \beta, k_{0}, k_{1}\right.$, $D)(j=4,5)$ are non-negative constants dependent on $q_{0}, p_{0}, \beta, k_{0,} k_{1}, D$. Moreover, the function $\Phi[\varsigma(z)]$ satisfies the estimate
$C_{\delta}\left[\varsigma^{n} \Phi[\varsigma(z)], \bar{D}\right] \leq M_{1}=M_{1}\left(q_{0}, p_{0}, \beta, k, D\right)<\infty$,
and $\mathrm{T}\left(\leq \min \left(\alpha, 1-2 / p_{0}\right)\right), k=k\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$, and M_{1} is a non-negative constant dependent on q_{0}, $p_{0,} \beta, k, D$. Here we mention that the pole of n order at $z=0$ of $w(z)$ is denoted the pole of n order of the function $\Phi(\varsigma)$ at $\varsigma(0)=0$.

Proof. We substitute the solution $w(z)$ of Problem B_{1} into the coefficients of equation (1.1) and consider the following system
$\Phi_{\bar{z}}=Q \Phi_{z}+A, A=\left\{\begin{array}{l}A_{1}+A_{2} \bar{w} / w \text { for } w(z) \neq 0, \\ 0 \text { for } w(z)=0 \text { or } z \oplus D,\end{array}\right.$
$\Psi_{\bar{z}}=Q \Psi_{z}+A_{3} e^{-\Phi(z)}, Q=\left\{\begin{array}{l}Q_{1}+Q_{2} \overline{w_{2}} / w_{Z} \text { for } w_{Z} \neq 0, \\ 0 \text { for } w_{z}=0 \text { or } z \notin D,\end{array}\right.$
$w_{\bar{z}}=Q W_{z}, W(z)=\Phi[\varsigma(z)]$ in D.
By using the continuity method and the principle of contracting mapping, we can find the solution
$\Psi(z)=T_{0} f=\frac{-1}{\pi} \iint_{D} \frac{f(\varsigma)}{\varsigma^{-z}} d \sigma_{\zeta}$,
$\Phi(z)=T_{0} g, \varsigma(z)=\Psi[\chi(z)], \chi(z)=z+T_{0} h$
of (1.20), in which $f(z), g(z), h(z) \in L_{p 0}(\bar{D}), 2<p_{0} \leq p, \chi(z)$ is a homeomorphic solution of the third equation in (1.20), $\Psi(\chi)$ is a univalent analytic function, which con-formally maps $E=\chi(D)$ onto the domain G (see[1,3], and $\Psi(\varsigma)$ is an analytic function in G such that the function $\varsigma(z)=$ $\Psi[\chi(z)]$ satisfies $\varsigma(0)=0, \varsigma(1)=1$. We can verify that $\Psi(z), \Phi(z), \varsigma(z)$ satisfy the estimates (1.16) and (1.17). It remains to prove that $z=z(\varsigma)$ satisfies the estimate in (1.18). In fact, we can find a homeomorphic solution of the last equation in (1.20) in the form $\chi(z)=z+T_{0} h$ such that $[\chi(z)]_{z}$, $[\chi(z)]_{\bar{z}} \in L_{p 0}(\bar{D})$ (see[1]). By the result on conformal mappings, applying the method of Theorem
$\overline{3.2 \text {, Chapter V,[4], we can prove that (1.18) is true. It is easy to see that the function } \Phi|\varsigma(z)|}$ satisfies the boundary conditions
$\operatorname{Re}\left[\overline{\lambda(z)} e^{\Phi(z)} \Phi(\varsigma(z))\right]=c(z)+h(z)-\operatorname{Re}\left[\overline{\lambda(z)} e^{\Phi(z)} \Psi(\mathrm{z})\right], \mathrm{z} \epsilon \Gamma$
On the basis of the estimates (1.16) and (1.18), and using the methods of Theorems 3.2-3.3, Chapter V, [3], we can prove that $\Psi[\varsigma(z)]$ satisfies the estimate (1.19).

2. UniQUE SOLVAbIlity of Problems B_{1}, B_{2}, B_{3} FOR GENERALIZED ANALYtic FUNCTIONS

In this section, we first prove the uniqueness and solvability of Problems $B_{j}(j=1,2,3)$ for generalized analytic functions.
Theorem 2.1. Suppose that equation (1.4) satisfies Condition C_{0}. Then the solution of Problem B_{1} are existence and unique
Proof. Problem B_{1} for (1.4) can be rewritten as
$\operatorname{Re}\left[\overline{\lambda(z)}\left[1 / \mathrm{z}^{\mathrm{n}}\right] \mathrm{W}(\mathrm{z})\right]=\mathrm{r}(\mathrm{z})+\mathrm{h}(\mathrm{z})$ in D ,
$\operatorname{Im}\left[\overline{\lambda\left(\mathrm{a}_{\mathrm{j}}\right)}\left[1 / \mathrm{a}_{\mathrm{j}}^{\mathrm{n}}\right] \mathrm{W}\left(\mathrm{a}_{\mathrm{j}}\right)\right]=b_{j}^{\prime}, \mathrm{j} \in \mathrm{J}=\{1, \ldots, 2(\mathrm{~K}+\mathrm{n})+1\}$,
Where $W(z)=w(z) / \Psi(z), \Psi(z)=1 / z^{n}, b_{j}^{\prime}(j \epsilon J)$ are real constants with the conditions
$\left|b_{j}^{\prime}\right|-k_{3}^{\prime}(<\infty)(j \in J)$. It is easy to see $W(z)$ satisfies the complex equation
$\mathrm{W}_{\overline{\mathrm{z}}}=\mathrm{A}(\mathrm{z}) \mathrm{W}+[\mathrm{B}(\mathrm{z}) \Psi(\mathrm{z}) / \overline{\Psi(\mathrm{z})}] \overline{\mathrm{W}}, \mathrm{z} \in \mathrm{D}$,
The index of $\lambda(z), \overline{1 / \overline{z^{n}}}$ on Γ is equal to $K+n(>0)$, the boundary value problem (2.1),(2.2) is called Problem B_{1}^{\prime}. According to the method a before, we can derive that Problem B_{1}^{\prime} has a unique continuous solution $W(z)$ in \bar{D}, and then Problem B_{1} for (1.4) is uniquely solvable.
Theorem 2.2. Suppose that equation (1.4) satisfies Condition C_{0}. Then the solution of Problem B_{2} are existence and unique.
Proof. Problem B_{2} for (1.4) can be rewritten as
$\operatorname{Re}[\overline{\lambda(z)}[(z-a) /(1-a) z] W(z)]=r(z)+h(z)$ in D,
$(1-a) /(1-a)] W(1)=1$,
Where $W(z)=w(z) / \Psi(z), \Psi(z)=(z-a) /(1-a) z$. It is easy to see $W(z)$ satisfies the complex equation
$\mathrm{W}_{\overline{\mathrm{z}}}=\mathrm{A}(\mathrm{z}) \mathrm{W}+[\mathrm{B}(\mathrm{z}) \Psi(\mathrm{z}) / \bar{\Psi}] \overline{\mathrm{W}}, \mathrm{z} \in \mathrm{D}$,
the index of $\lambda(z) \overline{(z-a)} \overline{/(1-a) z}$ on Γ is equals to K, the boundary value problem (2.3),(2.4) and the second formula of (1.11) is called Problem B_{2}^{\prime}, hence according to the result as in Theorem 3.3, Chapter V,[4], f we can derive that Problem B_{2}^{\prime} has a unique continuous solution W (z) in \bar{D}, and then Problem B_{2} for (1.4) is uniquely solvable.
Theorem 2.3. Suppose that equation (1.4) satisfies Condition C_{0}. Then the solution of Problem B_{3} is existence and unique.
Proof. For problem B_{3} for (1.4) can be rewritten as
$\operatorname{Re}\left[\overline{\lambda(z)}\left[(z-a)^{m} / z^{n}\right] W(z)\right]=r(z)+h(z)$ in D,
$\operatorname{Im}\left[\overline{\lambda\left(\mathrm{a}_{\mathrm{j}}\right)}\left[\left(\mathrm{a}_{\mathrm{j}}-\mathrm{a}\right)^{\mathrm{m}} / \mathrm{a}^{\mathrm{n}}{ }_{\mathrm{j}}\right] \mathrm{W}\left(\mathrm{a}_{\mathrm{j}}\right)\right]=b_{j}^{\prime}, \mathrm{j} \in \mathrm{J}=\{1, \ldots \ldots, 2(\mathrm{n}-\mathrm{m}+\mathrm{K})+1\}$,
Where $W(z)=w(z) / \Psi(z), \Psi(z)=(z-a)^{\mathrm{m}} / z^{n}, b_{j}^{\prime}(j \in J)$ are real constants with the conditions $\left|b_{j}^{\prime}\right| \leq k_{3}{ }^{\prime}(<\infty)(j \in J)$. It is easy to see $W(z)$ satisfies the complex equation
$\mathrm{W}_{\overline{\mathrm{z}}}=\mathrm{A}(\mathrm{z}) \mathrm{W}+[\mathrm{B}(\mathrm{z}) \Psi(\mathrm{z}) / \bar{\Psi}] \overline{\mathrm{W}}, \mathrm{z} \in \mathrm{D}$,
That the index of $\lambda(z) \overline{(z-a)^{m}} / \overline{z^{n}}$ on Γ is equals to $K+n-m(>0)$, the boundary value problem (2.5),(2.6) is called Problem B_{3}. Moreover we can derive that Problem B_{3}^{\prime} has a unique continuous solution $W(z)$ in \bar{D}, and then Problem B_{3} for (1.4) is uniquely solvable.

In the following section, by using Theorem 3.3, Chapter V,[4], we can prove the solvability of Problems $\quad B_{j}(j=1,2,3)$ for (1.1).

3. Estimates of SOLUTIONS AND SOLVAbility of Problems $B_{j}(j=1,2,3)$ FOR NONLINEAR ELLIPTIC COMPLEX EQUATIONS IN MULTIPLY CONNECTED DOMAINS

The singular modified Riemann-Hilbert problem(Problem B_{1}) can be transformed into the continuous modified Riemann-Hilbert problem(Problem B_{1}^{\prime}) as follows.
Problem B' ${ }_{1}$. The modified Riemann-Hilbert boundary value problem for (1.1) is to find a continuous solution $\mathrm{w}(\mathrm{z})$ in $\overline{\mathrm{D}}$ satisfying the boundary condition:
$\operatorname{Re}\left[\overline{\lambda(z)} / \varsigma^{\mathrm{n}} \mathrm{w}(\mathrm{z})\right]=\mathrm{r}(\mathrm{z})+\mathrm{h}(\mathrm{z}), \mathrm{z} \in \Gamma$,
Where $\lambda(\mathrm{z}), \mathrm{r}(\mathrm{z})$ satisfy the conditions
$\mathrm{C}_{\alpha}[\lambda(\mathrm{z}), \Gamma] \leq \mathrm{k}_{0}, \mathrm{C}_{\alpha}[\mathrm{r}(\mathrm{z}), \Gamma] \leq \mathrm{k}_{2}$,
$\lambda(\mathrm{z})=\mathrm{a}(\mathrm{z})+\mathrm{ib}(\mathrm{z}),|\lambda(\mathrm{z})|=1$ on Γ, and $\alpha(1 / 2<\alpha<1)$ is a positive constant. The index K of Problems B_{1} is defined as follows:
$\mathrm{K}+\mathrm{l}=\mathrm{K}_{0}+\mathrm{K}_{1}+\ldots .+\mathrm{K}_{\mathrm{N}}==\sum_{j=0}^{N} \frac{1}{2 \pi} \Delta_{\Gamma_{j}} \arg \lambda(\mathrm{z}) \geq 0$,
The partial indexes $\mathrm{K}_{\mathrm{j}}=\Delta_{\Gamma_{j}} \arg \lambda(\mathrm{z}) / 2 \pi$ of $\lambda(\mathrm{z})$ are integers. And
$h(z)=\left\{\begin{array}{l}0, z \in \Gamma 0, \\ h_{j}, z \in \Gamma_{j}, j=1, \ldots, N,\end{array}\right.$
$\mathrm{h}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{~N})$ are unknown real constants to be determined appropriately. Moreover we assume that the solution $\mathrm{w}(\mathrm{z})$ satisfies the following point conditions
$\operatorname{Im}\left[\overline{\lambda\left(a_{J}\right)} W\left(a_{j}\right)\right]=b_{j}, j \in J=\{1, \ldots ., 2 K+2 n+1\}$,
where $\mathrm{a}_{\mathrm{j}} \in \Gamma_{0}(\mathrm{j}=1, \ldots, 2 \mathrm{~K}+2 \mathrm{n}+1)$ are distinct fixed points; and $\mathrm{b}_{\mathrm{j}}(\mathrm{j} \in \mathrm{J})$ are all real constants satisfying the conditions

$$
\begin{equation*}
\left|\mathrm{b}_{\mathrm{j}}\right| \leq \mathrm{k}_{3}, \mathrm{j} \in \mathrm{~J}, \tag{3.6}
\end{equation*}
$$

herein k_{3} is a non-negative constant.
Theorem 3.1. Suppose that the first order complex equation (1.1) satisfies Condition C. Then any solution $\mathrm{w}(\mathrm{z})$ of Problem B_{1} for the complex equation (1.1) satisfies the estimates
$\mathrm{C}_{\beta}\left[\varsigma^{\mathrm{n}} \mathrm{w}(\mathrm{z}), \bar{D}\right] \leq \mathrm{M}_{1}$,
$\widehat{L}_{p_{0}}^{1}[\mathrm{w}, \bar{D}]=\mathrm{L}_{\mathrm{p} 0}\left[\left|\left[\zeta^{\mathrm{n}} \mathrm{w}\right]_{\bar{z}}\right|+\left|\left[\zeta^{\mathrm{n}} \mathrm{w}\right]_{z}\right|, \bar{D}\right] \leq \mathrm{M}_{2}$,
in which $\beta=\min \left(\alpha, 1-2 / p_{0}\right), k=k\left(k_{0}, k_{1}, k_{2}, k_{3}\right), M_{j}=M_{j}\left(q_{0}, p_{0}, \beta, k, D\right),(j=1,2)$ are positive constants.

Proof. Similarly to the proof of Theorem 1.1, the solution $w(z)$ of Problem B_{1} for (1.1) can be expressed the formula as in (1.15), hence the boundary value problem B_{1} can be transformed into the boundary value problem (Problem B_{1}) for analytic functions
$\operatorname{Re}[\overline{\Lambda(\varsigma)} \Phi(\varsigma)]=\hat{r}(\varsigma)+\mathrm{h}(\varsigma), \varsigma \in \mathrm{L}^{*}=\varsigma\left(\Gamma^{*}\right) ;$
$\operatorname{Im}\left[\overline{\Lambda\left(a_{J}^{\prime}\right)} \Phi\left(a_{j}^{\prime}\right)\right]=b_{j}^{\prime}, \mathrm{j} \in \mathrm{J}, a_{j}^{\prime}$
Where
$h(\varsigma)=\left\{\begin{array}{l}0, \zeta \in L 0, \\ h_{j}, \zeta \in L_{j}, j=1, \ldots . ., N,\end{array}\right.$
And
$\left.\overline{\Lambda(\varsigma)}=\overline{\lambda[z(\varsigma)]} e^{\Phi[z(\varsigma)]}, \hat{r}(\varsigma)=r[z(\varsigma)]-\operatorname{Re}\left\{\overline{\lambda[z(\varsigma)]} \Psi[z(\varsigma)] e^{\Phi[z(\varsigma)]}\right]\right\}$,
$a_{j}^{\prime}=\varsigma\left(\mathrm{a}_{\mathrm{j}}\right), \hat{b}_{\mathrm{j}}-\operatorname{Im}\left[\overline{\lambda\left(a_{J}\right)} \Psi\left(\mathrm{a}_{\mathrm{j}}\right)\right], \mathrm{j} \in \mathrm{J}$

By (1.5), (1.9), it can be seen that $\Lambda(\varsigma), \hat{r}(\varsigma), \hat{b}_{j}(j \epsilon J)$ satisfy the conditions
$\mathrm{C}_{\alpha \beta}[\Lambda(\varsigma), \mathrm{L}] \leq \mathrm{M}_{3}, \mathrm{C}_{\alpha \beta}[\hat{\mathrm{r}}(\varsigma), \mathrm{L}] \leq \mathrm{M}_{3},\left|\hat{b}_{\mathrm{j}}\right| \leq \mathrm{M}_{3}, \mathrm{j} \in \mathrm{J}$,
Where $M_{3}=M_{3}\left(q_{0}, p_{0}, \beta, k, D\right)$. If we can prove that the solution $\Phi(\varsigma)$ of Problem \tilde{B}_{1} satisfies the estimate
$\mathrm{C}_{\alpha \beta}\left[\zeta^{\mathrm{n}} \Phi(\varsigma), \overline{\mathrm{G}}\right] \leq \mathrm{M}_{4}$,
in which $G=\varsigma(D), M_{4}=M_{4}\left(q_{0}, p_{0}, \beta, k, D\right)$, then from the representation (3.3) of the solution $w(z)$ and the estimates about $\Phi(z), \Psi(z), \varsigma(z)$ and its inverse function $z(\varsigma)$, the estimates in (3.5) can be derived.

It remains to prove that (3.10) holds. For this, we first verify the boundedness of $\varsigma^{n} \Phi(\varsigma)$, i.e.
$\mathrm{C}\left[\varsigma^{\mathrm{n}} \Phi(\varsigma), \overline{\mathrm{G}}\right] \leq \mathrm{M}_{5}=\mathrm{M}_{5}\left(\mathrm{q}_{0}, \mathrm{p}_{0}, \beta, \mathrm{k}, \mathrm{D}\right)$.
Suppose that (3.11) is not true. Then there exist sequences of functions $\left\{\Lambda_{l}(\varsigma)\right\},\left\{\hat{r}_{l}(\varsigma)\right\},\left\{\hat{b}_{j l}\right\}$ satisfying the same conditions as $\Lambda(\varsigma), \hat{r}(\varsigma), \hat{b}_{j}$, and $\Lambda_{l}(\varsigma), \hat{r}_{l}(\varsigma), \hat{b}_{j l}$ uniformly converge to $\Lambda_{0}(\varsigma)$, $\hat{r}_{0}(\varsigma), \hat{b}_{j 0}(\mathrm{j} \in \mathrm{J})$ on L respectively. For the solution $\Phi_{l}(\varsigma)$ of the boundary value problem (Problem $\left.\widetilde{B_{1}}\right)$ corresponding to $\Lambda_{1}(\varsigma), \hat{r}_{1}(\varsigma), \hat{r}_{j 1}(\mathrm{j} \in \mathrm{J})$ we have $I_{l}=C\left[\Phi_{l}(\varsigma), \bar{G}\right] \rightarrow \infty$ as $n \rightarrow \infty$. There is no harm in assuming that $I_{l} \geq 1, l=1,2, \ldots$ Obviously $\widetilde{\Phi}_{l}(\varsigma)=\Phi_{l}(\varsigma) / I_{l}$ satisfies the boundary conditions
$\operatorname{Re}\left[\overline{\Lambda_{1}(\varsigma)} \widetilde{\Phi}_{\mathrm{i}}(\varsigma)\right]=\left[\hat{\mathrm{r}}_{1}(\varsigma)+\mathrm{h}(\varsigma)\right] / \mathrm{I}_{1}, \varsigma \in \mathrm{~L}^{*}$,
$\operatorname{Im}\left[\overline{\Lambda_{1}\left(\mathrm{a}_{\mathrm{j}}^{\prime}\right)} \breve{\Phi}_{\mathrm{l}}\left(\mathrm{a}_{\mathrm{l}}^{\prime}\right)\right]=\hat{\mathrm{b}}_{\mathrm{j} 1} / \mathrm{I}_{\mathrm{l}}, \mathrm{j} \in \mathrm{J}$,
Applying the Schwarz formula, the Cauchy formula and the method of symmetric ex-tension (see Theorems 3.2-3.3, Chapter V, [3]), the estimate
$\mathrm{C}_{\alpha \beta}\left[\varsigma^{\mathrm{n}} \widetilde{\Phi}_{1}(\varsigma), \bar{G}\right] \leq \mathrm{M}_{6}$
Can be obtained, where $M_{6}=M_{6}\left(q_{0}, p_{0}, \beta, k, D\right)$. Thus we can select a subsequence of $\left\{\widetilde{\Phi}_{1}(\varsigma)\right\}$, which uniformly converge to an analytic function $\widetilde{\Phi}_{0}(\varsigma)$ in G, and $\widetilde{\Phi}_{0}(\varsigma)$ satisfies the homogeneous boundary conditions
$\operatorname{Re}\left[\overline{\Lambda_{0}(\varsigma)} \widetilde{\Phi}_{0}(\varsigma)\right]=h(\varsigma), \varsigma \in L^{*}$,
$\operatorname{Im}\left[\overline{\Lambda_{0}\left(\mathrm{a}_{\mathrm{j}}^{\prime}\right)} \breve{\Phi}_{0}\left(\mathrm{a}_{\mathrm{j}}^{\prime}\right)\right]=0, \mathrm{j} \in \mathrm{J}$,
On the basis of the uniqueness theorem, we conclude that $\widetilde{\Phi}_{0}(\varsigma)=0, \varsigma \in \bar{G}$. However, $\mathrm{C}\left[\varsigma^{\mathrm{n}} \widetilde{\Phi}_{1}(\varsigma)\right.$, $\bar{G}]=1$ from $\mathrm{C}\left[\varsigma^{\mathrm{n}} \widetilde{\Phi}_{1}(\varsigma), \bar{G}\right]=1$, it follows that there exists a point $\varsigma_{*} \in \bar{G}$; such that $\mathrm{C}\left[\varsigma^{\mathrm{n}}{ }^{*} \widetilde{\Phi}_{0}\left(\varsigma_{*}\right) \mid=1\right.$, This contradiction proves that (3.11) holds. Afterwards using the method which leads from $C\left[\varsigma^{n} \widetilde{\Phi}_{1}\right.$ $(\varsigma), \bar{G}]=1$ to (3.12), the estimate (3.7) can be derived.

For verifying the existence of solutions of Problem B_{1} for the complex equation (1.1), we need to add the following condition. For any continuous functions $w_{1}(z), w_{2}(z)$ in $\overline{D \backslash\{0\}}$ and $[\varsigma(z)]^{n} U(z) \epsilon$ $L_{p 0}(\bar{D})$, there is
$F\left(\mathrm{z}, \mathrm{w}_{1}, \mathrm{U}\right)-\mathrm{F}\left(\mathrm{z}, \mathrm{w}_{2}, \mathrm{U}\right)=\widetilde{\mathrm{Q}}\left(\mathrm{z}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{U}\right) \mathrm{U}+\widetilde{\mathrm{A}}\left(\mathrm{z}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{U}\right)\left(\mathrm{w}_{1}-\mathrm{w}_{2}\right)$,
where $\tilde{Q}\left(z, w_{1}, w_{2}, U\right) \leq q_{0}(<1), L_{p}\left[\tilde{A}\left(z, w_{1}, w_{2}, U\right), \bar{D}\right] \leq k_{0}$. When (1.1) is linear, (3.1) obviously holds. Moreover we first prove the existence of solutions of Problem B_{1} for equation (1.1) with $F\left(z, w, w_{z}\right)=0$ in $D_{1 / m}=\{|z|<1 / m\} U\{|z-a|<1 / m\}$, i.e.
$\mathrm{w}_{\tilde{z}}=\mathrm{F}_{1 / \mathrm{m}}\left(\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{z}}\right), \mathrm{F}_{1 / \mathrm{m}}\left(\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{z}}\right)=\left\{\begin{array}{l}\mathrm{F}\left(\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{z}}\right), \mathrm{z} \in \mathrm{D}_{\mathrm{m}}=\mathrm{D} \backslash \mathrm{D}_{1 / \mathrm{m}} \\ 0, \mathrm{z} \in \mathrm{D}_{1 / \mathrm{m}}\end{array}\right.$
By the Leray-Schauder theorem, where m is a sufficiently large positive integer.
Theorem 3.2. Suppose that equation (1.1) satisfies Condition C and (3.13). Then the singular Riemann-Hilbert problem (Problem B_{1}) for (3.14) has a solution.
Proof. In order to find a solution $w(z)$ of Problem B_{1} for equation (3.14), we consider the equation (3.14) with the parameter $t \in[0,1]$

Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First Order

$\mathrm{w}_{\overline{\mathrm{z}}}=\mathrm{tF}\left(\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{z}}\right), \mathrm{F}\left(\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{z}}\right)=\mathrm{Q}_{1} \mathrm{w}_{\mathrm{z}}+\mathrm{Q}_{2} \overline{\mathrm{w}}_{\overline{\mathrm{z}}}+\mathrm{A}_{1} \mathrm{w}+\mathrm{A}_{2} \overline{\mathrm{w}}+\mathrm{A}_{3}$ in D ,
and introduce a bounded open set B_{M} of Banach space $B=C_{\beta}\left(D_{m}\right) \cap L_{p 0}^{1}\left(D_{m}\right)$, whose elements are functions $w(z)$ satisfying the condition
$\mathrm{w}(\mathrm{z}) \in \mathrm{C}_{\beta}\left(\mathrm{D}_{\mathrm{m}}\right) \cap \mathrm{L}_{\mathrm{p} 0}^{1}\left(\mathrm{D}_{\mathrm{m}}\right): \mathrm{C}_{\beta}\left[\mathrm{w}, \mathrm{D}_{\mathrm{m}}\right]+\mathrm{L}_{\mathrm{p} 0}^{1}\left[\mathrm{w}, \mathrm{D}_{\mathrm{m}}\right]$
$=\mathrm{C}_{\mathrm{\beta}}\left[\mathrm{w}(\mathrm{z}), \mathrm{D}_{\mathrm{m}}\right]+\mathrm{L}_{\mathrm{p} 0}\left[\left|\mathrm{w}_{\overline{\mathrm{z}}}\right|+\left|\mathrm{w}_{\mathrm{z}}\right|, \mathrm{D}_{\mathrm{m}}\right]<\mathrm{M}_{7}$,
where $M_{7}=1+M_{1}+M_{2}, M_{1}, M_{2}, \beta$ are constants as similar to (3.7). We choose an arbitrary function $W(z) \in \overline{B_{M}}$ and substitute it in the position of w in $F\left(z, w, w_{z}\right)$, Applying the method in the proof of Theorem 1.1.2, [12], a solution $w(z)=\Phi(z)+\Psi(z)=W(z)+T(t F)$ of Problem B_{1} for the complex equation
$\mathrm{w}_{\tilde{z}}=\mathrm{tF}\left(\mathrm{z}, \mathrm{W}, \mathrm{W}_{\mathrm{z}}\right)$
Can be found. Noting that $t F\left[z, W(z), W_{z}\right] \in L_{p 0}(\bar{D})$, the above solution of Problem B_{1} for (3.17) is unique. Denoting by $w(z)=\tilde{T}[W, t](0 \leq t \leq 1)$ the mapping from $W(z)$ to $w(z)$, from Theorem 3.2, we know that if $w(z)$ is a solution of Problem B for the equation
$\mathrm{w}_{\overline{\mathrm{z}}}=\mathrm{tF}\left(\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{z}}\right)$ in D ,
then the function $w(z)$ satisfies the estimate
$\left.\mathrm{C}_{\beta}\left[\mathrm{w}, \mathrm{D}_{\mathrm{m}}\right)\right]<\mathrm{M}_{7}$
Set $B_{0}=B_{M} \times[0,1]$. In the following we verify the three conditions of the Leray-Schauder theorem:
(1) For every $t \in[0,1], \tilde{T}[W, t]$ continuously maps the Banach space B into itself, and is completely continuous in $\overline{B_{M}}$. In fact, we arbitrarily select a sequence $W_{n}(z)$ in $\overline{B_{M}}, n=0,1$, $2, \ldots$, such that $C_{\beta}\left[W_{n}-W_{0}, D_{m}\right] \rightarrow 0$ as $n \rightarrow \infty$. By Condition C, we see that $L_{p 0}\left[F\left(z, W_{n}\right.\right.$, $\left.\left.\left.W_{n z}\right)-F\left(z, W_{0}, W_{0 z}\right)\right), \bar{D}\right] \rightarrow 0$ as $n \rightarrow \infty$. Moreover, from $w_{n}=\tilde{T}\left[W_{n}, t\right], w_{0}=\tilde{T}\left[W_{0}, t\right]$, it is easy to see that $w_{n}-w_{0}$ is a solution of Problem B for the following complex equation

$$
\begin{equation*}
\left(\mathrm{w}_{\mathrm{n}}-\mathrm{w}_{0}\right)_{\overline{\mathrm{z}}}=\mathrm{t}\left[\mathrm{~F}\left(\mathrm{z}, \mathrm{~W}_{\mathrm{n}}, \mathrm{~W}_{\mathrm{nz}}\right),-\mathrm{F}\left(\mathrm{z}, \mathrm{~W}_{0}, \mathrm{~W}_{0 \mathrm{z}}\right)\right] \text { in } \mathrm{D} \text {, } \tag{3.20}
\end{equation*}
$$

and then we can obtain the estimate
$\left.\mathrm{C}_{\beta}\left[\mathrm{w}_{\mathrm{n}}-\mathrm{W}_{\mathrm{m}}, \mathrm{D}_{\mathrm{m}}\right)\right] \leq 2 \mathrm{k}_{0} \mathrm{C}_{\beta}\left[\mathrm{W}_{\mathrm{n}}(\mathrm{z})-\mathrm{W}_{0}(\mathrm{z}), \mathrm{D}_{\mathrm{m}}\right]$.
Hence $C_{\beta}\left[w_{n}-w_{0}, D_{m}\right] \rightarrow 0$ as $n \rightarrow \infty$. In addition for $W_{n}(z) \in \overline{B_{M}}, n=1,2, \ldots$, we have $w_{n}=$ $\tilde{T}\left[W_{n}, t\right], w_{m}=\tilde{T}\left[W_{m}, t\right], W_{n}, W_{m} \in \overline{B_{M}}$, and then
$\left(\mathrm{w}_{\mathrm{n}}-\mathrm{w}_{\mathrm{m}}\right)_{\overline{\mathrm{z}}}=\mathrm{t}\left[\mathrm{F}\left(\mathrm{z}, \mathrm{W}_{\mathrm{n}}, \mathrm{W}_{\mathrm{nz}}\right)-\mathrm{F}\left(\mathrm{z}, \mathrm{W}_{\mathrm{m}}, \mathrm{W}_{\mathrm{mz}}\right]\right.$ in D ,
Where $L_{p 0}\left[F\left(z, W_{n}, W_{n z}\right)-F\left(z, W_{m}, W_{m z}\right), \bar{D}\right] \leq 2 k_{0} M_{7}$. Hence similarly to the proof of Theorem 3.1, we can obtain the estimate
$\mathrm{C}_{\beta}\left[\mathrm{w}_{\mathrm{n}}-\mathrm{w}_{\mathrm{m}}, \mathrm{D}_{\mathrm{m}}\right] \leq \mathrm{M}_{7} \mathrm{M}_{8}$,
Where $M_{8}=M_{8}\left(q_{0}, p_{0}, \beta, k, D\right)$. Thus there exists a function $w_{0}(z) \in \overline{B_{M}}$, from $\left\{w_{n}(z)\right\}$ we can choose a subsequence $\left\{w_{n k}(z)\right\}$ such that $C_{\beta}\left[w_{n k}-w_{0}, D_{m}\right] \rightarrow 0$ as $k \rightarrow \infty$. This shows that $w=$ $\tilde{T}[W, t]$ is completely continuous in $\overline{B_{M}}$. Similarly we can prove that for $W(z) \epsilon \overline{B_{M}}, \tilde{T}[W, t)$ is uniformly continuous with respect to $t \in[0,1]$.
(2) For $\mathrm{t}=0$, it is evident that $\mathrm{w}=\widetilde{\mathrm{T}}[\mathrm{W}, 0]=\Phi(\mathrm{z}) \in B_{M}$.
(3) From the estimate (3.7), we see that $w=\tilde{T}[W, t](0 \leq t \leq 1)$ does not have a solution $w(z)$ on the boundary $\partial B_{M}=\overline{B_{M}} \backslash B_{M}$.
Hence by the Leray-Schauder theorem, we know that there exists a function $w(z) \in \overline{B_{M}}$, such that $w(z)=\tilde{T}[w(z), t]$, and the function $w(z) \in C_{\beta}\left(D_{m}\right)$ is just a solution of Problem B for the complex equation (3.14).
Theorem 3.3. Suppose that equation (1.1) satisfies Condition C and (3.13). Then Problem B_{1} for (1.1) have a solution.

Proof. According to Theorem 3.2, we have proved that Problem B_{1} for (3.14) have a solution $w_{1 / m}(z)$, let $m \rightarrow \infty$, we can derive that $w_{0}(z)$ is the solution Problem \mathbf{B}_{1} for (1.1).
Theorem 3.4. Suppose that equation (1.1) satisfies Condition C and (3.13). Then Problem $B_{j}(j=2$, 3) for (1.1) have a unique solution.

Proof. We first verify the unique solvability of Problem B_{3} for (1.1). As stated in the proof of Theorem 2.3, the boundary conditions (1.13) can be reduced to the following boundary conditions
$\operatorname{Re}\left[\overline{\lambda(z)}\left[(\varsigma-\varsigma(a))^{m} / \varsigma^{n}\right] W(z)\right]=r(z)+h(z)$ in D,
$\left.\operatorname{Im}\left[\overline{\lambda\left(\mathrm{a}_{\mathrm{J}}\right)}\left[\varsigma\left(\mathrm{a}_{\mathrm{j}}\right)-\varsigma(\mathrm{a})\right)^{\mathrm{m}} /\left(\varsigma\left(\mathrm{a}_{\mathrm{j}}\right)\right)^{\mathrm{n}}\right] \mathrm{W}\left(\mathrm{a}_{\mathrm{j}}\right)\right]=b_{j}^{\prime}, \mathrm{j} \in \mathrm{J}$,
Where $W(z)=w(z) / \Psi(z), \Psi(z)=(\varsigma-\varsigma a))^{m} / \varsigma^{n}, b_{j}^{\prime}(j \in J)$ are real constants. It is easy to see $W(z)$ satisfies the complex equation
$\mathrm{W}_{\overline{\mathrm{z}}}=\mathrm{Q}_{1} \mathrm{~W}_{\mathrm{z}}+\mathrm{Q}_{2} \overline{\mathrm{~W}}_{\overline{\mathrm{z}}}-\left[\mathrm{Q}_{1} \Psi^{\prime}(\mathrm{z})-\mathrm{A}\right] \mathrm{W}-\left[\mathrm{Q}_{2} \overline{\Psi^{\prime}(\mathrm{z})}-\mathrm{B}(\mathrm{z}) \Psi(\mathrm{z}) / \bar{\Psi}\right] \overline{\mathrm{W}}+\mathrm{A}_{3} \Psi(\mathrm{z}), \mathrm{z} \in \mathrm{D}$,
which index of $\lambda(z) \overline{(\varsigma(z)-\varsigma(a))^{\mathrm{m}}} / \varsigma^{n}$ on Γ equals to $K+n-m(>0)$, by Theorem 3.3, the solvability of the boundary value problem (1.13) for (1.1) is verified.

Similarly we can prove the solvability of Problem B_{2} for (1.1). From the solvability of Problem B_{2} for (1.1), we can derive the existence of the homeomorphic solution for the nonlinear complex equation (1.1) with $A(z, w)=B(z, w)=C(z, w)=0$ in D from the domain D mapping to the $N+1-$ connected rectilinear slit domain G, the so-called $N+1$ - connected rectilinear slit domain means a domain whose boundary consists of $N+1$ rectilinear slits $L_{j}(j=0,1, \ldots, N)$ with the oblique angles $\theta_{j}(j=0,1, \ldots, N)$ respectively, where we must choose $\lambda(z)=e^{-i(\arg \theta j+\pi / 2)}, \theta_{j}(j=0,1, \ldots \ldots, N)$ are real constants, in this case, the index $K=0$.
Finally we give the conclusion in this paper, namely the singular Riemann-Hilbert problem with the nonnegative index for elliptic complex equations of first can be trans-formed into the nonsingular Riemann-Hilbert problem with the nonnegative index for the corresponding complex equations of first order, due to we can handle the non-singular boundary value problem, then the corresponding results of non-singular boundary value problem can be derived.

References

[1] Vekua I.N., Generalized analytic functions. Pergamon, Oxford, 1962.
[2] Bitsadze A.V., Some classes of partial diferential equations. Gordon and Breach, New York, 1988.
[3] Wen G.C., Conformal mappings and boundary value problems. Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI, 1992.
[4] Wen G.C., Linear and nonlinear elliptic complex equations. Shanghai Scientific and Technical Publishers, Shanghai, 1986 (Chinese).
[5] Wen G.C., Tai C.W. and Tian M.Y., Function theoretic methods of free boundary problems and their applications to mechanics. Higher Education Press, Beijing, 1996 (Chinese).
[6] Wen G.C., Approximate methods and numerical analysis for elliptic complex equations. Gordon and Breach, Amsterdam, 1999.
[7] Wen G.C., Linear and nonlinear parabolic complex equations. World Scientific Publishing Co., Singapore, 1999.
[8] Wen G.C. and Zou B.T., Initial-boundary value problems for nonlinear parabolic equations in higher dimensional domains. Science Press, Beijing, 2002.
[9] Wen G.C., Linear and quasilinear complex equations of hyperbolic and mixed type. Taylor \& Francis, London, 2002.
[10] Huang S., Qiao Y.Y. and Wen G.C., Real and complex Clipord analysis. Springer-Verlag, Heidelberg, 2005.
[11] Wen G.C., Elliptic, hyperbolic and mixed complex equations with parabolic degeneracy. World Scientific, Singapore, 2008.
[12] Wen G.C., Chen D.C. and Xu Z.L., Nonlinear complex analysis and its applications. Mathematics Monograph Series 12, Science Press, Beijing, 2008.
[13] Wen G.C., Recent progress in theory and applications of modern complex analysis. Science Press, Beijing, 2010.

