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Abstract: The author has studied and solved different types of recurrence equations, especially non-

linear. Some of his works in this area are mentioned in the references. In the present article a new type of 

nonlinear recurrence equations is introduced. These equations are named Gould functional recurrence 

equations and they have as solutions sequences of functions called Gould sequences. We prove that, in 

certain conditions, the Gould functional equations are equivalent to some numerical nonlinear recurrence 
equations whose solutions are the coefficients of the power series expansions of the solutions of the Gould 

equations. Then several particular Gould equations and their associated numerical recurrence equations 

will be solved. In all these cases, the closed formulas of their solutions are expressed by Fibonacci 

numbers. Some of the particular equations considered here have been already introduced by H. W. Gould, 

whence the origin of the name of the recurrence equations introduced in this article. 
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1. INTRODUCTION 

In the paper [8] H. W. Gould has considered some new nonlinear recurrence equations whose 

solutions are functions expressed relative to Fibonacci numbers. For one of these equations he has 
obtained a characterization related to the coefficients of power series development of the 

solutions. 

The present paper aims at exploiting these ideas, considering a general nonlinear recurrence 

equation having functions as unknowns. This equation will extend the equations presented in the 
work [8] and therefore, it is called Gould functional recurrence equation. The sequence of its 

solutions is called Gould sequence of functions. Our general Gould equation is defined by an 

operator considered on the space of all functions, giving the connection between the unknown of 
the equation and the product of the two previous unknowns.  

The notion defined here as Gould sequence of functions will receive a specific characterization 

which generalizes the one given in work [8]. This characterization consists in a numerical 

nonlinear recurrence relation satisfied by the coefficients of the power series developments of the 
functions by the Gould sequence.  

The Gould functional equation and its associate numerical recurrence relation are solved in 

several particular cases. In all considered cases, some of them extending those from the work [8], 
the formulas of the solutions are expressed relative to Fibonacci numbers. 

2. GOULD SEQUENCES OF FUNCTIONS 

The notion of Gould sequence of functions is defines as 

       xuxuAGxun 10 ,; , 
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given by an operator A  on the space of all functions and the initial terms  xu0 and  xu1 , as 

being the sequence that satisfies the nonlinear recurrence equation 

      xuxuAxu nnn 11   , .2,1n .                       (1) 

called Gould recurrence equation. The word functional refers to the fact that the solution of such 

equation is a sequence of functions, in contrast with the recurrence relations whose solutions are 
numerical sequences and are therefore called numerical recurrence relations or equations. 

For some A ,  xu0  and  xu1 , such sequences is considered in [8]. In this paper a 

characterization and examples of Gould sequences of functions are given by determining the 

formula of general term in each case. These formulas contain Fibonacci numbers,  

00 F , 11 F , 12 F , 23 F , 34 F , 55 F , 86 F , 137 F , …, 

defined by the well-known recurrence relation  

11   nnn FFF ,   .2,1n .                      (2) 

3. THE CHARACTERIZATION OF THE GOULD SEQUENCES 

In this Section a linear continuous operator A is defined on a topological vector space E  of 

functions. Let us suppose that   Exun  and Exn  , with the following developments in 

convergent power series  

   





0k

k

kn xnaxu ,     k

k

k

n xntxA 





0

, .2,1,0n  .                               (3) 

Theorem. 3.1. The sequence of functions  xun  satisfies Gould recurrence equation (1) if and 

only if the coefficients  nak  satisfy the recurrence relation 

        


 

 
0 0

11
j

j

i

ijikk nanajtna , .2,1,0k , .2,1n  ,             (4) 

The series of formula (4) being supposed to be convergent. 

 
Proof. Taking into consideration the relations (3) and Cauchy’s formula for series product, the 

recurrence equation (1) becomes 
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ijik xnanajt 

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 

 
0 0 0

1 ,               (5) 

equivalent with the recurrence equation (4) . 

Remark 1. It should, however, be mentioned that the formula (4) occurs only if the two infinite 

series which appear in formula (5) from the proof of the theorem 3.1 can be interchangeable. 

Simple cases where this condition is fulfilled because one of these series is a finite sum, will be 
given in the following Section. 

4. PARTICULAR CASES OF GOULD EQUATIONS 

1) If IA  , the identity operator, then    









,,0

,,1
,

kj

kj
kjjtk  for .2,1,0, jk , the 

Kronecker symbol, hence the functional recurrence equation 

     xuxuxu nnn 11                            (6) 
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and the numerical recurrence relation 

     


 
k

i

ikik nanana
0

11 ,                        (7) 

for .2,1,0k , and .2,1n , are equivalent. 

2) If DA  , the derivative operator in x , then  

     









,1,0

,1,1
1,1

kj

kjk
kjkjtk   

hence from theorem 3.1 results that the functional recurrence equation 

      xuxuDxu nnn 11                         (8)           

and the numerical recurrence relation 

       




 
1

0

1 111
k

i

ikik nanakna ,                    (9) 

for .2,1,0k , and  ,2,1n ,are equivalent. 

3) If DxA  , then  

   









,,0

,,
,

kj

kjk
kjkjtk   

Hence from theorem 3.1 results that the functional recurrence equation 

      xuxuDxxu nnn 11                   (10) 

and the numerical recurrence relation 

     


 
k

i

ikik nanakna
0

11 ,               (11) 

for .2,1, nk , are equivalent. 

Remark 2. The above particular case 3) is given in [8]. 

5. EXAMPLES OF GOULD SEQUENCES OF FUNCTIONS 

5.1 The Sequence     xuxuIG 10 ,;  

In this case, the recurrence equation (1) takes the form (6) and we 

have          xuxuxuxuxu
FF 12

01012  ,       xuxuxu 123    2
1 0u x u x    xuxu

FF 23

01 . For 

a fixed natural number n let us assume that  

     xuxuxu kk FF

k
1

01
 ,               (12)   

for nk 1 . Then, using (6) and (2), we obtain 

                 xuxuxuxuxuxuxuxuxu nnnnnnnnnn FFFFFFFFFF

n 010101011
1211211  



 ,  

Hence formula (12) is true for 1 nk . In conformity with induction axiom, formula (12)is true 

for every natural number 0k . 

Remark 3. If    xuxu 10  , using again (2), it results that the solution of recurrence equation 

(6) is given by the formula 
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   xuxu kF

k
1

0
 , ,2,1,0k .                                 (13) 

Is called discrete convolution or Cauchy product of two numerical sequences  ka and  kb , the 

sequence     







 





k

i

ikikk baba
0

, in entire papers the index k  going through the set of natural 

numbers. Let us define the convolution powers of the sequence  ka , by 

formula        kkk

n

k aaaa 
  , the product having n  factors, for a natural number 1n , 

and    ,0,0,1
0




ka , the convolution unit. With these notations, from (12), (13) and the 

Theorem 3.1, results the following  

Theorem 5.1. The numerical recurrence equation (7), which takes the form 

        11  nanana kkk , ,2,1n , ,2,1,0k ,                 (14) 

with the initial data   0ka  and   1ka , has the solution given by the formula 

         101 
 nn F

k

F

kk aana , ,2,1n , ,2,1,0k .            (15) 

If    10 kk aa  , ,2,1,0k , then the solution of equation (7) is 

      10 
 nF

kk ana , ,2,1n , ,2,1,0k .                         (16) 

Remark 4. We check now directly that the sequence (15) satisfy the equation (14). Indeed, using 

(15) and (2), we have 

                     211 01011 nnnn F

k

F

k

F

k

F

kkk aaaanana  

 

                  10101 1211 
  naaaaa k

F

k

F

k

FF

k

FF

k
nnnnnn , 

hence the equation (14) is satisfied. If     10 kk aa  , using again (2), the solution (15) becomes 

                 111 0000  
 nnnnn F

k

FF

k

F

k

F

kk aaaana , 

thus resulting formula (16). 

5.2 The Sequence  xeDG ,1;  

In this case the recurrence equation (1) takes form (8)and  

  xF
exu 010  ,   xFx eexu 1

1  ,       
 xFxFF

eDeDxu 210

2

xFxF eeF 22

2  ,  

 

    xFxF
eFeDxu 33

33  ,     xFxF
eFFeDFxu 44

4334  ,    xF
eDFFxu 5

4

2

35 
 

 
xFFFF

eFFF 5123

543 ,     xFFFFFxF
eFFFFeDFFFxu 612346

65435

2

4

3

36  . 

For a fixed natural number n  let us assume that  

  xFF

k

F

k

F

k

F

k
kk eFFFFxu 1232

123 
  ,                              (17)   

for nk 3 . Then, using (17), (8) and (2), we obtain  

           







xFFF

n

FF

n

FF

nnn
nnnn eDFFFxuxuDxu 111232

1311   

 xFF

n

F

n

F nn eDFFF 1231

13


  xFF

n

F

n

F

n

F nn eFFFF 11231

113


  . 

In conformity with induction axiom, formula (17) is true for every natural number 3k . 
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Remark 5. The recurrence equation (8) with above initial values was considered in [8] but there 

was unfortunately wrong solved.  

From (17) and the Theorem 3.1, results in the following  

Theorem 5.2. The numerical recurrence relation (9) with initial data      0,0 kak  and 

   



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!

1
1

k
ak , has the solution given by formulas  
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n  , ,5,4n , ,2,1,0k .                         (18) 

Remark 6. Let us verify now that the solutions presented in the Theorem 5.2 satisfy the 

recurrence equation (9). Indeed, for 4,3,2,1n , we have successively 
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and for 5n , we have 
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5.3 The Sequence  ;1, mG D x , With m  Natural Number 

Now let us also solve the recurrence equation (8), for   1

0
101



FmF

xxu
 

and 

  1

1
21 


FmFm xxxu . Using (8) and (2), we obtain 

        1
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21

2
3213221 2
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
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By mathematical induction it results  

    














 ,3,2:2,,1,1;

1

2

1
11 nxFmFxxDG nnkn FmF

n

k

F

kk

mm
.               (19) 

From (19) and the Theorem 3.1, results the following 

Theorem 5.3. The numerical recurrence equation (9) with the initial data      0,0 kak  and 

     mkak ,1  , has the solution given by the formula 

      













 






n

j

nn

F

jjk FmFkFmFna jn

2

11 1,2 1  , ,3,2n .                (20) 

Remark 7. We will verify that the solution (20) satisfy the equation (9). Indeed, 

         




 
1

0

11 01011
k

i

mkiki akaak  

       21,0,11 kamkmmkk   , 

         




 
1

0

21 11121
k

i

mkiki akaak  

         322,12,21 kamkmmmmkmk   , 

            








 




1

0 2

11 12111
1

1

k

i

FmFk

n

j

F

jjiki naFmFknanak
nn

jn  

        






  

n

j

n

j

nnnn

F

jj

F

jj FmFFmFkFmFFmFk jnjn

2

1

2

1111 1,221 1 

 

      








  

1

2

2111 1,221 11

n

j

nn

FF

jj

F

nn FmFkFmFFmFk jnjn   

      




  

1

2

211121 1,222 22

n

j

nn

F

jj

F

nnnn FmFkFmFFmFFmF jn   

     




  

1

2

211 11,2 2

n

j

knn

F

jj naFmFkFmF jn  . 

5.4 The Sequence  mxxDG ,1;  

Let us solve recurrence equation (10) when   010

mF
xxu  and   1

1

mFm xxxu  . Using (10) 

and (2), we obtain 

         213

2

1

012

mFFFmm xFmmxxxDxuxuxDxu


 ,  

         3124

32

1222

123 2
mFFFFmm xFFmxmxmxDxuxuxDxu


 , 

         
 3212143

32

2

234

FFmFFFFF
xxDFFmxuxuxDxu  

  412354235

432

1

32

2 mFFFFFmFFFF
xFFFmxxDFFm


 . 

By mathematical induction it results in 

  







 



  ,3,2:,,1,1;
2

1 11 nxFmxxxDG nknn mF
n

k

F

k

Fmm
.                    (21) 

Remark 8. For 1m , the recurrence equation (10) with the initial values   10 xu and 

  xxu 1 , was considered in [8]. From (21) and the Theorem 3.1, results the following 
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Theorem 5.4. The numerical recurrence equation (11)  with the initial data      0,0 kak   

and      mkak ,1  , has the solution given by the formula 

    













 



 

n

j

n

F

j

F

k nmFkFmna jnn

2

1
,3,2:,,1,1 11  .                               (22) 

Remark 9. We will verify now that the solution (22) presented in the Theorem 5.4 satisfies the 

recurrence equation (11). Indeed, for 2,1n , we have successively 

                
 

 
k

i

k

i

kkiiki amkmmkkkaikakaak
0 0

2,,10,101  , 

                






 
k

i

kmk

k

i

iiki amkmmmkkmkamikakaak
0

2

0

32,2,2,212  , 

for mk  , the relation being also true, 00  , for mk  and for 2n ,  

        
 







  

k

i

n

j

ikn

F

j

k

i

F

iki namFiFmknanak jnn

0 20

1
1,1 11   

 





 

n

j

mFk

jF

j

F
naFkm

n

nn

2

1
111  

 











 

1

2

1

2

11
,11

n

j

nn

jn

j

n

j

FF

j

F
mFmFkFmFkm njnn   

   







 

1

1

2

2
,111

nn

n

j

FF

j

F

n

FF
FFmkFFkm jnjnnn   

   















 

1

2

1

1

2

2

11

2
,, 212212

n

j

n

F

j

F

n

n

j

F

nn

F

j

F

n

F
mFkFFmmFmFkFFkm jnnjnn   

   







 

1

2

1

1
1,22

n

j

kn

F

j

F
namFkFm jnn  , 

for nmFk  , the relation being true, 00  , if nmFk  .  

5.5 The Sequence  xexDG ,1; .  

Let us give form of the solution of the recurrence equation (10), when   10 xu , and 

    xF

F

x exPexu 1

2 11  , with    xPF 12
  10 xP . In this section  xPn  denotes a polynomial 

of degree n . 

Using (10) and (2), we obtain       xF

F

xx exPxeexDxu 2

3 12  , with     xxPxPF  113
 

and          xF

F

xxF

F exPxexDexPxDxu 3

4

3

3 1

2

13   , with      12214
 xxxPxPF .For a 

fixed natural number n  let us assume that  

    xF

Fk
k

k
exPxu 11

 ,                          (23)   

for nk  . Then, using (23), (10) and (2), we obtain  

            

 

xF

F

xF

Fnnn
n

n

n

n
exPexPxDxuxuxDxu 1

1 1111  

              xF

F

xF

FF

xFF

FF
n

n

n

nn

nn

nn
exPexPxPxDexPxPxD 1

2

1

1

1

1 11111










 



   

where 

           xPxPDxPxPFxxP
nnnnn FFFFnF 111111 112  

 , ,.3,2n .         (24) 
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In conformity with induction axiom, formula (23) is true for every natural number k . The 

polynomials  xP
nF 11

 can be calculated by recurrence from relation (24). 

Example. For 4,3,2n , in conformity with (24) we have 

              xxxPxPDxPxPFxxPxP FFFFF  

2

1111321 2
23234

, 

 

              234

1111441 296
34345

xxxxPxPDxPxPFxxPxP FFFFF   , 

               xPxPDxPxPFxxPxP FFFFF 1111571 45456
 

34567 66218519260 xxxxx  . 

Remark 10. The solution (23) of the functional recurrence equation (10), in case of the initial 

values   10 xu   xexu 1 , is mentioned without proof in [8]. 

For ,2,1,0n , let us consider the numerical sequence   npk , whose terms are the coefficients 

of the polynomial  xP
nF 11 

, when 10 1  nFk  and are zeros, when 11  nFk . For 

example,  

       ,0,0,110  kk pp ,      ,0,0,1,02 kp ,  

    ,0,0,2,1,03 kp ,      ,0,0,6,9,2,0,04 kp ,  

    ,0,0,60,192,185,62,6,0,0,05 kp and so on.  

From (23), (24) and the Theorem 3.1, results the following 

Theorem 5.5. The numerical recurrence relation (11) with the initial data      0,0 kak  and 

   









!

1
1

k
ak , has the solution given by the formula 

      









!k

F
npna

k

n
kk , ,3,2n .                                       (25) 

6. DISCUSSIONS AND CONCLUSIONS 

Gould’s article has opened a new path in the field of the recurrence equations and the present 

article is trying to revive this topic. It is very interesting that all the Gould equations have 
solutions which express themselves relative to the Fibonacci numbers. Finding a Gould sequence 

of functions that are not expressed relative to Fibonacci numbers remains an open problem.  

By solving the Gould functional recurrence equations the solutions are also obtained for the 

associate numerical recurrence relations. In addition, we tested if the obtained solutions satisfy 
indeed these numerical recurrence relations. These tests are also interesting for algebraic work 

with Fibonacci’s numbers. 

Besides the classical functional recurrence equations, as those verified by the special functions, it 
is important to find new equations of this type as well as some methods of solving them. Such 

equations can be obtained through the combination of the classical equations. So, the Author has 

considered functional recurrence equations of algebraic-differential type in the works [1] and [3] 
and algebraic-integral in the work [5]. In order to solve such equations it could be useful the 

hybrid Laplace transform, introduced by V. Prepeliţă, [9], obtained through the combination 

between the usual Laplace transform and the Z-transform. 

Another important issue is the application of these equations to the solution various problems. 
The Author has applied the recurrent equations to the combinatory theory in the papers [2] and [4] 

and to the probability in the paper [6]. 
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