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Abstract: The author has studied and solved different types of recurrence equations, especially non-
linear. Some of his works in this area are mentioned in the references. In the present article a new type of
nonlinear recurrence equations is introduced. These equations are named Gould functional recurrence
equations and they have as solutions sequences of functions called Gould sequences. We prove that, in
certain conditions, the Gould functional equations are equivalent to some numerical nonlinear recurrence
equations whose solutions are the coefficients of the power series expansions of the solutions of the Gould
equations. Then several particular Gould equations and their associated numerical recurrence equations
will be solved. In all these cases, the closed formulas of their solutions are expressed by Fibonacci
numbers. Some of the particular equations considered here have been already introduced by H. W. Gould,
whence the origin of the name of the recurrence equations introduced in this article.
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1. INTRODUCTION

In the paper [8] H. W. Gould has considered some new nonlinear recurrence equations whose
solutions are functions expressed relative to Fibonacci numbers. For one of these equations he has
obtained a characterization related to the coefficients of power series development of the
solutions.

The present paper aims at exploiting these ideas, considering a general nonlinear recurrence
equation having functions as unknowns. This equation will extend the equations presented in the
work [8] and therefore, it is called Gould functional recurrence equation. The sequence of its
solutions is called Gould sequence of functions. Our general Gould equation is defined by an
operator considered on the space of all functions, giving the connection between the unknown of
the equation and the product of the two previous unknowns.

The notion defined here as Gould sequence of functions will receive a specific characterization
which generalizes the one given in work [8]. This characterization consists in a numerical
nonlinear recurrence relation satisfied by the coefficients of the power series developments of the
functions by the Gould sequence.

The Gould functional equation and its associate numerical recurrence relation are solved in
several particular cases. In all considered cases, some of them extending those from the work [8],
the formulas of the solutions are expressed relative to Fibonacci numbers.

2. GOULD SEQUENCES OF FUNCTIONS

The notion of Gould sequence of functions is defines as

(u (x)) = G (AU (%), us (),
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given by an operator A on the space of all functions and the initial terms uo(x)and ul(x), as
being the sequence that satisfies the nonlinear recurrence equation

u,,,(x)=A(u,(x) u,,(x)), n=12..... (1)
called Gould recurrence equation. The word functional refers to the fact that the solution of such

equation is a sequence of functions, in contrast with the recurrence relations whose solutions are
numerical sequences and are therefore called numerical recurrence relations or equations.

For someA, uo(x) andul(x), such sequences is considered in [8]. In this paper a

characterization and examples of Gould sequences of functions are given by determining the
formula of general term in each case. These formulas contain Fibonacci numbers,

F,=0,F=1F=1F=2F =3 F=5F=8,F =13, ..,

defined by the well-known recurrence relation
Fn+l:Fn+Fn,1a n:1,2 (2)

3. THE CHARACTERIZATION OF THE GOULD SEQUENCES

In this Section a linear continuous operator Ais defined on a topological vector space E of
functions. Let us suppose thatu,(x)e Eandx" € E, with the following developments in
convergent power series

x)=a (n)x*, Alx")="t (n)x, n=012..... 3)
k=0 k=0
Theorem. 3.1. The sequence of functions un(x) satisfies Gould recurrence equation (1) if and
only if the coefficients a, (n) satisfy the recurrence relation

J
a(n+1)= Zt i) a(n)a (n-1), k=012..., n=12...., (4)
The series of formula (4) being supposed to be convergent.

Proof. Taking into consideration the relations (3) and Cauchy’s formula for series product, the
recurrence equation (1) becomes

S0 =4 S 0% Safn-00 |- ST a0l fo-0¢ |-

:Zi;g,au(”)a,_.(n—1)A(x’):§(;§:a,(n)aJ (n 1);:‘;tk(1)xk =
kzz Za -1, ©)

equivalent Wlth the recurrence equation (4) .

Remark 1. It should, however, be mentioned that the formula (4) occurs only if the two infinite
series which appear in formula (5) from the proof of the theorem 3.1 can be interchangeable.
Simple cases where this condition is fulfilled because one of these series is a finite sum, will be
given in the following Section.

4. PARTICULAR CASES OF GOULD EQUATIONS

:k, }
N for k, j=012...., the

1
1) If A=1, the identity operator, then tk(j):é(j,k):{o
Kronecker symbol, hence the functional recurrence equation

Uy (X) = Uy (x) U, 4 (%) (6)
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and the numerical recurrence relation

(n+1)= Za )a,_;(n-1), (7)
for k = 012 .,and n=12...., are equivalent.

2) If A= D, the derivative operator in X, then
. . k+1 , j=k+1,
()=l )

0 , J=#k+1,
hence from theorem 3.1 results that the functional recurrence equation

Uy (X) = D(U, (X, 4(x)) ®)

and the numerical recurrence relation

(n+1)= k+12a )a,, (n-1), 9)

for k=012...., and n=12,...,are equivalent.
3)If A=xD, then
k , Jj=k,
t.(j)=kolj,k)= .
(=ralin={g 70
Hence from theorem 3.1 results that the functional recurrence equation
Uy ()= X D(u, (x)u, () (10)

and the numerical recurrence relation

(n+1)= kZa )a,_;(n-1), (11)

for k,n —1,2...., are equivalent.

Remark 2. The above particular case 3) is given in [8].

5. EXAMPLES OF GOULD SEQUENCES OF FUNCTIONS

5.1 The Sequence G(1 ;u,(x),u,(x))

In this case, the recurrence equation (1) takes the form (6) and we
have U, (X) = u, (X)u, (x) = u (x)u* (x), uy(x)=u,(X)u,(x) = u? (X)up (x) = u* (x)ul2 (x). For

a fixed natural number n let us assume that

U (%) = u™ (x)ug (x), (12)
for 1<k <n. Then, using (6) and (2), we obtain

Up,a () = U O0)ug™ Ox)us™ (x)ug™ (x) = w7 (xJug™ ™ (x) = u (xJug” (x),

Hence formula (12) is true for k =n+1. In conformity with induction axiom, formula (12)is true
for every natural number k = 0.

Remark 3. If uo(x)z ul(x), using again (2), it results that the solution of recurrence equation
(6) is given by the formula
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u (x)=uf(x), k=012,.... (13)
Is called discrete convolution or Cauchy product of two numerical sequences (a, )and(b, ), the

sequence ak [Za b, ,j in entire papers the index k going through the set of natural

numbers. Let wus define the convolution powers of the sequence (ak), by
formula(a, )" = (a,)*(a,)*---*(a,), the product having n factors, for a natural numbern >1,

and(a, )° =(1,0,0,...), the convolution unit. With these notations, from (12), (13) and the
Theorem 3.1, results the following

Theorem 5.1. The numerical recurrence equation (7), which takes the form

(a,(n+1)=(a,(n)*(a(n-1), n=12,..., k=012,..., (14)
with the initial data (a, (0)) and (a, (1)), has the solution given by the formula

(a.(n)=(a, @) *(a,(0)™, n=12,..., k=012,... (15)
If a, (O): a, (1) k =0,1,2,..., then the solution of equation (7) is
(a.(n)=(a (0)"*, n=12,..., k=012,.... (16)

Remark 4. We check now directly that the sequence (15) satisfy the equation (14). Indeed, using
(15) and (2), we have

(a(n)*(a (n-1))= (@ @)™ * (@)™ *(a @)™ *(a ()" =
= (@ @) (3, ) ) = (3, @) ™ *(a, ()™ =(a,(n+1)),

hence the equation (14) is satisfied. If a, (O) ( ) using again (2), the solution (15) becomes

(a(n)=(a,0)™ *(a,(0) ™ = (&, (O) "™ = (a (0)) ™.

thus resulting formula (16).

5.2 The Sequence G(D;l,ex)

In this case the recurrence equation (1) takes form (8)and
Uy(x)=1=e", u,(x)=e* =™, u,(x)= D(e(F°+Fl)X): D(eFZX)z Fe™ =ef

u;(x) = D™ )= F,e™, u,(x)= F,D(e™ )= F,F,e™, u,(x)= F2F,D[e™")

= FFPFRe™  ug(x)= FF2F,De™ )= FfFF R Fhe™ .

For a fixed natural number n let us assume that

u (x)=F*2 R R RRe™, (17)
for3<k <n. Then, using (17), (8) and (2), we obtain

)= Dl () D)

— FSFn—l . FananFz D(eF"+1X) — F3Fn 1, |: Fs |: F = F1

n+l

In conformity with induction axiom, formula (17) is true for every natural number k > 3.
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Remark 5. The recurrence equation (8) with above initial values was considered in [8] but there
was unfortunately wrong solved.

From (17) and the Theorem 3.1, results in the following

Theorem 5.2. The numerical recurrence relation (9) with initial data(a, (0))=(5(k,0))and

(a, ()= (%) , has the solution given by formulas

@[ ) @ %)

and
k+1
(ak(n))=[F3Fnz...FnF_zl o j N=45... k=012, (18)

Remark 6. Let us verify now that the solutions presented in the Theorem 5.2 satisfy the
recurrence equation (9). Indeed, for n=1,2,3,4, we have successively

K+1 1
(k +1)Z q (1)ak+17i (O) = (k +1)ak+1(1) = E =3a, (2)’
i=0 .
k+1 k+1 1 B 1 kil 'k +1 B (1+1)k+1 ~ 2k+1 ~
k+12a ak+l| k+1);m—ﬁl 0( i j— Kl = Kl —ak(B),
k+1 k+1 2i+l 1 2 k+1 k+1 (2+1)k+l B
k+12a ak+l| (k+l)§ T m kll 0( i jZ =2 K =
3k+l Fk+l
ZT—FFZ " =a, (4),
k+1 3l+l 2k+2| 12 k1 k +1 okl
k+12a Ja .. (3)=(k+ 122 i ﬁi_o( : ]32 =
3+ 2 K+1 5k+l Fk+l
:12( k!) =12 =F3F3F4Fzﬁ:ak(5),
and for n>5, we have
k+1 - , FI+1 - Fz Fnk-%iZ—i
k+1Za Ja..i(n-1)= (k+1)§F3 RS R R e
F3F,2+F,3“.F|:_32+F2F|i21+1|: k+1 k+1 oL
— n n n F F
k' ; | n' n-1
Foa .. ERRERER k+1
= F3 Fn—ZFn—an (Fn + I:n—l)kJrl = FSFnil I:n':—3l|:n':2 Fn_+1 = a‘k (n +1)

k! k!

5.3 The Sequence G(D;l,xm) . With m Natural Number

Now let us also solve the recurrence equation (8), for Uu,(x)=1=x""""" and
u, (x)=x™ = x™""* Using (8) and (2), we obtain

UZ(X)Z D(XmFl—F2+l): D(XmFZ—F3+2): (mF2 R+ Z)F1 K2 Fatl

uy(x) = (MF, — F, + 2)7 D(x"B PP R)2) - (mE, — F, + 2) D(x™ 7+ )=

=(mF, - F, +2)(mF, — F, + 2) x™ R,
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By mathematical induction it results

G(Ds1,x")= (1, X", f[(ka —F, +2) Xt g 2,3,...} (19)

k=2
From (19) and the Theorem 3.1, results the following

Theorem 5.3. The numerical recurrence equation (9) with the initial data (a, (0))=(5(k,0))and
(a, (1)) = (5(k,m)), has the solution given by the formula

j=2

(a,(n))= (ﬁ(mﬁ —F.+ 2f+1 5(k,mF, - F, ., +1)J ,N=23,.... (20)
Remark 7. We will verify that the solution (20) satisfy the equation (9). Indeed,
k+1za ak+1 |( )_(k+1)a‘k+l—m(0)=
=(k +l)5(k +1-m o) ms(k,m-1)=a,(2),

k +1 Za a-k+1 i (k +1)ak—m+2(1) =

(k+1)m5(k m+2,m)=m(2m-1)5(k,2m-2)=a,(3),

(k +1) Za Y, (n—1)=(k +1)]1[(ij ~Fr+2f e e (N-1)=

j=2

= (k +1)H(m|:j —F,, +2f n l(mF Fi.+2f 5(k—mF, +F,,,mF,, —F, +1)=
i=2 j=2
= (kK +1)mF, —F,, +2 Flﬁ(ij —F,, 42 P 5k, mE,, —F,, +1)=
j=2
=(mF,,—F,_,+2)(mF,—F, _, +2) ﬁ(ij —F, +2f15(k,mF,,, ~F,,+1)=
j=2

- ﬁ(ij —F, +2f15(k,mF,,, ~F,,+1)=a(n+1).

j=2

5.4 The Sequence G(xD;l,xm)

Let us solve recurrence equation (10) when uo(x) =1=x""and u, (x) =x" =x"*. Using (10)
and (2), we obtain

() = XD (X1 ) = XD ) = e =i
00— Dl 0 ) e o = B
u4(x) — XD(U3(X)J (X)) —mPtF zF F+f FlXD( m(F2+F3)):
=m"?F R XD( )_ RAERERERX™

By mathematical induction it results in

G(xD;l, xm): (1, X", mF"“‘lll[ Flasx™  © n= 2,3,...] : (21)

k=2
Remark 8. Form =1, the recurrence equation (10) with the initial values uo(x):land

ul(x) = X, was considered in [8]. From (21) and the Theorem 3.1, results the following
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Theorem 5.4. The numerical recurrence equation (11) with the initial data (a, (0))=(5(k,0))
and (a,(1))=(5(k,m)), has the solution given by the formula

(a,(n)= [1,1, mFWlﬁ Frois(k,mF,):in=23,.. j . (22)

j=2

Remark 9. We will verify now that the solution (22) presented in the Theorem 5.4 satisfies the
recurrence equation (11). Indeed, for n=1,2, we have successively

kZa (a, .(0)= kza 5(k —i,0)= ka, (1) = k(k,m) = ms(k,m) = &, (2),
> (2)a, )=k a (2B(k ~i,m)= ka,_, 2kmé(k - m,m) = 2m*6(k.2m) -3, (3)
for_k >m, the relatioa being alsotrue, 0=0, fork <mand for n>2,

kZa Ja_.(n-1)= kZmF 1‘ll_IF +i5(i,mF, Ja,_,(n-1)=

j=2

= kmFM‘lH Frorla e (n-1)=

j=2

n n-1
= kmF”ﬂ _lH FanJij an _1H an_Jé‘(k - an ! anil) -
o j=2

n-1
=km™ P 2E R H FjFMH sk,m(F, + R, ))=

j=2

n-1
=km = ?ERT]F ™ s(k,mF,,;) = mF,, ,m" Z‘ZFF1HF =i 5(k,mF,,,) =

n+1
j=2
1
an+2_lﬁ FJ.F”*Hé' k mle) ak(n+1)’

for k > mF,, the relation being true, 0=0, if k <mF, .

5.5 The Sequence G(xD;l,eX).

Let us give form of the solution of the recurrence equation (10), when uo(x) =1, and
u(x)=e* = Pszl(X)ele, with PFz_l(X)= P,(x)=1. In this section P,(x) denotes a polynomial
of degree n.

Using (10) and (2), we obtainu,(x)= xD(eX): xe* = PFrl(x)eFZx, with PF3—1(X)= P,(x)=x
and uy(x)= xD(PFrl(x)e%X): xD(xe?" )= P ,(x)e™, with P, _,(x)=P,(x)=x(2x +1) Fora
fixed natural number n let us assume that

uk(X): PFMfl(X)eFkX’ (23)
for k < n. Then, using (23), (10) and (2), we obtain

uMl(X) - XD(un (X)Jnfl(x)) = XD(PFM—l(X)anX P 1(X)eFMX ) =
R S R e S S B
where

P. (x)=xF..P- ()P ,(x)+D(P- ,(x)P. ,(x))}, n=23,..... (24)
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In conformity with induction axiom, formula (23) is true for every natural number k. The
polynomials PFM_l(X) can be calculated by recurrence from relation (24).

Example. For n=2,3,4, in conformity with (24) we have
P, 71(X) =P (X) = X[F?,PFrl(X)PFZ ,1(X)+ D(F’Frl(X)F)F2 ,1(X))]: 2X2 + X,

P (X) = P,(x) = X[F,P., (x)P-y(x)+ D(P., L, (x)P. ,(x))|=6x* + 95 +2x2,
PFG -1 (X) =P (X) = XI_F5 PF5 -1 (X)PF4 —1(X) + D(PF5 -1 (X)PE, —1(X))J =
=60x" +192x° +185%° +62x* + 6x°.

Remark 10. The solution (23) of the functional recurrence equation (10), in case of the initial
valuesu, (x) =1 ul(x) =e”, is mentioned without proof in [8].

Forn=0,12,..., let us consider the numerical sequence (p, (n)), whose terms are the coefficients
of the polynomial PFM_l(X), when 0<k<F, -1 and are zeros, whenk >F , —1. For
example,

(P (0)=(p(1)=(L00....). (p,(2))=(0100...),
(p.(3)=(01,2,0,0,...), (p,(4)=(0,0,296,0,0,...),
(p,(5))=(0,0,0,6,62,185,192,60,0,0,...)and so on,

From (23), (24) and the Theorem 3.1, results the following
Theorem 5.5. The numerical recurrence relation (11) with the initial data (a, (0))=(s(k,0))and

(ak (1)) = (%) , has the solution given by the formula

(ak<n>>=<pk<n>>*(';nfj, =23, @)

6. DISCUSSIONS AND CONCLUSIONS

Gould’s article has opened a new path in the field of the recurrence equations and the present
article is trying to revive this topic. It is very interesting that all the Gould equations have
solutions which express themselves relative to the Fibonacci numbers. Finding a Gould sequence
of functions that are not expressed relative to Fibonacci numbers remains an open problem.

By solving the Gould functional recurrence equations the solutions are also obtained for the
associate numerical recurrence relations. In addition, we tested if the obtained solutions satisfy
indeed these numerical recurrence relations. These tests are also interesting for algebraic work
with Fibonacci’s numbers.

Besides the classical functional recurrence equations, as those verified by the special functions, it
is important to find new equations of this type as well as some methods of solving them. Such
equations can be obtained through the combination of the classical equations. So, the Author has
considered functional recurrence equations of algebraic-differential type in the works [1] and [3]
and algebraic-integral in the work [5]. In order to solve such equations it could be useful the
hybrid Laplace transform, introduced by V. Prepelita, [9], obtained through the combination
between the usual Laplace transform and the Z-transform.

Another important issue is the application of these equations to the solution various problems.
The Author has applied the recurrent equations to the combinatory theory in the papers [2] and [4]
and to the probability in the paper [6].
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