Diversity of Zooplanktons and Their Seasonal Variation of Density in Gulabsagar Water Body, Jodhpur (Rajasthan) During 2014-2016

1Dr. Naresh Vyas, 2Ms. Beena Chouhan

1Professor, Department of Zoology, JaiNarain Vyas University, Jodhpur
2Research Scholar, Department of Zoology, Jai Narain Vyas University, Jodhpur

Abstract: The present paper deals with the study of diversity of Zooplanktons and their seasonal variation of density in the GulabSagar water body, Jodhpur. Samples were collected for a period of two years (May 2014 - April 2016) at each month and collected samples were evaluated for the study of Zooplankton. In the present study the zooplanktons consisted of Rotifers, Ostracods, Cladocerans and Copepoda. The quantitative estimation shows that in both the years of study (2014 – 2015 and 2015 – 16) the Rotiferans dominated in the population while other were encountered with moderate number. The study also reveals that during seasonal variation the Rotiferans dominated mainly in the winter season in both the years of study which can be due to favourable temperature and availability of abundance of food material. In the present study the Zooplanktons were represented by 41 species and consisted of Rotifera (15), Cladocera (21), Copepoda (4) and ostracoda (1). The quantitative relationship among different groups of Zooplanktons during year (2014 – 2015) was Rotifera > Copepoda > Cladocera > Ostracoda. During the year (2015 – 2016) the above relationship was Rotifera > Copepoda > Cladocera > Ostracoda.

Keywords: GulabSagar water lake, Zooplankton, Rotifera, Cladocera, Copepoda, Ostracoda.

1. INTRODUCTION

Biodiversity is a variety of life which includes different genes, species, communities and ecosystems. Rich diversity of organisms in an aquatic ecosystem reflects good water quality and any change in water quality due to the addition of pollutants affects diversity and abundance of organisms. Biological parameters includes collection, preservation, identification, qualitative and quantitative enumeration of Zooplankton.

Zooplankton are animals suspended in water with limited of locomotion. They graze heavily on algae, bacteria and suspended detritus. The Zooplanktons are microscopic free living organisms which occupy a central position between the autotrophs and other heterotrophs and form an important link in aquatic food webs. They constitute an important component of secondary production in aquatic ecosystems and play a vital role in the energy allocation in different trophic levels. The knowledge of their seasonal qualitative and qualitative estimation has been considered essential for proper manipulation of the factors influencing biological productivity of the water body.

2. STUDY AREA

Jodhpur district is situated between 25°05‘08” & 27°03‘09” North latitude and 71°04‘09” & 73°05‘06” East longitude covering geographical area of 22,850 sq km. This district comes under arid zone of the Rajasthan State. Jodhpur district is part of Jodhpur Division. The district is divided into 5 sub-divisions namely Jodhpur, Shergarh, Pipar City, Osian & Phalodi and comprises of 07 tehsils & 09 blocks. Total number of villages in the district is 1157. GulabSagar Lake is located about 6kms from Jodhpur city center near Sardar Market in old city area (23°00‘3 and 30°12’N latitude and 69°03‘9 and 78°00‘E longitude). Measuring 150x90m in size with the capacity of 4.48m cusecs of water. GulabSagar Lake is actually a water storage constructed in 1788 by Gulab Rai, the mistress of Maharaja Vijay Singh. Earlier the place was occupied with another water source called 'Bawri', which was converted into Gulab Sagar. It took around 8 years for completing the construction of Gulab Sagar. The lake gets water through a canal from Bal Samand Lake (Fig.1).
3. **ANALYSIS OF WATER SAMPLE**

Water samples were collected in polythene bottles of two litres capacity once in a month, from the different sites of GulabSagar water body for a period of two years (May 2014 to April 2016). These collected samples were then preserved in Refrigerator and Analysis of water was done. The recorded data was divided into mainly three seasons:

1. Summer season (February to May)
2. Monsoon season (June to September)
3. Winter season (October to January)

4. **MATERIALS AND METHODS**

Zooplankton collection was done by filtering 100 litres of water sample through Plankton net number 25 made up of Nylon bolting silk cloth having small mesh size approximately 64µ at monthly intervals, during the period of investigation. These Zooplankton samples were collected in 50 ml bottle and preserved in 4% formalin.

Quantitatively Zooplanktons were enumerated by Sedgwick Rafter Cell method and results were expressed as:

\[\text{No. of Zooplankton / ltr.} = \left(\frac{A \times 1000}{C} \right) \times \frac{C}{V} \]

Where,

- \(A \) = No. of Zooplankton in 1 ml. of sample.
- \(C \) = Volume of concentrate in ml.
- \(V \) = Volume of sample filter in litre.

5. **RESULT AND DISCUSSION**

In the present study the zooplanktons consisted of Rotifers, Ostracods, Cladocerans and Copepoda. The quantitative estimation shows that in both the years of study (2014 – 15 and 2015 – 16) the Rotiferans dominated in the population while other wereen countered with moderate number. The study also reveals that during seasonal variation the Rotiferans dominated mainly in the winter season in both the years of study which can be due to favourable temperature and availability of abundance of food material. The Ostracoda was dominated during summer in both the years of study. The Cladocerans were found more in winter season. They also play an important role in the benthic dynamics.

In the present study the Copepods were maximum during summer season in both the years of study. In the present study the Zooplanktons were represented by 41 species and consisted of Rotifera (15), Cladocera (21), Copepoda (4) and ostracoda (1). The quantitative relationship among different groups of Zooplanktons during year (2014 – 2015) was Rotifera>Copepoda>Cladocera>Ostracoda. During
Diversity of Zooplanktons and their Seasonal Variation of Density in Gulabsagar Water Body, Jodhpur (Rajasthan) During 2014-2016

the year (2015 – 2016) the above relationship was Rotiferan>Copepoda>Cladocera> Ostracoda. The Rotiferans were represented by Brachionus Calyciflorus, B. diversicornis, B. quadridentatus, B. falcatus, B. caudatus, Platianus patulus, Keratella tropica, Lecane decipience, C. cornuta, L. ohioensis, L. monostyla, Horella brehmi, Asplanchabrightwelli, Trichocerca spp., Testudinellasp.

The Cladocera was represented by Diaphanosomasansari, D. senegal, D. excisum, Ceriodaphnia Cornuta, C. laticaudata, C. quadrugula, C. pulchella, Bosmialongirostris, Moinamicrura, Macrothrixgeoldii, M. laticornis, Chydrorusphaericus, Echiniscatriserialis, E. odiosa, Pluroxus aduncus, Alona rectangula, Alonarectangularichardi, Alonadavidipunctata, Alonella spp., Camptocerus spp., Simeocephalus spp.

The Copepoda was represented by Cyclops spp., Mesocyclops spp., Eucyclops spp. and Diaptomus spp. During the year 2014, Copepoda was recorded with 224 Ind/l that contribute to 32% and during the year 2015 – 2016 with 257 Ind/l that contributed to 33% of the total Zooplankton. In Copepoda among the different species during the year 2014 – 2015 Diaptomus spp. (99 Ind/l) was dominant and the least appearance was shown by Eucyclops spp. and Diaptomus spp. (62 Ind/l), Eucyclops spp. (66 Ind/l) showed their dominance followed by Mesocyclops spp. (63 Ind/l) and the least appearance was shown by Diaptomus spp. (62 Ind/l) and Diaptomus spp. (66 Ind/l), Eucyclops spp. (66 Ind/l) showed their dominance followed by Mesocyclops spp. (63 Ind/l) and Diaptomus spp. (62 Ind/l).

5.1. Relative Abundance

The relative data of Zooplankton were shown in Tables 1, 2, 3, 4 and Graph 1, 2.

The Zooplanktons consisted of Rotifers, Ostracods, Cladocerans and Copepods. Total 730 Ind/l Zooplanktons were recorded during the year 2014 – 2015 and 844 Ind/l in the year 2015 – 2016. In the Rotiferans among the different species during the year 2014 – 2015 Brachionus falcatus (55 Ind/l) dominated, followed by Keratella tropica (43 Ind/l), Asplanchabrightwelli (22 Ind/l) and Horellabrethmi (2 Ind/l).

During the year 2015 – 2016, B. falcatus (101 Ind/l) was dominated, followed by B. calyciflorus (57 Ind/l), B. diversicornis (14 Ind/l), Lecane monostyla (14 Ind/l) and the least appearance was shown by Lecane ohioensis (2 Ind/l) and the least appearance was shown by Eucyclops spp. and Diaptomus spp. (62 Ind/l), Eucyclops spp. (66 Ind/l) showed their dominance followed by Mesocyclops spp. (63 Ind/l) and the least appearance was shown by Diaptomus spp. (62 Ind/l).

During the year 2014 – 2015 the total number of Ostracoda was recorded as 75 Ind/l which contributed 10% where as during the year 2015 – 2016 it was recorded 94 Ind/l contributing 11% of Zooplanktons. During the year 2014 – 2015 Cladocera was recorded as 199 Ind/l contributing 21% and during the year 2015 – 2016 as 209 Ind/l contributing 25%. In Cladocera during the year 2014 – 2015 among different species Moinamicrura (48 Ind/l) has shown its dominance followed by Ceriodaphnia cornuta (38 Ind/l), Alonadavidipunctata (24 Ind/l) and the least appearance was shown by Echiniscadiza (13 Ind/l). During the year 2015 – 2016 again Moinamicrura (43 Ind/l) shown its dominance followed by C. cornuta (39 Ind/l), Diaphanosomasarsenegal (30 Ind/l) and the least appearance was shown by Alonellaspp (1 Ind/l) and Echiniscadiza (1 Ind/l).

During the year 2014 – 2015, Copepoda was recorded with 224 Ind/l that contribute to 32% and during the year 2015 – 2016 with 257 Ind/l that contributed to 33% of the total Zooplankton. In Copepoda among the different species during the year 2014 – 2015 Diaptomus spp. (99 Ind/l) was dominant and the least appearance was shown by Eucyclops spp. (13 Ind/l) and Diaptomus spp. (66 Ind/l). Eucyclops spp. (66 Ind/l) showed their dominance followed by Mesocyclops spp. (63 Ind/l) and Diaptomus spp. (62 Ind/l).

5.2. Seasonal Abundance

The maximum number of Zooplanktons were recorded with 396 Ind/l during the winter season of the year 2014 – 2015 and minimum 93 Ind/l in monsoon during the year 2015 – 2016. During the monsoon season of the year 2014 – 2015, Rotiferans contributed 39%, Ostracoda 19%, Cladocera 10% and Copepoda 32% where as during the year 2015 – 2016, Rotiferans contributed 30%, Ostracoda 23%, Cladocera 14% and Copepoda 33%.

During the winter season of the year 2014 – 2015, Rotiferans contributed 39%, Ostracoda 0%, Cladocera 43% and Copepoda 18% and in the year 2015 – 2016, Rotiferans contributed 40%, Ostracoda 3%, Cladocera 36% and Copepoda 21%. During the summer season of the year 2014 – 2015, Rotiferans contributed 23%, Ostracoda 18%, Cladocera 17% and Copepoda 42% and in the year 2015 – 2016, Rotiferans contributed 28%, Ostracoda 17%, Cladocera 14% and Copepoda 40%. Rotiferans were recorded maximum with 157 Ind/l in the winter season of the year 2014 – 2015 and minimum 36 Ind/l in the monsoon season of the year 2015 – 2016. It contributed maximum to the extent of 53% in the winter, followed by 32% in summer season and 15% in the monsoon season of the year 2014 – 2015. During the year 2015 – 2016, Rotiferans dominated in the winter season by contributing 55% followed by 32% in the summer and 13% in the monsoon. Ostracoda were recorded maximum of 58 Ind/l in the
summer season of the year 2014–2015 and minimum 10 Ind/l in the winter season of the year 2015–2016. Ostracoda was not recorded in the winter season of the year 2014–2015. It contributed maximum to the extent of 77% in the summer season followed by 23% in the monsoon season of the year 2014–2015.

During the year 2015–2016 it dominated with 60% in the summer season followed by 30% in the monsoon season and 10% in the winter season. Cledocera were recorded with maximum of 144 Ind/l in the winter season of the year 2014–2015 and minimum of 10 Ind/l in the monsoon season of the year 2015–2016. It contributed maximum of 69% in the winter season, followed by 26% in the summer season and 5% in the monsoon season of the year 2014–2015. During the year 2015–2016, it was dominated with 69% in the winter season, followed by 22% in the summer season and 9% in the monsoon season.

Copepoda were recorded maximum of 135 Ind/l in the summer season of the year 2014–2015 and minimum of 30 Ind/l in the monsoon season of the same year. It contributed maximum of 60% in the summer season, followed by 26% in the winter season and 14% in the monsoon season. During the year 2015–2016 it was dominated with 51% in the summer season, followed by 33% in the winter season and 16% in the monsoon season.

Table 1. Monthly variation of Zooplankton at GulabSagar water body, Jodhpur during year 2014-2015

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Zooplankton</th>
<th>ROTIFERA</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Family:Brachionidae</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Brachionuscalyciflorus</td>
<td>0 4 0 0 0 2 5 8 0 0 0 19</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Brachionusdiversicornis</td>
<td>0 4 0 0 8 2 0 0 0 5 0 19</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Brachionusquadridentatus</td>
<td>0 2 0 0 1 0 3 0 0 2 1 9</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Brachionuscaudatus</td>
<td>0 1 0 0 0 1 0 0 0 4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Brachionusfalcatus</td>
<td>5 2 0 0 0 0 7 10 7 3 11 10 55</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Plathionuspatulus</td>
<td>0 0 0 0 0 1 0 2 0 0 0 3 6</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Keratellatropica</td>
<td>0 0 0 0 0 5 8 7 4 0 0 10 9 43</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Family:Lecanidae</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Lecaneacipiens</td>
<td>0 0 0 0 3 6 0 0 1 0 0 0 10</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Lecaneacornuta</td>
<td>1 0 0 0 0 4 2 3 0 0 10</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Lecanleonhoensis</td>
<td>0 0 0 0 1 2 0 0 2 0 0 5</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Lecanemonostyla</td>
<td>1 0 0 0 0 2 4 2 1 0 0 10</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Family:Trichocercidae</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Trichocerca spp.</td>
<td>1 1 0 0 0 5 9 0 1 0 0 17</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Family:Asplanchnidae</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Asplanchnabrightwelli</td>
<td>0 1 0 0 0 2 7 0 0 4 5 3 22</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Family:Trochosphaeridae</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Horaellabrehni</td>
<td>0 0 0 0 0 0 2 0 0 0 2</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Family:Testudinellidae</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Testudinella spp.</td>
<td>0 0 0 0 0 1 1 0 0 0 0 2</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>TOTAL</td>
<td>8 15 0 0 21 33 42 33 15 7 33 26 233</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>OSTRACODA</td>
<td>Cypris spp.</td>
<td>12 10 0 0 7 0 0 0 0 15 17 14 75</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>S.NO.</td>
<td>Zooplankton</td>
<td>CLADOCERA</td>
<td>May</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A Family:Sididae</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Diaphanosomasarsi</td>
<td>0 0 0 0 0 1 1 0 2 0 0 0 4</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Diaphanosomaexсisum</td>
<td>0 0 0 0 0 2 1 1 0 0 4</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Diaphanosomasenegal</td>
<td>0 0 0 0 0 0 0 3 1 0 0 4</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>B Family:Daphnidae</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>Ceridaphniacornuta</td>
<td>0 0 0 0 5 10 7 8 5 2 1 0 38</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Ceridaphniaquadringula</td>
<td>0 0 0 0 0 2 4 6 3 1 0 16</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Ceridaphniaiciculata</td>
<td>0 0 0 0 0 0 2 0 0 1 0 3</td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>Ceridaphniapulchella</td>
<td>0 0 0 0 0 0 1 1 1 0 1 4</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Simocephalus spp.</td>
<td>0 0 0 0 0 1 0 2 1 3 0 2 9</td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>Family:Moinidae</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>Moinamicrura</td>
<td>1 0 0 0 0 5 12 15 2 7 4 2 48</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Bosminalongirostris</td>
<td>1 2 0 0 0 2 2 0 1 0 0 8</td>
<td></td>
</tr>
</tbody>
</table>
Diversity of Zooplanktons and their Seasonal Variation of Density in GulabSagar Water Body, Jodhpur (Rajasthan) During 2014-2016

Table 2. Monthly variations of Zooplankton at GulabSagar water body, Jodhpur during year 2015-2016

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Zooplankton</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Family:Brachionidae</td>
<td></td>
<td>ROTIFERA</td>
</tr>
<tr>
<td>1</td>
<td>Brachionus scalaris</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>19</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Brachionus saundersii</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Brachionus squamulatus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Brachionus caudatus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Brachionus fallax</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>19</td>
<td>25</td>
<td>17</td>
<td>12</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>Plathionus pulsatilis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Keratella tropica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>Family:Lecanidae</td>
<td></td>
<td>LECANIDAE</td>
</tr>
<tr>
<td>8</td>
<td>Lecane decipiens</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>Lecane cornuta</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Lecane holensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Lecane monostyla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>Family:Trichocercidae</td>
<td></td>
<td>TRICHOERCIDA</td>
</tr>
<tr>
<td>12</td>
<td>Trichocerca spp.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>Family:Asplanchnidae</td>
<td></td>
<td>ASPLANCHNIDA</td>
</tr>
<tr>
<td>13</td>
<td>Asplanchnaphtheriella</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>Family:Triopspheraida</td>
<td></td>
<td>TRICHOCEPHALIDA</td>
</tr>
<tr>
<td>14</td>
<td>Horaeiabremini</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>Family:Testudinellidae</td>
<td></td>
<td>TESTUDINELLA</td>
</tr>
<tr>
<td>15</td>
<td>Testudinella spp.</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>10</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>54</td>
<td>35</td>
<td>33</td>
<td>33</td>
<td>14</td>
<td>284</td>
</tr>
<tr>
<td>OSTRACODA</td>
<td></td>
<td>OSTRACODA</td>
</tr>
<tr>
<td>1</td>
<td>Cypris spp.</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>94</td>
</tr>
</tbody>
</table>

Table 2.

D	Family:Macrothricidae	11	Macrothrix goeldii	0	0	0	0	2	2	1	2	1	0	0	8
12	Macrothrix laticornis	0	0	0	0	1	1	2	0	0	0	5			
13	Echiniscatriserialis	0	0	0	0	0	1	0	1	0	0	0	2		
14	Echiniscacodiosa	0	0	0	0	0	0	1	0	0	0	0	1		
E	Family:Chydoridae													Chydraidae	
15	Chydrorusphaerica	0	1	0	0	0	0	1	0	0	2	5	2	11	
16	Pluroxus duncus	0	0	0	0	0	0	0	1	0	0	0	1		
17	Alonella spp.	0	0	0	0	0	0	0	0	0	0	0	0		
18	Alonarectangularectangula	0	0	0	0	0	0	1	2	2	0	0	0	5	
19	Alonarectangularis	0	0	0	0	0	0	0	1	0	2	1	4		
20	Alonadavidipunctata	0	0	0	0	0	2	0	2	5	6	7	0	2	24
21	Camptocercus spp.	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL		2	3	0	0	7	24	34	47	33	26	13	10	199	

COPEPODA

22	Mesocyclops spp.	1	5	0	0	2	2	0	0	0	3	2	2	17
23	Eucyclops spp.	1	2	0	0	5	0	0	2	2	2	1	15	
24	Cyclops spp.	18	5	0	0	0	7	2	10	5	0	22	24	93
25	Diaptomus spp.	15	0	0	0	11	8	10	8	5	12	19	11	99
TOTAL		35	12	0	0	18	17	12	18	12	17	45	38	224
Table 3. Total number of Zooplankton at GulabSagar water body, Jodhpur during the year 2014-2015

<table>
<thead>
<tr>
<th>Year 2014-1015</th>
<th>Monthly</th>
<th>Seasonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zooplankton</td>
<td>Rotifer</td>
<td>Ostracoda</td>
</tr>
<tr>
<td>Rotifer</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Caladocera</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Copepoda</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 4. Total number of Zooplankton at GulabSagar water body, Jodhpur during the year 2015-2016

<table>
<thead>
<tr>
<th>Year 2015-2016</th>
<th>Monthly</th>
<th>Seasonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zooplankton</td>
<td>Rotifer</td>
<td>Ostracoda</td>
</tr>
<tr>
<td>Rotifer</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Caladocera</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Copepoda</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>45</td>
</tr>
</tbody>
</table>
Diversity of Zooplanktons and their Seasonal Variation of Density in Gulabsagar Water Body, Jodhpur (Rajasthan) During 2014-2016

Graph 1. Seasonal distribution of Zooplanktons during Monsoon, Winter and Summer Season at GulabSagar water body, Jodhpur
Graph 2. Seasonal distribution of Rotifera, Ostracoda, Cladocera and Copepoda at GulabSagar water body, Jodhpur

REFERENCES

