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Abstract: A multivariate moment method for the simple multivariate variance-gamma distribution is 

considered. It takes into account the star products of both the coskewness and cokurtosis tensors. The 

model parameters depend upon the solution of a sextic equation, and the covariance matrix is functionally 
dependent upon coskweness and cokurtosis. The method enables simultaneous estimation of the parameters 

given sample estimates of the mean vector, coskewness vector and cokurtosis matrix. Application to the 

estimation of the bivariate variance-gamma model for the Standard & Poors 500 and NASDAQ 100 stock 

market indices is undertaken. The statistical fitting results are used to compare the original Margrabe 

formula with a variance-gamma exchange option pricing formula derived through application of the state-

price deflator approach. 

Keywords: multivariate variance-gamma, coskewness, cokurtosis, exchange option, stock market. 

 

1. INTRODUCTION 

In the first part of the present study, a simple multivariate exponential variance-gamma price 

process has been considered as alternative to the usual multivariate exponential Gaussian process. 

Based on it a state-price deflator has been constructed and applied to derive pricing formulas for 
the exchange option with a bivariate exponential variance-gamma deflated price process. It has 

been observed that the simple model is easy to work with but has some serious drawbacks. For 

example, linear correlation cannot be fitted once the margins are fixed. Moreover, great difficulty 

has been encountered with it in the joint calibration to option prices on the margins. To eliminate 
some of these disadvantages, it is possible to design an alternative estimation method. This is the 

main purpose of the present follow-up. In particular, statistical estimation of the multivariate 

variance-gamma model is discussed, and an application to stock market indices is presented. 

An overview of our approach and the obtained main results follows. Based on the first four 

moments of the common gamma subordinator and the Theorem of Isserlis (on the third and fourth 

order multivariate normal moments), we obtain in Theorem 2.1 the explicit expressions for the 

mean, covariance, coskewness and cokurtosis parameters of the simple multivariate variance-
gamma model. Then, a multivariate moment method is designed, which takes into account the star 

products of both the coskewness and cokurtosis tensors. The method is a one-parameter extension 

of the novel approach presented in [1]. Two features of it might be mentioned: 

(i) The covariance matrix of the multivariate variance-gamma distribution is functionally 

dependent upon coskewness and cokurtosis. 

 

mailto:werner.huerlimann@wolterskluwer.com


Margrabe Formulas for a Simple Bivariate Exponential Variance-Gamma Price Process (II) Statistical  

Estimation and Application 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                  Page | 34 

 

(ii) The parameters depend upon the solutions of a sextic equation. 

The considered multivariate moment method enables simultaneous estimation of the parameters 
given sample estimates of the mean vector, coskewness vector and cokurtosis matrix. To 

demonstrate the practicability of the new approach, a real-life case study is presented in Section 3. 

It concerns the statistical estimation of the eight parameter bivariate variance-gamma model for 

the Standard & Poors 500 and NASDAQ 100 stock market indices. The model is successfully 
fitted to seven bivariate daily data sets over different time periods. The goodness-of-fit of the 

margins is optimized and compared with the goodness-of-fit of the bivariate normal, which turns 

out to be rather poor. The results are used in Section 4 to compare the original Margrabe formula 
with the variance-gamma exchange option pricing formula derived in [2]. Section 5 is devoted to 

further discussion and conclusions. The Appendix derives in a simple way an expression for the 

variance-gamma density that turns out to be more symmetrical than the original density formula 
by [3]. It is used to compute the Anderson-Darling goodness-of-fit statistics in Section 3. 

2. A MULTIVARIATE MOMENT METHOD 

A random vector  ),...,,( 21 nXXXX    has a  n - dimensional (simple) multivariate variance-

gamma (VG) distribution with parameter vectors  ,,...,1),(),( niii    parameter matrix  

njiij  ,1),( , and parameter   , for short  ),,,(~  VGX , if its cumulant generating 

function (cgf) is given by 

)}(1ln{)(
2
11 uuuuuC TTT

X    ,           (2.1) 

for all values of  ),...,,( 21 nuuuu    for which the expression (2.1) exists. The special case  1   

is the three-parameter class of the asymmetric Laplace  ),,( AL , for which a moment method 

has been designed by [4]. The random vector  X   satisfies the stochastic representation 

,YGGX                 (2.2) 

where  )/1,/1(~ G   is a gamma random variable with mean rate one and variance   , 

),0(~ NY  is a multivariate normal with vanishing mean vector, and  ,, GY  are independent. In 

a first step, we determine the mean vector  )][.,..,][,][(][ 21 nXEXEXEXE  , abbreviated  

),...,( 1 n  , and the matrix of k -th order central moments, denoted by  2,3,4k],[ XM k . 

For  2k   the  nxn   matrix  n,ji,1),(]D[][ ij2  VXXM   is the covariance matrix with 

elements )].)(E[( jiij   ji XXV  The 2nxn  matrix n,kj,i,1),(][ ijk3  SXM   consists of 

the coskewness elements  )])()(E[( kjiijk   kji XXXS , and the  3nxn   matrix  

n,k,j,i,1),(][ ijk4  KXM  consists of the cokurtosis elements  

)])()()(E[( kjiijk    XXXXK kji . In general, one has the relationships 
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

       (2.3) 

The following result generalizes Proposition 2.1 in [1] (special case 1 ). 

Theorem 2.1 (Moments of the simple multivariate VG) The mean, covariance, coskewness and 

cokurtosis parameters of the multivariate VG random vector  ),,,(~  VGX   are given by 
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           (2.4) 

Proof: One uses the representation (2.2). The expression for the mean vector is immediate. For 

the central moments it suffices to consider the case  0 . With (2.2) the vector components of  

X   satisfy the representation ,,...,2,1, niYGGX iii   where )/1,/1(~ G   is 

independent of  ),0(~ iii NY  . The moment relationships 

324232 61161][,231][,1][,1][   GEGEGEGE , 

will be used repeatedly without further mention. One has 

ijjikjjijiji GYYGYYGXX   )1(])(E[]E[ ji
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, 

which implies the expression for the covariance. Similarly, one has 
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With the fact that  0]E[ kji YYY   (theorem of Isserlis) one sees that 

).()1()231(]E[ 2
ijkikjjkikjikji XXX    

Insert this and the fact that  ijjiii V   ij,   into the first relation of (2.3) to obtain the 

coskewness formula in (2.4). Proceeding in the same way, one shows that 
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Since  jkijikkijYYYY   ]E[ kji  (theorem of Isserlis) one gets 
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Insert this, ,, ij ijjiii V    and the coskewness relation in (2.4), into the second part of 

(2.3) to obtain after rearrangement and counting of equal terms the cokurtosis formula.  ◊ 

We are ready for the generalization of the moment method in [1], Section 3. For any fixed  0   

and given the mean parameters  )( i , the coskewness and cokurtosis parameters )( ijkS  and  

)( ijkK , we determine the remaining parameters )(),(),(),( ijij iiV    in terms of them. In 

particular, it is shown that the covariance matrix  )( ijV   of the multivariate VG distribution 

functionally depends upon coskewness and cokurtosis. First of all, given the mean    and 

assuming     has been determined, it is clear that     is obtained from the mean vector equation 

as    . Similarly, once  )(),( ij iV    have been determined, the parameter matrix )( ij  

is obtained from the covariance equation as  .jiijij V    Next let us examine the 
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coskewness equations. For this, consider the coskewness vector  ),...,()( 1 nSSXS    derived from 

the star product  [X]1)( 3MXS nxn    such that 

.,...,2,1,
1,

niSS
n

kj
ijki 



             (2.5) 

The following short hand notation for sums of covariances and parameters is used: 


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n

i
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ji
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n

j
i MVVVVV
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1
ji

1
ij ,,  .           (2.6) 

The evaluation of (2.5) based on the coskewness formula in (2.4) yields the relationships 

.,...,2,1,2}{ 2 niSMVMV iii             (2.7) 

Set further  


n

i
iSS

1

  and add the equations in (2.7) to get the equation in  ),( VM : 

.03 32  SMVM               (2.8) 

Consider now the cokurtosis equations and define the cokurtosis matrix  )()( ijKXK    using the 

star product  ][1)( 4 XMXK nxn    such that 

.,...,1,,
1,

njiKK
n

k
ijkij 


              (2.9) 

A calculation of (2.9) based on the last equations in (2.4) yields the relationships 
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Further, summing (2.10) with the short hand notation  ,,...,2,1,
1

ji
1

ij niKKK
n

j

n

j
i 



 one gets 

.,...,1,})1({3}{(3 2222 niKVVMMMV iii         (2.11) 

With  


n

i
iKK

1

  one obtains through addition of (2.11) a further equation in ),( VM , namely 

.0)1(363 22243  KVVMM           (2.12) 

The resulting system of non-linear equations (2.7), (2.8), (2.10), (2.11), (2.12) in the unknowns   

),,,,( VVVM iiji   can be solved by applying a three-stage procedure as follows. 

Step 1:  solve the equations (2.8) and (2.12) for the parameters  ),( VM  

From (2.8) one gets    

.
3

32

M

SM
V









                         (2.13) 

Insert this expression into (2.12) and multiply with  229 M   to see that  M   satisfies the 

following sextic equation in the parameters  ),( KS : 

.0)1(3)41(2)12( 2223264  SKMSMM           (2.14) 
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This equation is solved similarly to the special case  1   in [1]. 

Step 2:  solve the equations (2.7) and (2.11) for the parameters  niVii ,...,2,1),,(   

From (2.7) one gets 

.,...,2,1,
}{

2
2

ni
MV

MVS ii
i 









                                                            (2.15) 

Insert this into (2.11) to see that  iV   is function of the parameters  ),,,( ii KSVM : 
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            (2.16) 

It follows that  i   is a function of the same parameters, namely 
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where one must assume that 

0))1)((( 222  MVMV  .                       (2.18) 

Step 3: the unknowns  )( ijV   are obtained from the equation (2.10), where one must verify that the 

covariance matrix  )( ijV   and its associated correlation matrix are positive semi-definite. 

The described moment method is useful for parameter estimation. Given a sample  ),...,,( 21 Nxxx   

of size  N , where each  ix   is an observation of the random vector  ),...,,( 21 nXXXX  , one 

considers the following sample estimates of the coskewness vector and cokurtosis matrix: 
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Samples estimates of the quantities  ,,, KKS i  are obtained through summation as 

.ˆˆ,,...,2,1,ˆˆˆ,ˆˆ
11
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i
i KKniKKKSS                                              (2.20) 

Inserting these estimates into the derived formulas, one obtains for any fixed  0   estimates of 

the multivariate VG parameters in terms of the sample mean vector, coskewness vector and 

cokurtosis matrix. The next Section illustrates a real-world application of this procedure. 

3. ESTIMATION OF BIVARIATE LOGARITHMIC RETURNS 

We consider now two stock market indices for which all the mean, coskewness and cokurtosis 

quantities can be estimated. Return observations stem from the following seven different pairs of 

bivariate data from the Standard & Poors 500 (SP500) and the NASDAQ 100 (NDX) data sets: 

SP500/NDX/3Y:  754 daily closing prices over 3 years from 04.01.2010 to 31.12.2012  

SP500/NDX/5Y:  1259 daily closing prices over 5 years from 02.01.2008 to 31.12.2012  

SP500/NDX/10Y:  2516 daily closing prices over 10 years from 02.01.2003 to 31.12.2012  

SP500/NDX/15Y:  3773 daily closing prices over 15 years from 02.01.1998 to 31.12.2012  

SP500/NDX/20Y:  5093 daily closing prices over 20 years from 04.01.1993 to 31.12.2012  

SP500/NDX/25Y:  6302 daily closing prices over 25 years from 04.01.1988 to 31.12.2012 
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SP500/NDX/27Y:  6808 daily closing prices over 27 years from 02.01.1986 to 31.12.2012 

These data sets are typical as they contain short to medium high volatile periods (recent 3 and 5 
years), moderate long term periods (10 and 15 years), and long term periods (20,25 and 27 years). 

The last data set has been included because it contains the highest and lowest daily changes 

observed so far (drop in 22.9% and 16.3% for SP500 respectively NDX on 19.10.1987, increase 

of 17.2% for NDX on 03.01.2001). 

The following Table 3.1 lists the required sample moment estimates for the bivariate logarithmic 

returns obtained from each of these combinations. 

Table 3.1 Sample moment estimates of bivariate log-returns from two stock market 
indices

unit

SP500/NDX μ1 μ2 S1 S2 S K11 K12=K21 K22 K

3Y 3.05639 4.56635 -2.53599 -2.38737 -4.92336 0.49211 0.49395 0.50763 1.98765

5Y -0.11603 2.07454 -3.14410 -2.33368 -5.47779 2.95173 2.94873 3.03195 11.8811

10Y 1.79008 3.78059 -1.88119 -1.36265 -3.24384 1.53194 1.54845 1.62493 6.25377

15Y 1.00817 2.57285 -0.55355 1.38095 0.82739 1.42779 1.85222 3.06706 8.19929

20Y 2.35612 4.00594 -0.87526 0.43794 -0.43732 1.11516 1.44658 2.39096 6.39928

25Y 2.72626 4.45475 -1.14828 -0.12651 -1.27479 0.93652 1.20443 1.97202 5.31740

27Y 2.81711 4.43105 -6.53485 -4.19231 -10.7272 2.18012 2.12053 2.63988 9.06107

10^-4 10^-6 10^-6

moment estimates

 

Up to the 15Y and 20Y periods the coskewness vector has always negatively skewed components. 

The exception is the NDX. In the 15Y case one has also  1 2 0S S S   . Over the longest period 

of 27Y the coskewness components take the highest negative values. Up to the shortest 3Y period 

the overall cokurtosis coefficient  11 12 222K K K K     exceeds 5 and is highest for the 5Y and 

27Y periods. For specific fixed values of  0   the bivariate VG is fitted to the data following the 

moment method described in Section 2. 

Though the simple multivariate VG is easy to work with and has been theoretically justified (see 

[2], Section 2), it has been remarked that linear correlation cannot be fitted once the margins are 

fixed. However, the proposed moment method does not fit the margins separately, but provides an 
overall parsimonious fit of all its parameters regardless of the margins and the dependence 

structure. For this reason, it is important to discuss its goodness-of-fit capabilities as compared to 

the bivariate normal, which underlies Margrabe’s original pricing formula. In particular, it is 
important to analyze the goodness-of-fit of the estimated margins. To do so our goodness-of-fit 

(GoF) measure is based on statistics, which measure the difference between the empirical 

distribution functions  ( )nF x   and the estimated marginal distribution functions  ( )F x . We use the 

Cramér-von Mises family of statistics defined by (e.g. [5]-[7]) 

  )()()()(
2

xFdxwxFxFnT n 




,            (3.1) 

where  ( )w x   is a suitable weighting function. If  ( ) 1/ ( ) ( )w x F x F x      one gets the  2A   

Anderson-Darling [8] statistic. Consider the order statistics of the return data such that  

1 2 ... nr r r     and let   ˆ , 1,2,..., ,iF r i n be the estimated values of a marginal distribution 

function. Then one has 

     







n

i
ini rFrF

n

i
nA

1
1

2 ˆˆln
12

.            (3.2) 

The values   ˆ
iF r   are obtained numerically by integration of the VG density. Under the so-called 

bilateral gamma representation this is expression (A.8) in the Appendix. The Anderson-Darling 
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statistic yields one of the most powerful test if the fitted distribution departs from the true 

distribution in the tails (e.g. [5]), and is recommended in this situation. Now, the observed sample 

return marginal data is skewed and has a much higher kurtosis than is allowed by a normal 
distribution, which indicates that the fit in the tails matters and justifies the use of the GoF 

statistics (3.2). Needless to say, the proposed moment method is only a starting point for 

improved GoF estimation methods. However, a more complex data analysis is beyond the scope 
of the present study. To weight the influence of the margins, we use the Euclidean distance to 

define an overall GoF measure as  
2 2 2 2 2

1 2( ) ( )A A A  , with  2 , 1,2,iA i  the Anderson-Darling 

statistics of the margins. To calculate the GoF statistics of the variance-gamma margins, it is 
simpler to use the bilateral gamma representation of the margins defined by (e.g. [9], [10]) 

2,1,2
1

1
1)(   kGGX kkk

k  ,  2,1),1,(~  iGi  , independent,(3.3) with the one-to-

one parameter transformation 

)2)((),2)((, 22

2
1122

2
111

kkkkkkkk    ,       (3.4) 

where the changed parameter notations 2
12 1 2, 1,2, /k kk k        , are used. The estimated 

values of the marginal distribution functions in (3.2) are obtained numerically by integration of 

the expression (A.8) for the VG pdf. The estimated parameters and GoF statistics are summarized 
and compared in the Table 3.2. 

As a first observation, one remarks that the bivariate normal yields a rather poor GoF in terms of 
(3.2) whatever the considered time period of analysis is. To limit the possible output, one 

determines by trial and error values of  0  , for which the overall GoF measure  A   is smallest 

(bold numbers in the Table). It is interesting to compare the “optimal” fits with the ones from a 

bivariate asymmetric Laplace distribution (special case  1  ). Over the smallest 3Y time period, 

the latter provides almost the best fit in our sense, but departs from it in all other cases. Some 

common and diverging features can be noted. Over the time periods up to 10Y the dependence 

parameter   , which determines the correlation coefficient between the margins (see the later 

Table 4.1), remains stable around  0.95    while over the longer time periods from 15Y on this 

value is approximately  0.7  . This diverging feature aligns with the fact that the estimated 

correlation coefficients  F   between the margins decrease by increasing time period as is also 

the case for the sample correlation coefficient  S   (see the later Table 4.1). The estimated 

distributions are used to compare in the next Section the original Margrabe exchange option 
pricing formula (based on the bivariate normal) with the one from a simple bivariate variance-

gamma as derived in [1], Theorem 6.1. 

4. BLACK-SCHOLES VERSUS VARIANCE-GAMMA MARGRABE OPTION PRICES 

It is interesting to compare the classical closed-form Margrabe exchange option pricing formula 

with the corresponding formula for the exponential bivariate VG model. Recall that in the 
bivariate Black-Scholes model the future prices after one unit time are described by the equations 

,2,1),exp( 2

2
1)(

0
)(  kZSS kkkk

kk              (4.1) 

where the  kZ ’s  are correlated standard normal with correlation coefficient BS . In the special 

case  ( )
0 1, 0, 1,2k

kS k   , Margrabe’s formula reads 

21
2
2

2
12

1)2()1( 2,1)(2])([  BSBS SSDEM   .       (4.2) 
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Table 3.2  Parameter estimates and GoF statistics for the simple bivariate VG 

family

unit

SP500/NDX ν ξ1 ξ2 θ1 θ2 τ1 τ2 ρ A1² A2² ||A||

3Y 1 1.90585 1.74232 -1.60021 -1.28569 1.1848 1.2092 0.96505 0.834 0.467 0.9553

1.02 1.88232 1.72341 -1.57668 -1.26678 1.1819 1.2062 0.96505 0.745 0.558 0.9311

1.03 1.87088 1.71422 -1.56524 -1.25758 1.1804 1.2048 0.96505 0.705 0.608 0.9308

1.04 1.85966 1.70520 -1.55402 -1.24856 1.1810 1.2033 0.96505 0.667 0.660 0.9386

1516 1512 2142

5Y 1 0.93545 0.55927 -0.94705 -0.35182 1.8797 1.9079 0.95832 11.79 6.58 13.508

1.55 0.67837 0.46374 -0.68997 -0.25629 1.7690 1.7954 0.95832 2.27 1.81 2.907

1.60 0.66333 0.45815 -0.67494 -0.25070 1.7604 1.7867 0.95832 1.99 1.93 2.776

1.65 0.64915 0.45288 -0.66075 -0.24543 1.7520 1.7782 0.95832 1.79 2.13 2.784

2545 2537 3594

10Y 1 0.97951 0.63764 -0.80051 -0.25958 1.5935 1.6430 0.94608 37.30 7.31 38.008

1.60 0.74951 0.56303 -0.57050 -0.18497 1.4923 1.5387 0.94608 9.61 7.11 11.954

1.65 0.73752 0.55914 -0.55851 -0.18108 1.4852 1.5314 0.94608 8.64 8.22 11.925

1.70 0.72618 0.55546 -0.54718 -0.17740 1.4783 1.5243 0.94608 7.84 9.46 12.291

5091 5060 7178

15Y 1 0.76319 -0.64103 -0.66237 0.89831 1.5359 2.1658 0.69742 20.35 11.09 23.177

1.30 0.64722 -0.48374 -0.54640 0.74103 1.4832 2.0914 0.69738 7.49 8.28 11.162

1.35 0.63267 -0.46401 -0.53185 0.72129 1.4752 2.0802 0.69738 6.51 8.82 10.963

1.40 0.61910 -0.44561 -0.51828 0.70290 1.4675 2.0693 0.69738 5.82 9.63 11.247

7597 7594 10742

20Y 1 0.97015 -0.19279 -0.73454 0.59338 1.4426 2.0354 0.69878 44.2 13.1 46.057

1.40 0.81036 -0.06371 -0.57475 0.46430 1.3783 1.9447 0.69874 14.3 11.2 18.167

1.45 0.79629 -0.05234 -0.56068 0.45294 1.3712 1.9347 0.69875 12.5 12.7 17.816

1.50 0.78311 -0.04169 -0.54749 0.44228 1.3643 1.9249 0.69875 11.1 14.4 18.233

10156 10133 14347

25Y 1 1.12930 0.04026 -0.85668 0.40521 1.3823 1.9372 0.69973 54.7 21.0 58.618

1.40 0.94295 0.12840 -0.67033 0.31707 1.3208 1.8509 0.69969 18.1 14.0 22.889

1.45 0.92655 0.13616 -0.65392 0.30931 1.3140 1.8413 0.69970 16.0 15.3 22.145

1.50 0.91117 0.14344 -0.63854 0.30204 1.3074 1.8321 0.69970 14.4 17.0 22.279

12701 12683 17950

27Y 1 2.86608 0.78539 -2.58436 -0.34229 1.7983 1.9888 0.69504 232.9 31.2 235.00

1.95 1.89306 0.65556 -1.61135 -0.21245 1.6313 1.8047 0.69517 70.8 35.4 79.159

2.00 1.86615 0.65195 -1.58443 -0.20884 1.6244 1.7971 0.69520 67.6 39.6 78.313

2.05 1.84044 0.64850 -1.55873 -0.20539 1.6176 1.7897 0.69522 64.7 44.1 78.320

13739 13712 19410

GoF statistics

bivariate normal 

bivariate normal 

10^-3

bivariate normal 

bivariate normal 

10^-2

parameter estimates

bivariate normal 

bivariate normal 

bivariate normal 

 

If the future prices are exponential bivariate variance-gamma  2,1),exp( )()(  kXS k
k

k  , 

with ),,,(~   VGX , one uses the VG deflator  )exp( )2(
2

)1(
1 XXD   , and sets  

1
12,   , 

2
2

2
121

22 ,2,1,   kkk   to obtain the pricing formula (see 

Hürlimann (2013a), Theorem 6.1) 

.)(,2,1),)()1((

),)1((),)1((

,)/()(/1),,,(

),,,,(),,,(])([

1
21

1
2121

1

2
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2
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We have evaluated (4.3) for the seven pairs in Section 3 and compared the results with (4.2). We 

assume that (4.2) is calculated with either the sample covariance matrix, i.e. BS S   is the 

sample correlation coefficient, or the estimated covariance matrix, i.e. BS F  is the fitted 

correlation coefficient). Since  (1) (2)( , )
( )

X X
r C     (see [2], formula (4.23)), the formula (4.3), 

in contrast to (4.2), depends upon the risk-free rate of return. Without loss of generality it suffices 

to compare the case  0r  . Table 4.1 below lists the percentage signed relative deviation of the 

VG Margrabe formula from the original Margrabe formula in the Black-Scholes model. 

One notes the following properties. The asymmetric Laplace Margrabe formula is always on the 
safe side, whether the sample or estimated covariance matrices are used in Black-Scholes model. 

Except for the 5Y and 10Y periods, the original Margrabe formula with sample covariance matrix 

underestimates the exchange option price evaluated with the estimated VG model. Using in both 
formulas the estimated covariance matrix, one observe that they diverge considerably over the 

smallest 3Y time period (>40% and >80% relative deviation) and partly for the asymmetric 

Laplace special case. Otherwise, the VG and the original Margrabe prices are reasonably close 

with changing signs depending on the period of analysis. Furthermore, in parallel to the diverging 
feature observed in Section 3 about the correlation coefficient, the VG option prices for periods 

up to 10Y remain stable in the interval  3 3(1.97 10 ,2.38 10 )     while over the longer time periods 

from 15Y on these prices are much higher and vary in the interval  3 3(5.03 10 ,5.67 10 )   . 

5. RESULTS, FURTHER DISCUSSION AND CONCLUSIONS 

Our starting point has been the observation that the considered multivariate variance-gamma 

model is easy to work with but has some drawbacks. For example, linear correlation cannot be 

fitted once the margins are fixed. To circumvent this disadvantage, we have designed a 
multivariate moment method that does not fit the margins separately, but provides an overall 

parsimonious fit of all its parameters regardless of the margins and the dependence structure. The 

algorithmic structure of this novel statistical method is simple. Given the coskewness vector and 
the cokurtosis matrix, it follows a three-stage procedure. First, one solves the sextic equation 

(2.14) in the overall VG parameter  M  (sum of the marginal VG parameters  i ) and the 

parameter     of the gamma subordinator. In step 2, one determines the marginal VG and 

covariance parameters  ( , ), 1,2,...,i iV i n  , using the equations (2.16)-(2.17). In the third step, one 

obtains the covariance matrix ij( )V , which necessarily must be positive semi-definite. The 

remaining model parameters are then straightforward functions of the obtained quantities. The 
derivation of this multivariate moment method uses the explicit expressions for the mean, 

covariance, coskewness and cokurtosis parameters of the multivariate VG model (Theorem 2.1) 

as well as the star products of the coskewness and cokurtosis tensors. It is important to note that 
the star product has also been applied in related statistical methods by [13]-[15]. 

We have illustrated the usefulness of this moment method with a case study, namely the statistical 

estimation of the eight parameter bivariate variance-gamma model for the Standard & Poors 500 

and NASDAQ 100 stock market indices. The model is successfully fitted to seven bivariate daily 
data sets over different time periods, and the goodness-of-fit of the margins has been optimized. 

The fitting results have been used in Section 4 to compare the original Margrabe formula with the 

variance-gamma exchange option pricing formula derived in [2]. 

As a mode of conclusions let us give an outlook on some further possible studies in this area. First 

of all, there is a need for an improved goodness-of-fit estimation method in Section 3 that is not 

only restricted to the margins. Second, we expect applications of the state-price deflator approach 
to the pricing of more complex financial derivatives and insurance products with embedded 

options. Finally, it is possible to extend the present work to related multivariate non-Gaussian 

variance-mean mixture models that include multivariate normal inverse Gaussian and multivariate 

normal tempered stable distributions. The latter extension will be presented elsewhere. 

 



Margrabe Formulas for a Simple Bivariate Exponential Variance-Gamma Price Process (II) Statistical  

Estimation and Application 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                  Page | 42 

 

Table 4.1  Comparison of bivariate BS and VG Margrabe option prices                                                 

(case 0r )

market

unit uncertainty

SP500/NDX ν ρS ρF MBS/S MBS/F MVG S F

3Y 1 0.96516 1.27244 2.41537 43.87 89.82

1.02 0.96516 1.26927 2.39017 42.37 88.31

1.03 0.94184 0.96516 1.67889 1.26769 2.37785 41.63 87.57

1.04 0.96516 1.26613 2.36570 40.91 86.84

5Y 1 0.95787 2.19706 2.55543 10.04 16.31

1.55 0.95790 2.06681 2.11297 -9.02 2.23

1.60 0.94078 0.95790 2.32237 2.05674 2.08307 -10.30 1.28

1.65 0.95790 2.04690 2.05433 -11.54 0.36

10Y 1 0.94556 2.13992 2.42629 3.37 13.38

1.60 0.94560 2.00335 1.99342 -15.07 -0.50

1.65 0.91693 0.94560 2.34718 1.99378 1.96684 -16.20 -1.35

1.70 0.94560 1.98443 1.94106 -17.30 -2.19

15Y 1 0.69439 6.22402 6.25483 32.00 6.45

1.30 0.69450 6.00922 5.74297 21.26 -4.43

1.35 0.83383 0.69452 4.73601 5.97683 5.66938 19.71 -5.14

1.40 0.69454 5.94528 5.59845 18.21 -5.83

20Y 1 0.69609 5.83313 5.90215 30.52 1.18

1.40 0.69622 5.57213 5.27523 16.65 -5.33

1.45 0.82110 0.69624 4.52216 5.54335 5.21004 15.21 -6.01

1.50 0.69625 5.51530 5.14709 13.82 -6.68

25Y 1 0.69694 5.54498 5.71098 35.04 2.99

1.40 0.69707 5.29688 5.09090 20.37 -3.89

1.45 0.81890 0.69709 4.22923 5.26952 5.02678 18.86 -4.61

1.50 0.69711 5.24285 4.96479 17.39 -5.30

27Y 1 0.69032 6.00787 7.34234 74.92 22.21

1.95 0.69083 5.44521 5.58410 33.03 2.55

2.00 0.81446 0.69083 4.19757 5.42208 5.52269 31.57 1.86

2.05 0.69085 5.39942 5.46314 30.15 1.18

coefficient 10^-3 relative deviation

Margrabe pricecorrelation percentage signed

 

APPENDIX:  Special function representation of the variance-gamma density 

A five parameter bilateral gamma (BG) random variable is defined by 

     ,0,,,,,,,,~2
1

1
1 BGGGX , 

with independent  )1,(~),1,(~ 21   GG  (standardized gamma’s with scale parameter 1). It 

suffices to restrict the attention to the BG with vanishing location  0 . The BG pdf, denoted by  

  ,,,;)( xfxf  , is the convolution  ))(()( 21 xffxf    of the two gamma pdf’s: 

   .01)()(,01)()(
11

2
11

1 
 xexxfxexxf

xx          (A.1) 

The following “generalized gamma function” representation seems new. It is equivalent to the 

representation (A.6) below in terms of the confluent hyper-geometric function of the 2nd kind. 

Theorem A.1 (Generalized gamma function representation) The probability density function of 

the bilateral gamma    ,,,,0BG   is given by 
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with the generalized gamma function 

 




0

111 )1(),,( dtetxtxba tba .            (A.3) 

Proof: Using the symmetry relation      ,,,;,,,; xfxf    it suffices to consider the 

case  ),0( x . Through elementary integration (change of variables txy  ) one obtains 
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The transformation  uxct 1)(    with  xxc )()(     yields further 

))(,,()())(1()()( 1

0

1111 xcxdueuuxcxcxxI u     


 . 

Insert into the first integral expression for  )(xf   to get (A.2).  ◊ 

In virtue of the limiting property  )(),,(lim
0

1 adtetxba ta

x






  the naming of the integral 

(A.3) is justified. Furthermore, one has also trivially  )(),1,( axa  . Another justification arises 

from the fact that when     or     the pdf converges to a left- and right-tail gamma 

pdf respectively, as should be. Moreover, a close look at the confluent hyper-geometric function 
of the 2nd kind, introduced by [11] and also called Tricomi function, shows the relationship 

),,()(),,( xbaaUxaxba a  ,            (A.4) 

where the Tricomi function is defined by (e.g. [12], 48:3:6 and 48:3.7) 
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The generalized gamma function is a transformed Tricomi function and (A.2) rewrites as 
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        (A.6) 

In the variance-gamma special case      ,,,,0,,  BGVG   the relevant 

Tricomi function reduces to a Macdonald function (modified Bessel function of the 2nd kind, 

hyperbolic Bessel function of the 3rd kind, Basset function, modified Hankel function) of the type 

([12], 48:4:3 and 48:13:6) 
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Inserting these expressions into the Tricomi representation (A.6) one obtains the VG pdf 

  0),)(()(exp
)(

)(
)(

2
1

2
1

2

1

2

1























xxKx
x

xf 








.                   (A.8) 

This closed-form expression has been first derived in [3] for the parameterization 
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However, in its original form the VG pdf takes the less symmetrical form 
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