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Abstract: For the purpose of simultaneous market consistent valuation of insurance liabilities and/or 

asset prices from financial markets, an alternative to the Black-Scholes-Vasicek deflator is derived. It is 

based on a simple multivariate exponential variance-gamma process associated to a multivariate Lévy 

process, whose components are drifted Brownian motions time changed by a common independent gamma 

subordinator. The logarithm of the multivariate variance-gamma deflator is linear in the variance-gamma 

components. The practicability of the state-price deflator approach is demonstrated by determining the 

price of the Margrabe exchange option with a bivariate exponential variance-gamma real-world or 

deflated price process. Applications to both Insurance and Finance are mentioned. In a specialized 

bivariate exponential variance-Erlang model, the formulas simplify to analytical closed-form expressions. 

Keywords: Black-Scholes model, variance-gamma process, state-price deflator, market price of risk. 

 

1. INTRODUCTION 

It has long been observed that insurance liability data and financial returns exhibit non-zero 

skewness, kurtosis and heavy tails, which cannot be captured by a Gaussian process. A typical 

example is the Black-Scholes-Merton lognormal model used in option pricing. Modern Actuarial 
Science and Finance is more and more focusing on alternative stochastic processes that enable the 

modeling of non-Gaussian characteristics. However, the construction of multivariate non-

Gaussian processes for the simultaneous modeling of real-world insurance liabilities and/or asset 
prices from financial markets is a complex topic, which seldom leads to simple analytical 

formulas. Moreover, for market consistent valuation one needs to deflate these processes with so-

called state price deflators or use an equivalent martingale measure for deflated price processes as 

argued in the Remarks 4.1. Though general frameworks for deriving state-price deflators exist 
(e.g. [1], [2]), there are not many papers, which propose explicit expressions for them and their 

corresponding distribution functions. 

The goal of our contribution is two-fold. First, we propose an alternative to the multivariate 
Black-Scholes-Vasicek (BSV) deflator introduced in [3] (see also [4]). For the interested reader 

we remark that the article [5] contains an extension of the Black-Scholes deflator to a more 

general version with interest rates as additional source of randomness. From a mathematical 
viewpoint, it is natural to investigate other generalizations, namely the consideration of alternative 

asset price processes for use in incomplete financial markets. Indeed, let us assume that asset 

prices admit no arbitrage. Then, there exists a unique state-price deflator if, and only if, the 

market is complete. Otherwise, if the market is incomplete, several state-price deflators exist and 
pricing is not uniquely defined. Therefore, the study of state-price deflators is motivated by one of 
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the main problems of Modern Finance, which consists to understand the pricing of arbitrary 

portfolios in incomplete markets. 

A valuable and popular competitor to the ubiquitous multivariate exponential Gaussian process is 
the multivariate exponential variance-gamma process presented in Section 2. It is obtained from a 

multivariate Lévy process, whose components are drifted Brownian motions time changed by a 

common independent gamma subordinator. This process has been previously considered in [6] 
and [7]. For a better understanding of the state-price deflator approach, we recall briefly in 

Section 3 the construction of the BSV deflator. Proceeding similarly, the logarithm of the 

multivariate variance-gamma deflator is assumed to be linear in the variance-gamma components 
and its coefficients are explicitly determined in Theorem 4.2. 

As second goal, the practicability of the present state-price deflator approach is demonstrated by 

pricing the Margrabe exchange option with a bivariate exponential variance-gamma real-world or 

deflated price process. Theorem 5.1 displays Margrabe formulas for the bivariate exponential 
variance-gamma real-world price process. Analytical closed-form expressions are obtained for the 

bivariate exponential variance-Erlang special case. Based on the VG deflator, we derive in 

Theorem 6.1 Margrabe formulas for the corresponding deflated price processes. Example 6.1 
illustrates by comparing Margrabe option prices in the bivariate Black-Scholes model and the 

bivariate variance-Erlang model. Section 7 is devoted to further discussion and conclusions. 

Remaining technicalities are proved in Appendix 1 and 2. Statistical estimation of the multivariate 

variance-gamma model and an application to stock market indices are presented in [8]. 

2. A SIMPLE MULTIVARIATE VARIANCE-GAMMA PROCESS 

In its original representation, the univariate VG process is defined as a drifted Brownian motion 

time changed by an independent gamma process. Viewed from the initial time 0 it is defined by 

,0,  tWGX
tGtt               (2.1) 

where  tW   is a standard Wiener process and the independent subordinator (i.e. an increasing, 

positive Lévy process)   ),(~ 11   tGt   is a gamma process with unit mean rate and variance 

rate   . Since  tX   is a Lévy process, the dynamics of the VG process is determined by its 

distribution at unit time. In fact, the random variable  ),,(~: 1 VGXX t   follows a three 

parameter distribution with cumulant generating function (cgf) 

   ,0,),1ln(])exp([ln)( 22

2
11 uuuXEuCX .       (2.2) 

One notes that the cgf is only defined over the open interval 

122122 )2)((2)2)((2    u .         (2.3) 

The formula (2.2) is obtained from the cgf of the gamma random variable  )/1,/1(~: 1  tGG   

by conditioning using that  ),(~ 2 GGNGX     is normally distributed. Since the distribution 

of  ),,( VG   is infinitely divisible, the VG process has independent and stationary increments, 

which also follow a VG distribution, namely 

.0),/,,(~ tstttVGXX sst              (2.4) 

The symmetric case  0   is used in the original model by [9] and [10]. The VG process has 

been studied at many places (e.g. [11]-[14]). It is a special case of the bilateral gamma process 

and other tempered stable processes considered in many recent papers (e.g. [15]-[19]). 

Several multivariate versions of the VG process have been considered so far. Madan and Seneta 
[9] first introduced a multivariate symmetric VG process by subordinating a multivariate 

Brownian motion without drift by a common gamma process. The asymmetric version of this 
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model has been developed in Cont and Tankov [6] and Luciano and Schoutens [7]. Generalizing 

(2.1) these authors consider multivariate Lévy processes with VG components of the type 

,,...,2,1,
)()( nkWGX

k

Gktk
k

t
t

             (2.5) 

where the  )(k
tW ’s  are correlated standard Wiener processes such that  dtdWdWE ij

j
t

i
t ][ )()( . 

More complex multivariate VG models have also been considered (e.g. [20]-[24]). Despite all its 

shortcomings, the use of the model (2.5) is justified theoretically by looking at the variance of its 

VG margins  ),,(~: )(
1

)(  kk
k

t
k VGXX    at unit time, namely 

22)( ][ kk
kXVar   .              (2.6) 

Each variance decomposes into an idiosyncratic component 2
k , that is attributed to the Brownian 

motion, and an exogenous component 2
k  , that is due to the gamma distributed time change of 

the Brownian motion. The parameters  k   govern the exposures of the margins to the global 

market uncertainty measured by the common parameter  . Similarly, one notes that the skewness 

and kurtosis are also affected by the single marginal settings and the common parameter  . On 

the other hand, the statistical moment method developed in [8] and its successful application to 
real-world data justifies its use in practical work. To fix ideas, and for the sake of simplicity, the 

first focus is therefore on the model (2.5). The joint cgf of this multivariate process can be 

expressed in closed-form. 

Proposition 2.1 (cgf of the multivariate VG process) The joint cgf of the multivariate VG process  

)/,,(~)...,,( )()2()1( tttVGXXXX n
tttt     with parameters  n ,...,, 21 ,  jiij  , is 

determined by 

),...,,()},(1ln{)( 212
11

n
TT

X uuuuuuutuC
t

   .             (2.7) 

Proof Since the conditional margins are normally distributed as  ),,(~ 2)(
tktkt

k
t GGNGX   one 

obtains the representation (2.7) from the following calculation 

)].([expEln]])exp([E[Eln])exp([ln)(
2
1

GG tt t
T

t
T

tt
T

t
T

X uGuuGGXuXuEuC
t

   ◊ 

Remarks 2.1 The random vector at unit time  ),...,,( )()2()1( nXXXX    of the special case  1   

has a so-called multivariate asymmetric Laplace distribution, denoted  ),(~ ALX , that has 

been extensively studied in the monograph [26] (see also [27]). The parameter estimation of the 

shifted version  ),...,(),,,(~ 1 nALX   , has been discussed in [28] and [25]. The 

method is extended in [8] to the statistical estimation of the shifted variance-gamma 

model ),,(  VG . 

3. THE BLACK-SCHOLES-VASICEK DEFLATOR 

Recall the Black-Scholes-Vasicek (BSV) deflator introduced in [3]. Consider a multiple risk 

economy with  1n   risky assets, whose real-world prices follow lognormal distributions. Given 

the current prices of these risky assets at initial time 0 we assume that the future prices at time  

0t   are described by exponential Brownian motions of the type 

nkWvtmSS k
t

k
tk

k
t

kk
t ,...,2,1),)exp(( )()(2

2
1)()(

0
)(   ,              (3.1) 

where the  )(k
tW ’s  are correlated standard Wiener processes such that  dtdWdWE ij

j
t

i
t ][ )()( . 

We assume that the correlation matrix  )( ij   is positive semi-definite with non-vanishing 

determinant. The quantities  )(k
tm   and  )(k

tv   are interpreted as mean and standard deviation per 
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time unit of the k -th asset logarithmic return  )(k
tr   over the interval  t,0 , and  k   is a constant 

volatility parameter. The representation (3.1) includes two popular asset pricing models: 

Black-Scholes model: 

)()( k
tkk

k
t dWdtdr     with  k

k
tm )( ,  .)(

k
k

tv         

 

Vasicek (Ornstein-Uhlenbeck) model: 

)()()( )( k
tk

k
tkk

k
t dWdtrbadr    with  

t

eb
m

ta
kk

t

k )1()(



 ,  .

2

1
2

)(

ta

e
v

k

ta

k
k

t

k


   

The economic model contains also a risk-free asset, which is assumed (for simplicity) to 

accumulate at a constant rate  r   per time unit. The BSV deflator of dimension  n   has the same 

form as the price processes in (3.1), i.e. 

,0),exp(  tWtD t

T

ttt                 (3.2) 

for some time dependent parametric function  t   and vectors  ,)...,,( ,2,1,
T

ntttt    

)...,,( )()2()1( n
tttt WWWW  . To define a state-price deflator the stochastic processes (3.1) and (3.2) 

must satisfy the martingale conditions 

,,...,2,1,0,][,][
)(

0
)( nktSSDEeDE

kk
tt

rt
t             (3.3) 

where  ][E   denotes conditional expectation with respect to the information at initial time 0. 

Theorem 3.1 (BSV deflator of dimension n ) Given is a financial market with a risk-free asset 

with constant rate of return  r   and  1n   risky assets that have log-normal real-world prices 

(3.1). Assume a non-singular positive semi-definite correlation matrix )( ij . Then, the BSV 

deflator (3.2) is determined by 

,0),exp(  tWtD t

T

ttt    with              (3.4) 

.,...,2,1),][(

,)...,,(,,)(

2)(2

2
1)()(

,

,2,1,
1

2
1

1

nkvrmv

rCr

k
tk

k
t

k
tkt

T
nttttttt

T

ttWt t



 






       (3.5) 

The quantity  kt ,   is called market price of the k -th risky asset at time t . 

Proof The martingale conditions (3.3) are equivalent with the system of linear equations 

0
2
1  t

T

tt r    and  tt    (see [3], proof of Proposition 2).  ◊ 

4. A STATE-PRICE DEFLATOR FOR THE MULTIVARIATE EXPONENTIAL VG PROCESS 

We begin with the construction of the univariate VG deflator. Consider the following asset 

pricing model. Given the current price of a risky asset at time 0, its future price at time  0t   is 

described by an exponential VG process 

,),)exp((0 tGtttt WGXXtSS              (4.1) 

where     represents the mean logarithmic rate of return of the risky asset per time unit and 

0))(1ln()1( 2

2
11    XC .           (4.2) 

To obtain (4.2) one uses the defining relationship )exp(][ 0 tSSE t    and the expression (2.7) for 

the univariate cgf. The VG deflator has the same form as the price process in (4.1). For some 

parameters   ,   (to be determined) one sets 
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.0),exp(  tXtD tt               (4.3) 

Now, a simple cgf calculation shows that the state-price deflator martingale conditions 

,0,][,][ 0   tSSDEeDE tt
rt

t             (4.4) 

are equivalent with the system of two non-linear equations in the three unknowns    ,, : 

.0))1()1(1ln(

,0)1ln(

22

2
11

22

2
11











 r
          (4.5) 

Inserting the first equation into the second one yields the necessary relationship 

.0)})1()1(1ln()1{ln( 22

2
122

2
11    r                     (4.6) 

As the system (4.5) has one degree of freedom, the unknown     can be chosen arbitrarily, say 

r  ,               (4.7) 

which is interpreted as the (time-independent) VG market price of the risky asset. With the 

restriction (4.2) on the VG parameters this value is always positive. Inserted into (4.6) and using 

(4.2) shows that the parameter     is determined by the two alternate expressions 

)).exp(1(12

2
12                (4.8) 

In particular, comparing the first and third term in (4.8) shows that the parameter     is a simple 

exponential transform of the market price, which is equivalent to the logarithmic relationship 

).1ln( 21   r                (4.9) 

With the Mercator series for the logarithm, one sees that the VG market price of risk is given by 

,...)()( 2

2
1222

2
12

1

211  






j

j

j
r       (4.10) 

where the last equality in the first order approximation follows from (4.8). Summarizing and 

rearranging the above one obtains the following VG deflator representation. 

Theorem 4.1 (univariate VG deflator) Given is a risk-free asset with constant return  r   and a 

risky asset with real-world price (4.1). Then, the VG deflator (4.3) is determined by 

,0),,(~),)(exp( 112

2
1   ttGWGtD tGtt t

   with        (4.11) 

.),)1(1ln()( 2

2
122

2
11   rCr X       (4.12) 

Next, consider  2n   risky assets. Given the current prices of these risky assets at initial time 0 

their future prices at time  0t   are described by exponential VG processes of the type 

nkXtSS k
tkk

kk
t ,...,2,1),)exp(( )()(

0
)(   ,             (4.13) 

where  k   represents the mean logarithmic rate of return of the k -th risky asset per time unit, 

the random vector process  ),..,,.( )()2()1( n
tttt XXXX    follows a simple multivariate VG process 

with cgf (2.7), and similarly to (4.2) one has 

.0))(1ln( 2

2
11  

kkk            (4.14) 

The VG deflator of dimension  n   has the same form as the price processes in (4.13). For some 

parameter     and vector  ),...,,( 21 n   (both to be determined) one sets 
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.0),exp(  tXtD t
T

t             (4.15) 

In this situation, the martingale conditions, which define the state-price deflator, are equivalent 

with the non-linear system of   1n   equations in the  12 n   unknowns  kk  ,,  (use the 

explicit form of the cgf (2.7)): 

,,...,2,1,0)}(1ln{

,0)}(1ln{

)()(

2
1)(1

2
11

nk

r

kTkkT
kk

TT












          (4.16) 

with the vector notation  nkjj
k
j

k
j

k
n

kkk ,...,2,1,,),,...,,( )()()(
2

)(
1

)(   . As the system 

(4.16) has  n   degrees of freedom, the unknowns  k   can be chosen arbitrarily. A convenient 

appropriate choice, which leads to a simple solution of the system (4.16), consists to set 

,rkk                    (4.17) 

which is interpreted as the (time-independent) VG market price of the k -th risky asset. Now, 

inserting the first equation of (4.16) into the second ones taking into account (4.17) yields 

.,...,2,1),(1)(1 )()(

2
1)(

2
1 nkkTkkTTT         (4.18) 

A straightforward calculation shows that the components of the parameter vector     are 

determined by the two alternate expressions (use (4.14) for the second one) 

,,...,2,1,,))exp(1( 2122

2
12 nk

kj k

j

kjkkkkkkkkkk 







        (4.19) 

which generalize the relation (4.8). In particular, comparing the first and third term in (4.19) 

shows that the parameters  k   are simple exponential transforms of the market prices of risk, 

which are equivalent to the logarithmic relationships 

.,...,2,1),)(1ln( 21 nkkkkk             (4.20) 

Similarly to (4.10) one obtains the series expansions and the first order approximations for the VG 

market prices of the risky assets 

,)(

...])([)(])([

2

2
12

22

2
12

1

211

kkkkk

kkkkkk
j

j
kkkjk







 






      (4.21) 

where the last equality follows from (4.19). Summarizing and rearranging the above one obtains 

the following multivariate VG deflator representation. 

Theorem 4.2 (VG deflator of dimension n ) Given are  2n   risky assets with real-world prices 

(4.13), where the random vector process  ),...,,( )()2()1( n
tttt XXXX    follows a multivariate VG 

process. Then, the VG deflator (4.15) is determined by 

,0),exp( )(

1




tXtD k
t

n

k
kt     with         (4.22) 

.,...,2,1,,)(),( 2

2
12

1
nkCr

kj k

j

kjkkkkkkX t



 


      (4.23) 

Remarks 4.1 It is instructive to note that (3.2) and (4.15) correspond to an “Esscher transformed 

measure” that has long been used in option pricing (e.g. [29]). Moreover, an important connection 
with the standard no-arbitrage framework of Mathematical Finance must be mentioned (e.g. [30], 

Section 2.5, and [31], Chap. 2). By the Fundamental Theorem of Asset Pricing, the assumption of 

no-arbitrage (weak form of the efficient market hypothesis) is equivalent with the existence of an 
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equivalent martingale measure for deflated price processes. In complete markets, the equivalent 

martingale measure is unique, perfect replication of contingent claims holds, and straightforward 

pricing applies. In incomplete markets, an economic model is required to decide upon which 
equivalent martingale measure is appropriate. Now, let  P   denotes the real-world measure and  

*P   an equivalent martingale measure. Then, one can either work under P , where the price 

processes are deflated with a state-price deflator. Alternatively, one can work under  *P   by 
discounting the price processes with the bank account numeraire. Working with financial 

instruments only, one often works under *P . But, if additionally insurance liabilities are 
considered, one works under  P  (see [30], Remark 2.13). A non-trivial example is pricing of the 

“guaranteed maximum inflation death benefit (GMIDB) option” (equation (5.4) in [4]). In the 
present paper, we demonstrate the practicability of the state-price deflator approach for 

exponential variance-gamma price processes of Margrabe type used in insurance and financial 

markets. In insurance, the Margrabe option has been discussed by [32], [33], [34], Sections V.4 to 
V.6, [30], Section 4. On the other hand, [8] offers an alternative approach to calibration based on 

a novel multivariate statistical moment method that uses besides means and covariances also the 

coskewness and cokurtosis tensors. A real-world comparison of the exponential variance-gamma 

model with the ubiquitous Black-Scholes model for pricing the Margrabe option is also made. 

5. MARGRABE FORMULA FOR THE REAL-WORLD PRICE PROCESS 

Given is the shifted version ),...,,(, 21 ntXt   , of the Lévy process induced by the unit 

time shifted multivariate VG random vector  ),,,(~   VGX . We assume that future 

values of financial entities at time  0t   are described by exponential VG processes of the form 

nkXtS k
tk

k
t ,..,2,.1),exp( )()(   .                 (5.1) 

This general framework enables simultaneous modelling of real-world insurance liabilities and/or 
asset prices from financial markets. For market consistent valuation one needs to deflate them 

with so-called state price deflators, as explained in the Remarks 4.1, which will be done in the 

next Sections. In both settings we derive integral and closed-form formulas for the two-

dimensional Margrabe exchange option, here of the real-world type 

0],)[( )2()1(   tSSEM tt
R
t .             (5.2) 

Therefore, the bivariate case 2n   in (5.1) is of interest and for this we set 12  . For 

simplicity and without loss of generality, it suffices to discuss the unit time case 1t . By abuse 

of notation, the time index is removed from any stochastic process in the following. Conditioning 

on the common gamma subordinator, one can write 

.),(/)()(],)[()(

,)()(])[(

11)2()1(

0

)2()1(












  wR

RR

ewwfwGSSEwM

dwwfwMSSEM
            (5.3) 

As usual  )(x   denotes the standard normal distribution,  )(1)( xx    is the survival 

function, and  )(')( xx    is the density. The bivariate standard normal density is denoted by 

  22

)1(2

1

)1(2

1
2 2exp);,( 22

yxyxyx 





. 

By definition (2.5) one obtains 

  










dxdyyxeewM

ywwxwwR );,()()( 2
222111 

.         (5.4) 
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The expression in the bracket of (5.4) is non-negative provided )(yxx   

with yw
w

yx
1

2

1

12

1

12 )(
)(


















 . Now, it is possible to separate the double integral as 






dyywyJwM RR )(),()(  , because 22
2 1/)1/)(()();,(   yxyyx . With this 

the inner integral reads 

 




)(

22 )1/)((}{)1/1(),( 222111

yx

ywwxwwR dxyxeewyJ  
.            (5.5) 

A straightforward application of Lemma A1.1 in the Appendix 1 yields 

)()1(),(
2

222

2

2
1

2

2

1
111

1

)(

1
2

1

)()1(



















yxyywwyxywywwR ewewyJ . 

Taking into account the above definition of the auxiliary function )(yx , one rewrites the 

arguments inside the normal distribution functions as 

,,1
22 1

)(

1
2

1

)(
cybcyaw

yxyyxy

















  with 

2
1

21

2
1

2121

2
1

21
2
1

2
21

11

)(

1

))1((
,,
























 cba

w

w

w

w
. 

Furthermore, one notes that 

)()(),()( 21

2
22

1

2

2
1

2

2

1

1 wyeyewyeye
wywwyw 


 . 

Now, using twice the Lemma A1.2 of the Appendix 1 one obtains 

)()()(
2

2

2
22

1
22

2

1

2
12

1
11

1

)(

1

)(

c

wcbw

c

wcawR eewM










. 

An algebraic calculation based on the expressions for the coefficients  cba ,,   yields further 

.,2,1,

),()()(

2
2

2
121

22

)()(
21

2
221

2
22

1
2221

2
121

2
12

1
11
























k

wewewM

kk

w

w

w

wR

            (5.6) 

We are ready for the following result. 

Theorem 5.1 (Margrabe formula for the real-world exponential shifted bivariate VG process) 

Given is the bivariate process at unit time 2,1),exp( )()(  kXS k
k

k  , with 

),,,(~   VGX . With 1
12,   , ,,2,1, 2

2
2
121

22   kkk  one has 

.
)(

,2,1,
)1(

),(

,)/()(/1),,,(

),,,,(),,,(])[(

21
21

212

2
11

0

1

2211
)2()1( 21
























 











ckba

dzzczbeezcba

cbaecbaeSSEM

k
k

kkkk

azz

R

            (5.7) 

Proof  It remains to insert (5.6) into (5.3) and make the change of variables  wz   .  ◊ 

Remark 5.1 One observes that the   -function in (5.7) is related to the one stated in [26], p.296 
(European risk-neutral call-option price for an exponential VG price process). 

A particular instance, for which the formula (5.7) simplifies considerably, is the special 

case 0c , that is 21   , which is analyzed into more details. In this situation, the  -function 
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simplifies to the calculation of the expression (make the change of variables  )1(2/2 axz   

under the assumption 1a ) 

,
)1(2)(

])1(2[2
),0,,(

-























a

b
L

a
ba 




            (5.8) 

with the integral function of normal type 

dxxzxxzL  




0

12 )()(2)(  
 .            (5.9) 

The assumption  1a   in (5.8) means that (5.7) will be finite for  0c   

provided 2,1,1)( 2

2
11   ka kkk  , a condition, which is equivalent with the existence of 

the cgf  )1ln()( kkSG aaC     of a standard gamma random variable with shape parameter     

and scale parameter 1. In case the gamma distributed subordinator  ),(~  tGt    reduces to an 

Erlang distributed subordinator  ),(~ mtmErlangGt    with integer parameter ,...2,1m , the 

integral function (5.9) can be evaluated according to the following closed-form formula (proof in 
Appendix 2): 

,...2,1,)
)1(!2

!)!12(
1(1)!1(2)(

1

1
21

2

2

























 m
dk

k
mdL

m

k
kkd

dm
m .      (5.10) 

6. MARGRABE FORMULA FOR THE DEFLATED PRICE PROCESS 

Consider the Margrabe exchange option for the deflated price process in (5.1) such that 

0],)([ )2()1(   tSSDEM ttt
D
t .            (6.1) 

The state-price deflator is of the form (4.22) with 2n . As in Section 5, we set  12   and 

discuss the unit time case  1t . Conditioning on the common gamma subordinator, one writes 

.),(/)()(],)([)(

,)()(])([

11)2()1(

0

)2()1(












  wD

DD

ewwfwGSSDEwM

dwwfwMSSDEM
            (6.2) 

Similarly to (5.5) it is possible to separate the double integral as  




dyywyJwM DD )(),()(    

with the inner integral 

.
)(

)(

,)1/)((1/1),(

1

2

1

12

1

12

)(

2

))(1()(

)())(1(

2

2221112

2221111

yw
w

yx

dxyx
e

e
wyJ

yx ywwxww

ywwxww

D


























 























       (6.3) 

A straightforward application of Lemma A1.1 in the Appendix 1 yields 

).1(

))1(1(),(

11
2

1

)()1())(1(

11
2

1

)()1)(1()1()()1(

2

2
1

2
1

2

2

1
11222112

2

2
1

2
1

2

2

1
11222111

we

wewyJ

yxywywywww

yxywywywwwD

























 

Taking into account the definition of the auxiliary function )(yx , one rewrites the arguments 

inside the normal distribution functions as 
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,1,)1(1 11
2

1

)(

11
2

1

)(
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cybwcyaw

yxyyxy


















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.,,
2

1
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2
1
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2
11

2
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2
1

21
2
11

2
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11

))1((

1

))1)(1((
























 cba

w

w

w

w  

Furthermore, one notes that 

     

      ).)1(()(

),)1(()(

1122
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2211
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2
11222

1
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2
22112

1

2211

wyeye

wyeye

wyw
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
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



 

Now, using twice the Lemma A1.2 of the Appendix 1 one obtains 

   
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2
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1
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2
2
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2
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2
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2
1

2
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1
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1
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1
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c

wcbw

c

wcawD

e

ewM


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











       (6.4) 

Repeated use of the following relationships for  21,   in (3.23) is made: 

.2,1,21
2

2
12  kkkkk              (6.5) 

An algebraic calculation based on the expressions for the coefficients  cba ,,   yields 
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         (6.6) 

Furthermore, the coefficients of  w   in the curly brackets of (6.4) are respectively equal to 

.)1(,)1(
2
1

21122
1

2121   TTTT aa        (6.7) 

We are ready for the following result. 

Theorem 6.1 (Margrabe formula for the deflated exponential shifted bivariate VG process) 

Given is the bivariate process at unit time  2,1),exp( )()(  kXS k
k

k  , with 

),,,(~   VGX , the bivariate deflator )exp( )2(
2

)1(
1 XXD    of Theorem 4.2,  

and set 1
12,   , .,2,1, 2

2
2
121

22   kkk  Then one has 
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

ckb
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k
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azz

D

       (6.8) 

Proof  It remains to insert (6.4) into (6.2), make the necessary identifications based on (6.6) and 

(6.7), and perform the change of variables  wz   .  ◊ 

In the special case 0c , that is  21   , and if  2,1,1  kak , the expression (6.8) can be 

evaluated using the formula (5.8) for the   -function. Specializing further to a shifted simple 

bivariate variance-Erlang price process with integer parameter ,...2,1 m , one obtains via 

(5.10) closed-form Margrabe formulas. 

Example 6.1 Bivariate Black-Scholes versus bivariate variance-Erlang models 
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It is interesting to compare the classical closed-form formula by Margrabe [35] with closed-form 

variants obtained from (6.8). In the bivariate Black-Scholes model the future prices at unit time  

1t   are described by the equations (3.1), that is 

,2,1),exp( 2

2
1)(

0
)(

1  kZSS kkkk
kk             (6.9) 

where the  kZ ’s  are correlated standard normal with correlation coefficient BS . The means and 

variance-covariance characteristics of (6.9) are given by 

.2,1,},1){exp(],[

),exp(][
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)(
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)(
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
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jiEESSCovV

SSEE
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i
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i
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For illustration set 2,1,0,1)(
0  kS k

k  . Applying the Black-Scholes deflator from Theorem 

3.1 one obtains Margrabe’s classical exchange option price at initial time  0t   (e.g. [3], 

Theorem 2) 

21
2
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2
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11 2,1)(2])([  BSBS SSDEM   .     (6.11) 

In the bivariate variance-Erlang model (with closed-form exchange option price) the future prices 

at unit time  1t   are described by equations of the form (5.1) such that 

2,1,),exp()(
1  kZWWXXS kkkkk

k  ,        (6.12) 

with  )(~ mErlangW , and the  kZ ’s  are correlated standard normal with correlation coefficient  

VE . The corresponding means and variance-covariance characteristics are 
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It is natural to compare both models under equal first and second order moments. In case 

2,1,0,1)(
0  kS k

k  , the equations of equal mean and variance-covariance, which consists to 

equate (6.10) and (6.13), result into the following parameter constraints 
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Calculation of the deflated exchange option price (6.8) requires the parameters of the VG deflator 

in (4.23), which are herewith determined by 

2,1,),( 21
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2
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),( 21
 kCr VE

kkkkXX  .       (6.15) 

For the bivariate symmetric Laplace special case  1m   with the simple parameter choice 

  1212 ,0,0VE , one obtains        (6.16) 
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The remaining parameters in (6.8) take the values 


2

2
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A straightforward calculation of (6.8) using (5.8) and (5.10) for  1m   yields the symmetric 

Laplace Margrabe option price 
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Numerically, if 1.0,0  r , then  0.14249 , and  5.67991%BSM   compares with  

4.975%SLM . The follow-up [8] provides some comparisons based on stock market indices. 

7. RESULTS, FURTHER DISCUSSION AND CONCLUSIONS 

First, it is useful to summarize what has been accomplished. The starting point is the wish to 

enrich multidimensional option pricing with some multivariate non-Gaussian models able to 
capture skewness, kurtosis and other stylized facts from observed insurance liability and financial 

market data. It turns out that not much is known in this respect, especially when it comes to 

market consistent valuation for use in the Basel III and Solvency II projects. To achieve this, one 

can either work with an equivalent martingale measure for deflated price processes or use a state-
price deflator to discount insurance liabilities and asset prices under the real-world probability 

measure. The second possible path has been followed. Since a multivariate exponential variance-

gamma process is one of the popular alternative choices to the multivariate exponential Gaussian 
process, the construction of an explicit state-price deflator for it is a main first goal, which has 

been achieved in Theorem 4.1. An application to bivariate option pricing has been undertaken. 

Theorem 6.1, which displays a Margrabe formula for the deflated exponential shifted bivariate 

variance-gamma process, is a main new contribution. Moreover, analytical closed-form 
expressions for the bivariate exponential variance-Erlang special case are also obtained. 

Second, it is important to remark that our simple model is easy to work with but has some serious 

drawbacks. For example, linear correlation cannot be fitted once the margins are fixed. Moreover, 

the choice of a single parameter     causes great difficulty in the joint calibration to option prices 

on the margins, as observed in [21]. To overcome these difficulties there are at least two 
possibilities at disposal. One can either apply an alternative estimation method, which does not 

share some of the inconveniences (main purpose of the follow-up [8]), or consider more complex 

multivariate variance-gamma models. Results on the latter proposal will be presented elsewhere. 

APPENDIX 1:  Integral identities of normal type 

The crucial identities used in the derivation of Theorem 5.1 are stated and proved separately. 

Lemma A1.1 For any real numbers  ,,cb   and  0   one has the identity 
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Proof  Consider first the case  1,0   . From the relation  )()(
2
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Using this one obtains by a change of variables 
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Lemma A1.2 For any real numbers  ,,ba   and  0   one has the identity 






 










221

1 )/)(()(



b

ba
dxxbxa .        (A1.2) 

Proof  Consider the functions    
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APPENDIX 2:  Closed-form evaluation of an integral function of normal type 

In case  ,...2,1 m , is an integer parameter, the evaluation of the integral (5.9) is done through 

partial integration by finding first a primitive integral for  )(12 xx m    of the form 

)()()(12 xxPdxxx m
m  
 ,          (A2.1) 

where  )(xPm   is a polynomial of degree  )1(2 m   with integer coefficients. The following 

recursive relationship determines this polynomial completely. 

Lemma A2.1 The polynomial  )(xPm   defined by (A2.1) satisfies the following recursion 

1)(,...,3,2),()1(2)( 11
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m .      (A2.2) 

Proof   First of all, since  )()(' xxx     it is immediate that  )(x   is a primitive integral of 

)(xx , hence  1)(1 xP . For  2m   the recursion is shown by induction. For  2m   one 

proceeds as follows. Let  )(xH k   be the (probabilistic) Hermite polynomial of order  k , 

,...2,1,0k , which satisfies the property  )()()1()()( xxHx k
kk   . In particular, one has 
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This leads to the primitive integral 
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which shows (A2.2) for  2m . The induction step from  m   to  1m   is shown by performing 

two successive partial integrations as follows: 
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which shows the recursion for the index  1m , namely  ).(2)( )2
1 xmPxxP m

m
m    ◊ 

A successive application of the recursion (A2.2) yields the following explicit formula. 

Lemma A2.2 The polynomial  )(xPm   satisfies the explicit representation 
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Proof  From Lemma A2.1 one knows that  )(xPm   is a polynomial in even powers of  x , say  






1

0

2
,)(

m

k

k
kmm xaxP . With (A2.2) one obtains the recursive relationship 

,...4,3,2,1,2,...,1,0,)1(2 1,,1,   mamkama mmkmkm , 
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which implies that  ,...3,2,1,1,...,1,0,
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Now, let us derive the formula (5.10). A partial integration of (5.9) using (A2.1) yields 
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Using (A2.3) it follows that 
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Next, one observes that the function   xx 0),(2 , is the probability density of the half-

normal distribution with moment generating function (e.g. [36], equation (9)) 

)()exp(2)( 2

2
1 tttm  . 

Through induction one shows the recursive relation 
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which shows that the moments  km   of the half-normal distribution satisfy the recursion  
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The formula (5.10) is shown.  ◊ 
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