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Abstract: In this paper, a known theorem dealing with | , , , |kC    -summability factors has been 

generalized for | , , , , |kC     -summability factors. Our theorem is based on some known results.  

 

1. INTRODUCTION 

Let na  be a given infinite series with partial sums ( )ns . We denote by 
,

nu 
 and 

,

nt
 

 the n-th 

Cesaro means of oprder ( , )  , with 1     of the sequence ( )ns  and ( )nna  respect ively 

(Browein [4]). 
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where 
0O( ), 1nA n A         , and 0nA    for 0n  . 

The series na  is said to be summable | , , | , 1kC k    if (Das [6]) 
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Since (Das [6]) 
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1( )n n nt n u u     

   then 

1 , , ,

1

1 1

1
| | | |k k k

n n n

n n

n u u t
n

     
 





  

                                                                                        (1.4) 

The series na  is summable | , , , | , 1kC k     and 0   if (Bor [1]) 
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And na  is summable | , , , , | , 1, 0kC k       and 1   if 
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                                                                       (1.6) 

If we take 1   then | , , , , |kC     -summability reduces to | , , , |kC    -summability. If we 

take 1, 0, 0      then | , , , , |kC     -summability reduces to | C, |k -summability. 

A sequence ( )n  is said to be convex sequence if 
2 0n   where 

2

1n n n        and 

1n n n      . 
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2. KNOWN THEOREM 

Bor [2] has proved the following theorem 

Theorem 2.1  If ( )n  is a convex sequence such that 
1

nn   is convergent and the sequence 

,( )nW 
 defined by  

, ,| |, 1, 1n nW t                                                                                                              (2.1) 

, ,

1
max | |, 0 1, 1n n

v n
W t     

 
                                                                                          (2.2) 

Satisfying the condition  
, 1( ) = O{(log ) } ( ,1)k p k

nn W n C    
                                                                                          (2.3) 

Then the series 
(p k 1)(log( 1)) n nn a      is summable | , , , |kC     for 0 1  , 1   , 

1k  , 0,   0p   and 0     . 

3. THE MAIN RESULT 

Generalizing theorem 2.1 we have proved the following theorem. 

Theorem 3.1  If ( )n  is convex sequence such that 
1

nn   is convergent and sequence 
,( )nW 

 

defined by (2.1) and (2.2) satisfying the condition 
( 1) 1 , 1( ( ) ) O{(log ) } ( ,1)k k p k

nn W n C        

then the series 
( 1)log( 1) p k

n nn a      is summable | , , , , |kC      for 0 1  , 1   , 

1k  , 0  , 1  , 0p   and ( 1) 0       . 

4. LEMMAS 

We need the following lemmas for the the proof of our theorem. 

Lemma 4.1  (Chow [5]) If ( )n  is a convex sequence such that the series 
1

nn   is convergent, 

then ( )n  is non-negative and non-increasing,  

O(1)nn    as n   

 and  

log O(1)n n   as n   

Lemma 4.2  (Bor [3]) If 0 < 1, > 1    and 1 v n   then  

1 1

1=0 =0

max

v m

n p p p m p p p
m vp p

A A a A A a    

 
 

   

Lemma 4.3  (Prasad [8]) If 
1((log( 1)) )p k

nn X   satisfies the same condition as ( )n  in 

lemma 4.1 then  
1(log( 1)) O(1)p k

nn n X     as n   

and  
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    as m   

Lemma 4.4  (Lal [7]) If ( )n  is a convex sequence such that the 
1

nn   is convergent then for 

0p   and 1k   
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5. PROOF OF THE THEOREM 

We write 
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Let 
,( )nT 

 be the n-th ( , , )C    mean of the sequence (na )n nX  then 
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By Abel’s transformation and using lemm 4.2, we have that 
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, ,

,1 ,2n nT T         (say) 

Since  
, , , ,

,1 ,2 ,1 ,2| | 2 (| | | | )k k k
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In order to complete the proof of the theorem, it is sufficient to show that  

( 1) ,
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| | <k k

n r
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   for 1,2.r   

whenever >1k , we can apply Hölder's inequality with k  and k , where 
1 1

= 1
k k



 we get that  

1 1 1
( 1) , ( 1)

,1

=2 =2 =2

1
k

m m n
k

k k

n v v v v

n n vn

n T n A A W X
A

         

 

  
  


     

        

1( 1)1 1 1

( )
=2 =1 =1

O(1) ( )

kkm n n
k k k

v v vk
n v v

n
v v X W X

n

 
   

 

  




  
    

  
  

 

        

1
( )

( )
1 1

1
O(1) ( )

m m
k k

v v k
v n v

v X W
n

   

   


 

  
  

  
 

        

( )

( )
1

O(1) ( )
m

k k

v v kv
v

dx
v X W

x

   

   


 

  


  
 

        

( 1) 1 ,

1

O(1) ( )
m

k k

v v

v

X v W    



   

        
1

( 1) 1 , ( 1) 1 ,

=1 1 1

= O(1) ( ) ( ( ) O(1) ( )
m v m

k k k k

v p m v

v p v

X p W X v W       


   

 

     
 

       

1
1 2 1

=1

= O(1) v(log(v 1)) O( (log( 1)) X )
m

p k p k

v m

v

X m m


         

       = O(1) as m  
By the application of lemm 4.3 similarly, we have that 
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            = O(1) as m  
By the application of lemm 4.4. 

This completes the proof of the theorem. 

6. CONCLUSION 

Above theorem gives the more general results in comparision of the theorem of H.Bor and will 

have an important place in the existing literature. 
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