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Abstract: In [1], the author first proposed a well-posedness of singular Riemann-Hilbert boundary value 
problem for generalized analytic functions in multiply con-nected domains, and the well posedness allows 

that the solutions of the modified problem possess some poles in N + 1-connected domain D. In [3], the 

author proposed another well-posedness of the Riemann-Hilbert boundary value problem with continuous 

solutions for nonlinear elliptic complex equations of first order, in particular the well-posedness includes 

the well-posedness of the singular case of 0 < K < N. Recently, the authors of this paper proposes three 

kinds of new well-posedness of singular Riemann-Hilbert boundary value problem for nonlinear elliptic 

complex equations of first order in multiply connected domains. We shall prove the existence of solutions 

for these boundary value problems. 
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1. FORMULATION OF SINGULAR MODIFIED RIEMANN-HILBERT BOUNDARY VALUE 

PROBLEMS FOR ELLIPTIC COMPLEX EQUATIONS OF FIRST ORDER 

First of all, we introduce the nonlinear elliptic equations of first order 

                      (1.1) 

In a bounded N +1 (N ≥ 1)-connected domain D, which is the complex form of the real nonlinear 

elliptic system of first order equations 

Φj(x, y, u, v, ux, uy, vx, vy) = 0, j = 1, 2 

Under certain conditions(see Theorem 1.2, Chapter I, [4]). There is not harm in assuming that D is 

an N +1 (N ≥ 1)-connected circular domain in │z│ < 1 bounded by the (N +1)- circles Γj : │z -zj │ 

= rj, j = 0, 1,…., N and Γ 0 = Γ N+1 : │z│ = 1, z = 0 є D. In this article, the notations are as the same 
in References [3-13]. Suppose that the complex equation (1.1) satisfies the following conditions, 

namely 

Condition C. 1) Qj(z, w, U) (j = 1, 2), Aj(z, w)(j = 1, 2, 3) are measurable in z є D for all 

continuous functions w(z) in {0} and all measurable functions U(z) є Lpo( , and satisfy 

Lp[Aj, ] ≤  k0, j = 1, 2, Lp[A3, ] ≤ k1,                         (1.2) 

where p, p0 (2 < p0 ≤ p), k0, k1 are non-negative constants. 

2) The above functions are continuous in w є C for almost every point z є D, U є C, and Aj =0 (j= 

1, 2, 3) for z є C\D. 

3) The complex equation (1.1) satisfies the uniform ellipticity condition, i.e. for any U1, U2 є C, 
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the following inequality in almost every point z є D holds: 

│F (z, w, U1) - F (z, w, U2)│ ≤  q0│U1 - U2│,                                         (1.3) 

In which q0 (< 1) is a non-negative constant. 

It is well known that a generalized analytic function in a domain D is a continuous solution of the 

complex equation 

 = A(z)w + B(z) , z є D,              (1.4) 

Where z = x + iy,  = [wx + i wy]/2, A(z), B(z) є Lp( ) (p > 2); the conditions will be called 

Condition C0. Obviously the complex equation (1.4) is a special case of (1.1). 

Now we first formulate the new singular Riemann-Hilbert problem with the non-negative index 
for equation (1.1) as follows. 

Problem B1. The singular modified Riemann-Hilbert boundary value problem for (1.1) is to find 

a continuous solution w(z) in  with the pole point of n order at the point z = 0 ( D) satisfying the 
boundary condition: 

Re [ w(z)] = r(z) + h(z), z є Γ ,            (1.5) 

Where λ(z), r(z) satisfy the conditions 

Cα[λ(z), Γ ] ≤  k0, Cα[r(z), Γ ] ≤ k2,in which             

(1.6) 

λ(z) = a(z) + ib(z) on Γ , α (1/2 < α < 1) is a positive constant. The index K of Problems B1 is 
defined by: 

K = K0 + K1 + …… + KN = ∆Γj arg λ(z) ≥ 0,           (1.7) 

The partial indexes Kj =∆Γj arg  λ(z)/2π (j =0, 1,……, N) of λ(z) are integers and 

h (z)=                (1.8) 

hj(j = 1,….,N) are unknown real constants to be determined appropriately. Moreover we assume 
that the solution w(z) satisfies the following point conditions 

Im[ w(aj)] = bj, j є J ={1, …… ,2K +1},           (1.9) 

in which aj є Γ0 (j = 1,….., 2K +1) are distinct fixed points, and bj(j є J) are all real constants 

satisfying the conditions 

│bj │≤ k3, j є J,              (1.10) 

herein k3 is a non-negative constant. Problem B with A3(z, w) = 0 in D, r(z) = 0 on Γ and bj (j є J) 

is called Problem B0. 

Next we shall introduce the other two kinds of well-posedness of new singular Riemann-Hilbert 
boundary value problem for the equation (1.1) as follows 

Problem B2. To find a continuous solution w(z) of the equation (1.1) in {0}satis-fying the 

modified boundary conditions 

Re[ w(z)] = r(z) + h(z), z є Γ, 

Im[ w(aj)] = bj, j є J ={1, ……, 2K}, 

w(0) = ∞,  w(a) = 0, w(1) = 1,                                                                                                    (1.11) 

where a (є D) is a point, and λ(z), r(z), h(z) are the same as in (1.5)-(1.6), and aj (≠ 1) єΓ0 

(j=1,….., 2K) are distinct fixed points, bj(j є J) are all real constants satisfying the conditions 

│bj│≤ k3, j є J,             (1.12) 

herein k3 is a non-negative constant. 

Problem B3. To find a continuous solution w(z) of the equation (1.1) in {0} with the pole point 



Singular Modified Riemann-Hilbert Problems for Nonlinear Elliptic Complex Equations of First 

Order 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)            Page | 270 

of n (> 0) order at z = 0 and the zero point of m (0 < m < n) order at z = a (є D, a ≠ 0) satisfying 
the modified boundary conditions 

Re [ w (z)] = r (z) + h (z), z є Γ,    

Im[ w(aj)] = bj ,j є J = {1, …. , 2K + 1},         (1.13) 

in which n, m (< n) are positive integers and λ(z), r(z), h(z) are the same as in (1.5)-(1.6), and aj є 

Γ0 (j є J = 1,….., 2K + 1) are distinct fixed points, bj (j є J) are all real constants satisfying the 
condition 

│bj│ ≤ k3, j є J             (1.14) 

with the constant k3. 

In order to prove the solvability of Problem B1 for the complex equation (1.1), we need to give a 

representation theorem for Problem B1. 

Theorem 1.1. Suppose that the complex equation (1.1) satisfies Condition C, and w(z) is a 

solution of Problem B1 for (1.1). Then w(z) is represented by 

w(z) = [Φ(ς(z)) + Ψ(z)]e
Φ(z)

,           (1.15) 

where ς(z) is a homeomorphism in , which quasiconformally maps D onto the N + 1-connected 

circular domain G with boundary L = ς(Γ) in {│ς│ < 1}, such that ς(0) = 0 and ς(1) = 1, Φ(ς) is 
an analytic function in G, Ψ(z), Φ(z), ς (z) and its inverse function z(ς) satisfy the following 

estimates 

Cβ[Ψ, ] ≤ k4, Cβ[ Φ, ] ≤ k4, Cβ [ ς (z), ] ≤ k4,         (1.16) 

Lp0 [│  │ + │ z│, ] ≤ k4; Lp0 [│  │ +│ z│, ]  ≤k4,            (1.17) 

Cβ[z(ς), ] ≤ k4, Lp0 [│ │ + │χz │, ] ≤ k5,                 (1.18) 

in which χ(z) is as stated in (1.21) below,  β= min(α, 1- 2/p0), p0 (2 < p0 ≤ p), kj = kj(q0, p0, β, k0, k1, 

D) (j = 4, 5) are non-negative constants dependent on q0, p0, β, k0, k1, D. Moreover, the function 

Φ[ς(z)] satisfies the estimate  

Cδ[ς
n
Φ[ς(z)], ] ≤ M1 =M1(q0, p0, β, k, D)<∞,           (1.19) 

and T (≤ min(α, 1 – 2/p0)), k = k(k0, k1, k2, k3), and M1 is a non-negative constant dependent on q0, 

p0, β, k, D. Here we mention that the pole of n order at z = 0 of w(z) is denoted the pole of n order 

of the function Φ(ς) at ς(0) = 0. 

Proof. We substitute the solution w(z) of Problem B1 into the coefficients of equation (1.1) and 

consider the following system 

 = QΦz +A, A=  

 = QΨz +A3 ,Q =          (1.20) 

 = QWz, W (z) = Φ [ς (z)] in D. 

By using the continuity method and the principle of contracting mapping, we can find the solution 

Ψ (z) = T0f =  ∫∫D d ,            (1.20) 

Φ (z) = T0g, ς(z) = Ψ[χ(z)], χ(z) = z + T0h 

of (1.20), in which f(z), g(z), h(z) є Lp0 ( ), 2 < p0 ≤ p, χ(z) is a homeomorphic solution of the 

third equation in (1.20), Ψ(χ) is a univalent analytic function, which con-formally maps E = χ(D) 

onto the domain G (see[1,3], and Ψ(ς) is an analytic function in G such that the function ς(z) = 

Ψ[χ(z)] satisfies ς(0) = 0, ς(1) = 1. We can verify that Ψ(z), Φ (z), ς(z) satisfy the estimates (1.16) 
and (1.17). It remains to prove that z = z(ς) satisfies the estimate in (1.18). In fact, we can find a 

homeomorphic solution of the last equation in (1.20) in the form χ(z) = z + T0h such that [χ(z)]z , 

[χ(z)  є Lp0 ( ) (see[1]). By the result on conformal mappings, applying the method of Theorem 
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3.2, Chapter V,[4], we can prove that (1.18) is true. It is easy to see that the function Φ│ς(z)│ 

satisfies the boundary conditions 

Re[ e
Φ(z)

 Φ(ς(z))]=c(z)+h(z) - Re[ e
Φ(z)

Ψ(z)], z є Γ 

On the basis of the estimates (1.16) and (1.18), and using the methods of Theorems 3.2–3.3, 
Chapter V, [3], we can prove that Ψ[ ς(z)] satisfies the estimate (1.19). 

2. UNIQUE SOLVABILITY OF PROBLEMS B1, B2, B3 FOR GENERALIZED ANALYTIC 

FUNCTIONS  

In this section, we first prove the uniqueness and solvability of Problems Bj (j = 1, 2, 3) for 

generalized analytic functions. 

Theorem 2.1. Suppose that equation (1.4) satisfies Condition C0. Then the solution of Problem B1 
are existence and unique 

Proof. Problem B1 for (1.4) can be rewritten as 

Re[ [1/z
n
]W (z)] = r(z) + h(z) in D, 

Im[  [1/ ]W (aj)] = , j є J ={1, …., 2(K +n)+1},              (2.1) 

Where W (z) = w(z)/Ψ(z), Ψ(z) = 1/z
n
,  (j є J) are real constants with the conditions  

│ │ -  (<∞) (j є J). It is easy to see W (z) satisfies the complex equation 

 = A(z)W + [B(z)Ψ(z) / ] , z є D,            (2.2) 

The index of λ(z) on Γ is equal to K+n (> 0), the boundary value problem (2.1),(2.2) is 

called Problem B
’
1. According to the method a before, we can derive that Problem B

’
1 has a 

unique continuous solution W (z) in , and then Problem B1 for (1.4) is uniquely solvable. 

Theorem 2.2. Suppose that equation (1.4) satisfies Condition C0. Then the solution of Problem B2 

are existence and unique. 

Proof. Problem B2 for (1.4) can be rewritten as  

Re[  [(z - a)/(1 - a)z]W (z)] = r(z) + h(z) in D, 

(1 - a)/(1 - a)]W (1) = 1,              (2.3) 

Where W (z) = w(z)/Ψ(z), Ψ(z) = (z - a)/(1 - a)z. It is easy to see W (z) satisfies the complex 
equation  

 = A(z)W + [B(z)Ψ(z)/ ] , z є D,            (2.4) 

the index of λ(z)  /  on Γ is equals to K, the boundary value problem (2.3),(2.4) 

and the second formula of (1.11) is called Problem , hence according to the result as in 

Theorem 3.3,Chapter V,[4], f we can derive that Problem  has a unique continuous solution W 

(z) in , and then Problem B2 for (1.4) is uniquely solvable.  

Theorem 2.3. Suppose that equation (1.4) satisfies Condition C0. Then the solution of Problem B3 
is existence and unique. 

 Proof. For problem B3 for (1.4) can be rewritten as  

Re[  [(z - a)
m
/z

n
]W (z)] = r(z) + h(z) in D, 

Im[  [(aj - a)
m
/a

n
j]W (aj)] = , j є J ={1, ..…., 2(n – m + K)+1},         (2.5) 

Where W (z) = w(z)/Ψ(z), Ψ(z) = (z - a)
m
/z

n
,  (j  J) are real constants with the conditions 

│b’j│≤ k3’ (< ∞) (j є J). It is easy to see W (z) satisfies the complex equation 

 = A(z)W + [B(z)Ψ(z)/ ] , z є D,                                      (2.6)          

That the index of λ (z)
m
 / on Γ is equals to K + n - m(> 0), the boundary value problem 

(2.5),(2.6) is called Problem B
’
3. Moreover we can derive that Problem has a unique continuous 

solution W (z) in , and then Problem B3 for (1.4) is uniquely solvable. 
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In the following section, by using Theorem 3.3, Chapter V,[4] ,we can prove the solvability of 
Problems     Bj (j = 1, 2, 3) for (1.1). 

3. ESTIMATES OF SOLUTIONS AND SOLVABILITY OF PROBLEMS Bj (  = 1, 2, 3) FOR 

NONLINEAR ELLIPTIC COMPLEX EQUATIONS IN MULTIPLY CONNECTED DOMAINS  

The singular modified Riemann-Hilbert problem(Problem B1) can be transformed into the 

continuous modified Riemann-Hilbert problem(Problem ) as follows. 

Problem B’1. The modified Riemann-Hilbert boundary value problem for (1.1) is to find a 

continuous solution w (z) in  satisfying the boundary condition: 

Re [  /ςnw(z)] = r(z) + h(z), z є Γ,             (3.1) 

Where λ(z), r(z) satisfy the conditions 

Cα [λ(z), Γ ] ≤ k0, Cα[r(z),Γ ] ≤ k2,            (3.2) 

λ(z) = a(z) + ib(z), │λ(z)│ = 1 on Γ , and α (1/2 < α < 1) is a positive constant. The index K of 

Problems B1 is defined as follows: 

K + l = K0 + K1 + ….+ KN == arg λ(z) ≥ 0,          (3.3) 

The partial indexes Kj =  arg λ(z)/2π of  λ(z) are integers. And 

h (z)=               (3.4) 

hj(j = 1, …. , N) are unknown real constants to be determined appropriately. Moreover we assume 

that the solution w(z) satisfies the following point conditions 

Im[ W (aj)] = bj, j є J ={1, …., 2K +2n +1},           (3.5) 

where aj є Γ0 (j =1, …. , 2K + 2n + 1) are distinct fixed points; and bj(j є J) are all real constants 

satisfying the conditions 

│bj│ ≤ k3, j є J,               (3.6) 

herein k3 is a non-negative constant. 

Theorem 3.1. Suppose that the first order complex equation (1.1) satisfies Condition C. Then any 

solution w(z) of Problem B1 for the complex equation (1.1) satisfies the estimates 

Cβ[ς
n
w(z), ] ≤ M1, 

[w, ]=Lp0 [│[ς
n
w │ + │[ς

n
w │, ] ≤ M2,            (3.7) 

in which β = min(α, 1 – 2/p0), k = k(k0, k1, k2, k3), Mj = Mj(q0, p0, β, k, D), (j = 1, 2) are positive 

constants. 

Proof. Similarly to the proof of Theorem 1.1, the solution w(z) of Problem B1 for (1.1) can be 
expressed the formula as in (1.15), hence the boundary value problem B1 can be transformed into 

the boundary value problem (Problem B1) for analytic functions 

Re[  Φ(ς)] = (ς) + h(ς), ς є L
*
 = ς(Γ*); 

Im[ Φ(aj
'
)] = bj

'
, j є J, aj

'
             (3.8) 

Where 

h (ς)=  

And 

 = e
Φ[z(ς)]

, (ς) = r[z(ς)] – Re{ Ψ[z(ς)]e
Φ[z(ς)]

]}
 
, 

aj
'
= ς(aj), j - Im[ Ψ(aj)], j є J 
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By (1.5), (1.9), it can be seen that Λ(ς), (ς), j (j є J) satisfy the conditions 

Cαβ[Λ(ς), L] ≤ M3, Cαβ[ (ς), L] ≤ M3, │ j│ ≤ M3, j є J,          (3.9) 

Where M3 = M3(q0,  p0, β, k, D). If we can prove that the solution Φ (ς) of Problem 1 satisfies the 

estimate 

Cαβ[ς
n
Φ(ς), ] ≤ M4,            (3.10) 

in which G = ς(D), M4 = M4(q0, p0, β, k, D), then from the representation (3.3) of the solution w(z) 
and the estimates about Φ(z), Ψ(z), ς(z) and its inverse function z(ς), the estimates in (3.5) can be 

derived. 

It remains to prove that (3.10) holds. For this, we first verify the boundedness of ς
 n
Φ(ς ), i.e. 

C[ς
n
Φ(ς), ] ≤ M5 = M5(q0, p0, β, k, D).                      (3.11) 

Suppose that (3.11) is not true. Then there exist sequences of functions {Λl(ς)}, { l(ς)}, { jl} 

satisfying the same conditions as Λ(ς), (ς), j ,and Λl(ς),  l(ς), jl uniformly converge to Λ0(ς), 

0(ς), j0 (j є J) on L respectively. For the solution Φl(ς) of the boundary value problem (Problem 

) corresponding to Λ1(ς), 1(ς), j1 (j є J) we have Il = C[Φl(ς), ] → ∞ as n → ∞. There is no 

harm in assuming that Il ≥ 1, l = 1, 2, …. Obviously l(ς) = Φl(ς)/Il satisfies the boundary 
conditions 

Re[  i(ς)] = [ 1(ς) + h(ς)]/Il, ς є L*, 

Im[  l( )] = jl/ Il,  j є J, 

Applying the Schwarz formula, the Cauchy formula and the method of symmetric ex-tension (see 
Theorems 3.2-3.3, Chapter V, [3]), the estimate 

Cαβ[ς
n

l (ς), ] ≤ M6               (3.12) 

Can be obtained, where M6 = M6(q0, p0, β, k, D).  Thus we can select a subsequence of { l (ς)}, 

which uniformly converge to an analytic function 0 (ς) in G, and 0 (ς) satisfies the 

homogeneous boundary conditions 

Re[  0(ς)] = h(ς), ς є L*, 

Im[  0( )] = ,  j є J, 

On the basis of the uniqueness theorem, we conclude that 0 (ς)= 0, ς є . However, C[ς
n

l  (ς), 

]=1  from C[ς
n

1  (ς), ]=1 ,it follows that there exists a point ς* є ; such that C[ς
n
* 0  (ς*)│=1, 

This contradiction proves that (3.11) holds. Afterwards using the method which leads from C[ς
n

l  

(ς), ]=1  to (3.12), the estimate (3.7) can be derived. 

For verifying the existence of solutions of Problem B1 for the complex equation (1.1), we need to 

add the following condition. For any continuous functions w1(z), w2(z) in  and [ς (z)]
n
U(z) є 

Lp0 ( ), there is 

F (z, w1, U) - F (z, w2, U)= (z, w1, w2, U)U + (z, w1, w2, U)(w1 - w2),       (3.13) 

where│ (z, w1, w2, U) ≤ q0(< 1), Lp[ (z, w1, w2, U), ] ≤ k0.When (1.1) is linear, (3.1) obviously 
holds. Moreover we first prove the existence of solutions of Problem B1 for equation (1.1) with 

F(z, w, wz) = 0 in D1/m ={│z│<1/m} U {│z - a│<1/m}, i.e. 

 =F1/m(z, w, wz), F1/m(z, w, wz)=          (3.14) 

By the Leray-Schauder theorem, where m is a sufficiently large positive integer. 

Theorem 3.2. Suppose that equation (1.1) satisfies Condition C and (3.13). Then the singular 

Riemann-Hilbert problem (Problem B1) for (3.14) has a solution. 

Proof. In order to find a solution w(z) of Problem B1 for equation (3.14), we consider the equation 
(3.14) with the parameter t є [0, 1] 
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=tF (z, w, wz), F (z, w, wz) = Q1wz + Q2 +A1w+A2 +A3 in D,      (3.15) 

and introduce a bounded open set BM of Banach space B = Cβ(Dm)∩  (Dm), whose elements are 

functions w(z) satisfying the condition 

w(z) є Cβ(Dm)∩  (Dm) : Cβ[w, Dm]+  [w, Dm]   

= Cβ[w(z), Dm] + Lp0 [│ │ + │wz│, Dm] < M7,             (3.16) 

where M7 = 1+ M1 + M2, M1, M2, β are constants as similar to (3.7). We choose an arbitrary 

function W (z) є  and substitute it in the position of w in F (z, w, wz), Applying the method in 

the proof of Theorem 1.1.2, [12], a solution w(z) = Φ(z)+Ψ(z) = W (z) + T (tF ) of Problem B1 for 
the complex equation 

 = tF (z, W, Wz)            (3.17) 

Can be found. Noting that tF [z, W (z), Wz] є Lp0 ( ), the above solution of Problem B1 for (3.17) 

is unique. Denoting by w(z) =  [W, t] (0 ≤ t ≤ 1) the mapping from W (z) to w(z), from Theorem 

3.2, we know that if w(z) is a solution of Problem B for the equation 

 = tF (z, w, wz) in D,            (3.18) 

then the function w(z) satisfies the estimate 

Cβ[w, Dm)] < M7            (3.19) 

Set B0 = BM×[0, 1]. In the following we verify the three conditions of the Leray-Schauder 

theorem: 

(1) For every t є [0, 1],  [W, t] continuously maps the Banach space B into itself, and is 

completely continuous in   . In fact, we arbitrarily select a sequence Wn(z) in   , n = 0, 1, 

2, …. , such that Cβ[Wn -  W0, Dm] → 0 as n → ∞. By Condition C, we see that Lp0 [F (z, Wn, 

Wnz) - F(z, W0, W0z)), ] → 0 as n → ∞. Moreover, from wn =  [Wn, t], w0 =  [W0, t], it is 

easy to see that wn  w0 is a solution of Problem B for the following complex equation 

= t[F(z, Wn, Wnz) ,- F(z, W0, W0z)] in D,         (3.20) 

and then we can obtain the estimate 

Cβ[wn - wm, Dm)] ≤ 2k0Cβ[Wn(z) - W0(z), Dm].         (3.21) 

Hence Cβ[wn - w0, Dm] → 0 as n → ∞. In addition for Wn(z) є  , n = 1, 2,…., we have wn = 

[Wn, t], wm =  [Wm, t], Wn, Wm є  , and then  

 = t[F (z, Wn, Wnz) - F (z, Wm, Wmz] in D,        (3.22) 

Where Lp0 [F(z, Wn, Wnz) - F(z, Wm, Wmz), ] ≤ 2k0M7. Hence similarly to the proof of Theorem 

3.1, we can obtain the estimate 

Cβ[wn - wm, Dm] ≤ M7M8, 

Where M8 = M8(q0, p0, β, k, D). Thus there exists a function w0(z) є   , from {wn(z)} we can 

choose a subsequence {wnk (z)} such that Cβ[wnk - w0, Dm] → 0 as k → ∞. This shows that w = 

[W, t] is completely continuous in  . Similarly we can prove that for W (z) є  , [W, t) is 

uniformly continuous with respect to t є [0, 1]. 

(2) For t = 0, it is evident that w = [W, 0] = Φ(z) є  . 

(3) From the estimate (3.7), we see that w =  [W, t] (0 ≤ t ≤ 1) does not have a solution w(z) on 

the boundary ∂BM =   \ BM . 

Hence by the Leray-Schauder theorem, we know that there exists a function w(z) є  , such that 

w(z) =  [w(z), t], and the function w(z) є Cβ(Dm) is just a solution of Problem B for the complex 

equation (3.14). 

Theorem 3.3. Suppose that equation (1.1) satisfies Condition C and (3.13). Then Problem B1 for 

(1.1) have a solution. 
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Proof. According to Theorem 3.2, we have proved that Problem B1 for (3.14) have a solution 

w1/m(z), let m → ∞, we can derive that w0(z) is the solution Problem B1 for (1.1). 

Theorem 3.4. Suppose that equation (1.1) satisfies Condition C and (3.13). Then Problem Bj (j=2, 

3) for (1.1) have a unique solution. 

Proof. We first verify the unique solvability of Problem B3 for (1.1). As stated in the proof of 
Theorem 2.3, the boundary conditions (1.13) can be reduced to the following boundary conditions 

Re[  [(ς - ς(a))
m
/ς

n
]W (z)] = r(z) + h(z) in D, 

Im[ [ς(aj) - ς(a))
m
/(ς(aj))

n
]W (aj)] = bj

'
, j є J, 

Where W (z) = w(z)/Ψ(z), Ψ(z) = (ς - ςa))
m
/ς

n
, b

’
j (j є J) are real constants. It is easy to see W (z) 

satisfies the complex equation 

=Q1Wz +Q2 -[Q1Ψ'(z)-A]W - [Q2  - B(z)Ψ(z)/ ]  +A3 Ψ(z), z є D, 

which index of  λ(z)  /ς
n
 on Γ equals to K + n  m(> 0), by Theorem 3.3, the 

solvability of the boundary value problem (1.13) for (1.1) is verified. 

Similarly we can prove the solvability of Problem B2 for (1.1). From the solvability of Problem B2 

for (1.1), we can derive the existence of the homeomorphic solution for the nonlinear complex 

equation (1.1) with A(z, w) = B(z, w) = C(z, w) = 0 in D from the domain D mapping to the N+1 - 
connected rectilinear slit domain G, the so-called N+1 - connected rectilinear slit domain means a 

domain whose boundary consists of N +1 rectilinear slits Lj (j = 0, 1, …. ,N) with the oblique 

angles θj (j = 0, 1, … , N) respectively, where we must choose λ(z) = e
-i(arg

 
θj+π/2)

, θj (j = 0, 1,….., N) 
are real constants, in this case, the index K = 0. 

Finally we give the conclusion in this paper, namely the singular Riemann-Hilbert problem with 

the nonnegative index for elliptic complex equations of first can be trans-formed into the non-
singular Riemann-Hilbert problem with the nonnegative index for the corresponding complex 

equations of first order, due to we can handle the non-singular boundary value problem, then the 

corresponding results of non-singular boundary value problem can be derived. 
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