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1. INTRODUCTION 

Jamming is the intentional transmission of RFI in different wireless network systems. The main 

objective of a jammer is to corrupt radio communication networks, disrupting the receiver and 

preventing it from properly demodulating the received signal; the result is a degraded SoI reception [1]. 

Although jamming attacks can be quickly deployed without using any complicated devices, they are 

hard to detect, mitigate and/or eliminate [3]. Consequently, RFI can be considered as the most 

significant threat to communication networks. Designing a highly accurate detection technique capable 

of dealing with different types of signal jammers is thus an important research avenue [2]. As thoroughly 

discussed in [3], various known jamming signals exist, each requiring different mitigation techniques 

based on its specific characteristics. Classification-based techniques likely constitute the most efficient 

detection approach when it comes to tackling this problem. Another challenge in designing a detection 

technique is the ability to deal with weak jamming signals [3]. Recently, Artificial-Intelligence (AI)-

based methods have been used for jamming detection. One such example is [2], which presents the 

Random Forest classifier (RFC) for jamming detection in a IEEE 802.11 wireless network, and 

compares the RFC performance to other classifiers, including the Decision Tree, Adaptive Boosting 

(AdaBoost), the Support Vector Machine (SVM) and Expectation Maximization (EM). As the results 

illustrate, the Random Forest and SVM slightly outperform other techniques. In [4], besides being used 

to analyze various feature selection techniques, SVM is deployed for GNSS Spoofing Jamming 

Recognition at different SNRs in the 1 to 10 dB range. An Artificial Neural Network (ANN) was 

proposed in [5] for jammer detection in wideband radios. To this end, spectral correlation was used as 

the feature extraction technique. According to the obtained results, the proposed technique performed 

efficiently on SNR values down to -3 dB. In [6], the K-means algorithm is used for jamming attack 
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detection in  a pair of RF communicating vehicles. Moreover, the author presents some new features to 

enhance the accuracy of the classifier. Recently, in a few related works [7-12], MLP with different 

designs are presented to recognize different kinds of jamming attacks and Automatic Modulation 

Classification (AMC) [13, 14] . The focus of this work is not only to classify SoI and different types 

of jamming, but also to develop a jamming predictive model based on MLP to detect new instances 

generated in various channel conditions. In addition, a robust feature selection-based PCA is deployed 

for dimensionality reduction while preserving more informative features. More significantly, a new 

methodology is presented to generate a real-time jamming signal dataset entirely different from what is 

provided in other similar studies. Finally, the performance of the designed MLP is compared with SVM, 

which is a known robust technique for RFI classification in the literature. As the results show, our 

proposed model performs almost similarly to SVM. 

2. JAMMING DETECTION METHODOLOGY 

In the present research, our case study consists in analyzing jamming classification approaches in a real-

time digital video broadcasting scenario based on DVB-S2 standards. To this end, our proposed 

methodology includes two main sections: 1) real-time data acquisition, and 2) classification. Both 

section follow. 

3. REAL-TIME DATA ACQUISITION 

As shown in Fig 1, the data used in this study is a real-time video stream, which is modulated and 

processed   by GNU radio and transmitted using a Universal Software Radio Peripheral (USRP-N210) 

[15]. In GNU radio, the modulation type and amplitude of the transmitted signal  can be easily adjusted 

[16]. A SatCom Emulator (RTLogic T400) [17] is used for modeling a real-time communication 

channel. The programmatic control of the channel simulator is facilitated over an Ethernet connection 

using a control protocol or optional plugin to STK software. The Channel Simulator produces IF/RF 

signals with extracting signal behavior for any scenario. The Kratos STK plugin provides real-time, 

phase-continuous control of the channel simulator when playing STK scenarios. Further, the jamming 

signals generated are transmitted using a NanoBee modem and are combined to SoI by a combiner. 

Finally, the combined signal is received by a MegaBee modem. 

 
 

Fig1. Real-time RFI data acquisition scenario 

In this study, the effect of the following three jamming signals on the signal classification efficiency is 

analyzed. 

 Continuous Wave Interference (CWI) 

𝐶𝑊𝐼 = exp(𝑗2𝜋𝑓𝑐𝑤𝑡)                                                                                                                                                                    (1) 

Where fcw and t represent the center frequency and the duration of interference, respectively. 

 Multi Continuous Wave Interference (MCWI) 

 In this work, we consider a two-tone CW, defined as: 

𝑀𝐶𝑊𝐼 = exp(𝑗2𝜋𝑓𝑐1𝑡) + exp(𝑗2𝜋𝑓𝑐2𝑡)                                                                                                                              (2)             

Where 𝑓𝑐1and 𝑓𝑐2 are the center frequencies of each wave. 
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 Chirp Interference (CI) 

The CI was generated according to [18] as follows:  

𝐶𝐼 = exp(2𝜋
𝑘

2
𝑡2 + 2𝜋𝑓0𝑡)                                                                                                                                                         (3) 

Where 𝑘 =
𝑓1−𝑓0

𝑇
  and the signal sweeps from 𝑓0 to 𝑓1 with the sweeping duration equal to 𝑇. The center 

frequencies were considered to be changed randomly. 

Fig 2 demonstrates our test bench environment at the LASSENA Laboratory at École de technologie 

supérieure, in Montreal, Canada. As can be seen, there are five computers in use: PC 1 is connected to 

a NanoBee modem, and is used to generate jamming signals in MATLAB (Eq.1-3). PC 2 demonstrates 

the Power Spectral Density (PSD) of the signals received by the MegaBee modem (as shown in Fig 4 

& Fig 5). The GNU radio is running on PC 3, and is connected to USRP N210 through an Ethernet 

cable. PC 4 and PC 5 include STK software for controlling the channel emulator’s key parameters. 

 

Fig2. Test bench at LASSENA laboratory 

The shift in frequency due to the Doppler Effect is estimated within STK, and can be modeled in real 

time using the RT-Logic channel simulator. In this paper, we considered a direct satellite-to-ground 

communication in the Low Earth Orbit (LEO) scenario, in which the satellite is orbiting around the 

earth, and therefore is moving relative to the ground station. Fig 3 demonstrates the direct connection 

between the ground station (Telesat-Montreal-Teleport) and the satellite (CUBESAT-42707). 

 

Fig 3.  Satellite-to-ground station in the STK software 

Fig 4 illustrates the PSD of the received signals in MATLAB. The generated signals’ spectrum was 

validated using a signal analyzer, as shown in Fig 5. 

 

Fig4. PSD of the received signals in MATLAB: a) SoI, b) SoI+CWI, c) SoI+MCWI, d) SoI+CI 
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Fig5. PSD of the received signals using the signal analyzer; a) SoI, b) SoI+CI, c)  SoI+MCWI, d) SoI+CWI 

Measurements: As shown in Table 1, the power of the received signals (in dBm/Hz) was measured 

using a signal analyzer in a 3.84 MHz Bandwidth (BW):  

Table1. Measured power of received signals 

SoI  SoI+CWI  SoI+MCWI SoI+CI 

- 40 (dBm) -33 dBm -35 dBm -32 dBm 

The Jamming-to-Signal Ratio (JSR) is computed as: 

𝐽𝑆𝑅 =  𝑃𝑜𝑤𝑒𝑟𝑆𝑂𝐼 − 𝑃𝑜𝑤𝑒𝑟𝐽𝑎𝑚𝑚𝑖𝑛𝑔                                                                                                                                       (4) 

Therefore, the measured JSR for CWI, MCWI and CI is 7 dB, 5 dB and 8 dB, respectively. Table 2 

shows the generated real-time dataset specification: 

Table2. Real-time dataset specification 

Total number of samples 4800 

Length of each generated signal 32488 (8ms) 

Sampling frequency 40 × 106 Hz 

Modulation types QPSK, 8APSK, 16APSK and 32 APSK 

Notably, for each type of signal (SoI, CWI, MCWI and CI), the number of generated samples 

per modulation type is 300. 

Supervised classification steps 

As shown in Fig 6, we intend to design an intelligent receiver that can precisely recognize the 

type of the received signal. To this end, we use a supervised classification procedure which 

follows three steps: 1) feature extraction, 2) feature selection, and 3) classification. Each step 

will be covered in the rest of this section. 

 

Fig6. Proposed design of an intelligent receiver based on supervised learning classification 

Feature Extraction: As discussed in [19-21], there are various RFI features presented in similar RFI 

classification works. However, in this work, the following features were extracted from each received 

signal x with size 1 by n: 
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 Mean 

µ(x) = 
1

𝑁
∑ 𝑥(𝑖)𝑛−1

𝑖=0                                                                                                                                                 (5) 

 Standard Deviation (σ): 

𝜎 =  √
1

𝑛
∑ |𝑥(𝑖) − 𝜇(𝑥(𝑖))𝑛

𝑖=1                                                                                                               (6)  

 Skewness (I/Q) 

As in [19], the skewness of a signal  is computed as: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
𝐸(𝑥−𝜇(𝑥))3

𝜎3                                                                                                                                                            (7) 

 Real Signal Kurtosis (RSK) 

This feature was proposed in [21], where the kurtosis of the I and Q parts is computed, and finally the 

RSK is obtained by averaging the computed kurtosis (I/Q): 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
𝐸(𝑥−𝜇(𝑥))4

𝜎4                                                                                                                                                                    (8)   

𝑅𝑆𝐾 =  
𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝐼+𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑄

2
                                                                                                                                                           (9) 

 Average Power 

According to [22], the average power of each signal over its length is calculated as: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑤𝑒𝑟 =  
1

𝑛
∑ |𝑥(𝑖)|2𝑛

𝑖=1                                                                                                                                         (10) 

Average Power of the Discrete Wavelet Coefficients 

The wavelet transform is known to be an extremely useful tool for feature extraction as a prior step to 

a highly precise real-time signal recognition [23]. Since we face signals which are corrupted by abrupt 

changes in real situations, it is crucial to relate to the occurrence of an event in time. The wavelet 

transform utilizes a small wave called the mother wavelet, which has finite energy to analyze signals. It 

allows localization in both the time and frequency domains using translations and dilations of the 

mother, respectively [23]. The Discrete Wavelet Transform (DWT), which is also known as a Multi-

Resolution Analysis (MRA), characterizes a signal by passing it through an analysis filter bank. This 

bank consists of a low pass and a high pass filter at each decomposition stage. When a signal passes 

though these filters, it splits into two bands at each stage. The low pass filter, which corresponds to 

averaging information, extracts coarse information of the signal.  For its part, the high pass filter, which 

operates as a differentiation process, extracts detailed information on the signal. The outputs of the 

filtering operation, which are decimated by two, are called the approximation (A) and the detailed (D) 

coefficients, respectively [24, 25]. In this work, DWT-based features are computed as follows: 

 Firstly, each observation (x) is decomposed by up to 4 levels (in this case, levels higher than 4 are 

less informative) using the 10th Daubechies wavelet (db10). Notably, different types of the wavelet 

were tested, and the best classification result was obtained using db10. 

 Secondly, the average power of the 4th approximation and details of the 1st to the 4th level are 

computed by applying Eq. (10). 

 Therefore, we have a 4800 by 10 dataset in which each column represents one of the extracted 

features. In all, there are 1200 observations per class. Of note, the above features have never been 

used together in any similar work, and the type of signals in the dataset is different from that seen 

in other related studies. Thus, this dataset can be considered new in evaluating the performance of 

ML- based classifiers. 

Feature selection: Feature selection is a crucial prior step in the classification to reduce the size of the 

high dimensional patterns. The most significant benefit of this process is that it decreases the 

computational complexity of the implementation [26]. It must be borne in mind that reducing the 

number of representative features may come at the expense of classification accuracy, but the trick in 

dimensionality reduction is to trade a little precision for simplicity [27]. To this end, we deployed the 

Principal Component Analysis (PCA) approach for selecting the most informative features. 
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 Principal Component Analysis (PCA) 

PCA has been used in a wide range of computer science applications, such as computer vision, pattern  

recognition and machine learning [26]. Most related studies focus on deploying PCA for feature 

extraction – such that projecting a dataset from many correlated coordinates onto fewer uncorrelated 

coordinates called principal components - while preserving information as much as possible [28]. 

However, in [26], PCA was presented for the first time as an efficient feature selection method with 

lower computational complexity in comparison to other approaches, such as the genetic algorithm, 

colony optimization, etc. 

Generally, PCA for feature extraction is implemented in three steps, as follows [27]: 

Step 1: Mean subtraction: It is an important step to ensure that the first principal component describes 

the direction of the maximum variance [26]. 

Step 2: Computation of the covariance matrix: The covariance matrix is a representation of the 

linear dependency between two values, and is mathematically defined for a zero-mean dataset 𝑋  as[28]: 

𝐶𝑜𝑣 (𝑋) =  ∑ (𝑥𝑖
𝑛
𝑖=1 − 𝜇)(𝑥𝑖 − 𝜇)𝑇=𝑋𝑇𝑋                                                                                                                        (11)                     

Step 3: Calculation of eigenvectors and eigenvalues of the covariance matrix: This step is used to 

determine the principal components of the data. Therefore, the highest eigenvalues are related to the 

most uncorrelated eigen- vectors which are considered as the principal components. PCA mainly 

projects as much information as possible toward the first component, while the second component 

receives as much as possible of the remaining data. Since a feature component is less important for 

feature extraction, it can also be interpreted that this feature is less informative in the original space [28]. 

In this paper, we implemented PCA to select more significant features based on Singular Value 

Decomposition (SVD), which gives us the same kind of information as does the Eigen decomposition. 

Accordingly, the principal components of a given covariance matrix are computed as follows [28, 29]: 

SV D (XXT ) = U ΛV T                                                                                                                                                                                                                        (12) 

where Λ is a diagonal matrix including the square roots of the eigenvalues of XXT known as 

singular values, in descending order [30], and U and V are orthogonal matrices including 

orthonormal eigenvectors  chosen from 𝑋𝑋𝑇(Left singular vectors) and 𝑋𝑇𝑋 (Right singular 

vectors), respectively. According to [26], the effectiveness of the extracted features is defined by 

computing the contribution to each extracted features (𝐶𝑖) based on the right singular vectors 

(𝑉) corresponding  to the first 𝑚 largest eigenvalues as follows:  

𝐶𝑖 =  ∑ |𝑉𝑘𝑖|𝑚
𝑘=1                                                                                                                                                            (13) 

where 𝑉𝑘𝑖 denotes the 𝑖𝑡ℎ element of 𝑉𝑘,𝑘 = 1,2, . . , 𝑁, (N is the number of singular vectors) 

and |𝑉𝑘𝑖| refers to the absolute value of  𝑉𝑘𝑖. 

Then sorting 𝐶𝑖 in descending order, the effectiveness of each feature is calculated as follows: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  
 𝐶𝑖

∑ 𝐶𝑖
𝑁
𝑖=1

                                                                                                                                       (14) 

Fig 7 shows the extracted features that are more informative. As can be seen, the most informative 

features are related to the average power of the wavelet coefficient. 

 

Fig7. Effectiveness of the extracted features using PCA 
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Classification Phase 

The data pre-processing step comes right before classification. Here, the dataset is firstly normalized 

by applying Eq. 15 on each column (i) so that the features are scaled in the 0 to 1 range [31],  and then 

the classes are encoded into a set of numbers as shown in Table 3 since AI-based techniques can only 

deal with numbers in the computations: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑎𝑡𝑎 =  
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (:,)−𝑀𝑖𝑛(𝑖)

𝑀𝑎𝑥(𝑖)−𝑀𝑖𝑛(𝑖)
                                                                                                                             (15)  

Table3. Label encoding for each class 

Classes SoI SoI+CWI SoI+MCWI SoI+CI 

Label encoding 1 2 3 4 

As mentioned earlier, in this study, an efficient classification technique based on MLP is presented for 

different types of jamming detection, after which MLP performance is compared to that of SVM [29, 32]. 

Multi-Layer Perceptron (MLP) 

MLP, as a feedforward, multi-layer and nonlinear sigmoid neural network based on the supervised gradient 

descent algorithm known as Back Propagation (BP). It is used to optimize the error function by updating the 

coefficients at each layer [33]. The advantage of MLP  includes all the benefits provided by a nonlinear 

structure, in addition to a simple implementation, which make it an appropriate choice in Cognitive Radio 

(CR) implementation [34]. 

Network Architecture 

The proposed MLP contains three layers, namely, input, hidden and output. The number of input neurons 

depends on the size of the feature vector, and there is one neuron in the output to represent the corresponding 

class label. The number of neurons in the hidden layer is variable. As will be shown in the simulation results, 

the network is trained with different numbers of hidden layer neurons. More importantly, the activation 

function of the first layer is the logarithmic sigmoid, and the linear function is employed for the output layer. 

It should be mentioned that the network was trained using different activation functions, but in this case, the 

most efficient design is done using the aforementioned functions. 

The mathematical relationship between the output and input of each layer in the kth iteration is 

defined as in Eq. (16) below by assuming a dataset [pi, yi] where i = 1, 2, ..., Total number of 

observations  and  pi  &  yi are the feature vector and its corresponding label, respectively. The 

output of the first layer before applying the activation function is: 

n1(k) = W1 ∗ p(i, :) + b1                                                                                                                                                                                                                                     (16)                                                          

The first layer’s output is obtained by applying the logarithmic sigmoid function: 

𝑎1(𝑘) = 
1

1+exp(𝑛1)
                                                                                                                                                                            (17) 

The output of the second layer is: 

n2(k) = a1(k) ∗ W2 + b2                                                                                                                                                                                                                                     (18) 

The classifier’s output is computed by deploying the linear function: 

a2(k) = n2                                                                                                                                                                                                                                                               (19) 

Moreover, the Mean Square Error (MSE) of the classifier output is calculated as: 

𝐸𝑟𝑟𝑜𝑟(𝑘) = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑎2                                                                                                                              (20) 

𝑀𝑆𝐸 =  𝐸[(𝐸𝑟𝑟𝑜𝑟(𝑘))2]                                                                                                                              (21) 

Learning phase 

The foremost to be undertaken before starting the learning procedure involves splitting the dataset into 

three subsets, namely, training, and testing and validation data. Because the most supervised classifiers 

are sensitive to data used for training,  classification results will also vary depending on the training 

dataset. Therefore, to ignore the bias introduced into classification results, it is better to apply a random 
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selection to choose the training data [35]. It should be recalled that the size of the weight coefficient (W 

) is determined based on the number of neurons in the previous and current layers. For instance, if the 

number of neurons in the input and hidden layers is 10 and 15, respectively, w1 is considered a 15 by 

10 matrix. Furthermore, the coefficients are updated using the Back Propagation (BP) technique as 

follows:      

  𝑤𝑖
𝑚 (𝑘 + 1) =  𝑤𝑖

𝑚(𝑘) − 𝛼
𝜕𝑀𝑆𝐸

𝜕𝑤𝑖
𝑚                                                                                                                                         (22) 

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼
𝜕𝑀𝑆𝐸

𝜕𝑏𝑖
𝑚                                                                                                                                                (23)                                                             

Where j, α are the number of layers to which the coefficients belong and the learning rate, respectively. 

Choosing a small value for α enhances the classification accuracy while increasing the training time. 

Furthermore, as the MSE is not in a direct relation with coefficients, the chain rule is applied to 

compute the derivative of MSE to each of the coefficients [33]. 

As is fully explained by Algorithm 1, for the learning process, we can analyze three gradient descent-

based learning techniques by defining the Batch Size (BS) parameter as follows [30]: 

Online learning: This is also known as the Stochastic Gradient descent (SGD) approach, which applies 

the BP and updates the coefficients for each example in the training dataset [36]. 

Full-batch learning: In this mode, the BP is applied for each sample in the training dataset, but the 

model is only updated after all training examples have been evaluated. Therefore, this update is done at 

the end of each training epoch, which is one cycle through the entire training dataset [36]. 

Mini-batch learning: This algorithm splits the training dataset into small batches that are used to 

calculate the gradient and update the coefficients (the size of the BS is variable, depending on the 

application on hand). 

In this research, the performance of the proposed techniques is evaluated using the accuracy parameter 

computed by specifying the number of True Detection (NT D) and the number of False Detection (NF D) [8]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑇𝐷

𝑁𝑇𝐷+𝑁𝐹𝐷
 × 100                                                                                                                                                 (24) 

Algorithm 1: Jamming Classification Pseudo-Code 

Input: Generated dataset 

Output: Classification precision 

Initialization: 1) Shuffle dataset  

2) Initialize the coefficients randomly  

3) Split the dataset into training (70%) / validation (20%) / testing (10%) subsets 

4) Define the batch size LOOP Process 

1: for k = 1 to Maximum epoch do 

2: for kk=0: floor (No. of     training    data /batchSize) 

3: for i = 1 to batch size do 

4:Compute the output of each layer (Eq.16-19) 

5:Calculate the error (Eq.20) 

6: Compute the Mean Square Error        (MSE) of the   training phase (Eq.21) 

7: Apply the Back Propagation technique 

8: end for 

9: Update the coefficients (Eq.22, 23) 

10: end for 

11: for j = 1 to Number of validation data 

 do 

12: Calculate the output of the classifier using the updated coefficients. 
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13: Compute the error (Eq.20) 

14: Compute the MSE of the validation phase (Eq.21) 

15: end for 

16: Stopping rule: if the validation error is increasing, the learning is stopped. 

17: end for 

18: for l = 1 to number of test data do 

19: Compute the classifier output 

20: Measure the distance between the classifier output and class labels using Euclidean distance. 

21: Choose the minimum distance as the corresponding label. 

22: end for 

23: Compute the classification accuracy (Eq. 24). 

4. SIMULATION RESULTS AND ANALYSIS 

The simulation results are divided into three sections. Firstly, the classification phase of the proposed 

approaches is analyzed, and then the impact of the PCA on the classification performance is assessed, 

and finally, the effect of different noise powers on the detection accuracy is demonstrated. It should be 

noted that SVM was implemented using ML toolbox, and all the simulations were performed in 

MATLAB (Version R2019b). The computer system had a Core i5-5257U CPU operating at 2.70 GHz, 

with RAM= 8 GHz. In addition, the dataset used for classification was generated at AWGN power -145 

dBm, which is approximately equal to SNR = 9 dB. 

Performance Analysis of Classification Phase 

In this section, the results of the different designs of MLP and SVM are evaluated for classification. As 

shown in Table 4, for MLP, the highest classification accuracy is achieved with 30 neurons in the hidden 

layer and online learning mode (BS =1). HLN refers to Hidden Layer Neurons. The results below 

represent the average accuracy (in percentage) of six executions. 

Table4. RFI classification results using different designs of MLP 

HLN BS=1 BS=100 BS=500 BS=1500 BS=3360 

10 94.09 90.14 89.92 73.96 51.60 

20 99.65 90.13 94.78 86.44 45.83 

30 100 99.65 96.53 86.44 52.80 

Table 5 presents the results of deploying SVM with different structures (one vs. one and one vs. all) 

and kernels (Polynomial, Gaussian and Linear). As the results show, the most precise performance is 

obtained using one vs. one with Polynomial kernel. 

Table5. RFI classification results using different structures of SVM 

 Polynomial Gaussian Linear 

One vs. one 100 99.03 98.77 

One vs. all 99.99 98.78 87.45 

From the classification results, depending on the chosen structure of the classifier, both classifiers could 

achieve an average accuracy of 100%. 

PCA-based feature selection 

In this section, the effect of the PCA-based feature selection approach on the classification is analyzed. 

As can be seen in Fig 7, we evaluated the performance of the classifiers using different NF (Numbers 

of Features) equal to 2, 5 and 8. As is shown in Table 6, the proposed MLP can perform efficiently 

using only 5 features, with an accuracy of 97.05 %. 

Table6. Effect of PCA-based feature selection on the proposed MLP using HLN=10 

NF BS=1 BS=100 BS=500 BS=1500 BS=3360 

2 48.95 44.74 22.39 18.21 20.52 
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5 96.43 97.05 94.79 73.26 54.40 

8 9.75 96.53 92.36 64.05 50.34 

As illustrated in Table 7, SVM achieves an average accuracy of 99.12%, with only five extracted 

features. 

Table7. Effect of PCA-based feature selection on the proposed SVM using one vs one structure 

NF Polynomial Gaussian Linear 

2 68.91 62.49 50.84 

5 99.12 97.39 90.62 

8 98.95 97.39 90.62 

According to the results, SVM+PCA slightly outperforms the proposed MLPNN. 

Effect of Noise Power on the Detection Accuracy: 

In this section, the robustness of the classifiers is evaluated in the presence of the noisy datasets with 

different SNR. To this end, three new datasets are generated with different powers of noise in the -125 

to -135 dBm/Hz range. As discussed earlier, the AWGN for the classification phase is -140 dBm/Hz. 

STK models AWGN in the range of -120 to -168 dBm/Hz, which represents approximately 5.21 to 

12.03 dB (measured by a signal analyzer). 

Fig 8 shows the comparison result of the proposed techniques for unknown data prediction.  

 

Fig8. Comparison result of the proposed techniques for unseen data prediction 

5. CONCLUSION 

In this work, an MLP model was developed for RFI classification in a digital video 

broadcasting scenario based on DVB-S2 standards in a real-time Satcom. Besides analyzing 

different learning modes (online, full-batch and mini-batch), PCA was deployed as a robust 

feature selection technique to reduce the computational cost of classification. It can be seen 

from the results that MLP and SVM could achieve an average accuracy of 97.05% and 99.12%, 

with only five features. Further, the trained models were used to predict the type of unknown 

datasets generated at different SNRs. As shown, the PCA-based classifications perform more 

precisely, and are less sensitive to noise power. 

Future suggestions: In this work, we have analyzed the classification process on a fixed JSR 

only. Therefore, in future work, we can evaluate the classification performance to recognize 

weak to strong jamming signals. Moreover, to avoid the complex feature extraction phase, we 

can classify raw data by leveraging Deep Learning (DL)-based classifiers such as 

Convolutional Neural Networks (CNN). 
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