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Abstract: In scientific visualization, we often handle vector or direction fields. An efficient way of visualizing 

such a vector or direction field is to cover the whole domain studied by a set of streamlines because they give 

good information about the flow and the topology of the underlying field. 

In this article, we propose to optimize already constructed streamlines by defining an optimization criterion 

related to the length of the line. We propose to use the Particle Swarm Optimization (PSO) method. It makes it 

possible by inducing the results to converge to the optimum of the objective function related to the defined 

problem. 

The obtained results are encouraging and merit continuity in the enrichment of the objective function. 
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1. INTRODUCTION 

Vector or direction fields are commonly used in scientific visualization. They associate a vector or a 

direction at each point of the domain space and characterize, for example, the velocity and direction 

of a fluid or the force and the direction of a magnetic or gravitational force. 

An efficient way of visualize such a vector or direction field is to cover the whole space domain by a 

set of streamlines because they give a good information about the flow and the topology of the 

underlying field. 

A streamline has, at each point a tangent equivalent to the vector or parallel to the direction of the 
corresponding field. In the case of a velocity field of a fluid, it corresponds to the trajectory of a 

massless particle driven by the flow. If the flow is stationary, the particle continuously follows the 

same trajectory, thus generating the same streamline. 

Bilinear interpolation is an interpolation method on a regular grid. It makes possible to calculate the 

value of a function from its four nearest neighbors at any point in the domain. 

It is a method widely used in digital imaging for image resizing, which allows obtaining better results 
than the interpolation by the nearest neighbor, while maintaining reasonable complexity. 

To get the vector field value at a given point p, we have just to interpolate the value pv from the 

already known values p1 p2 p3 p4 which are the closest points of the domain where the value of the 

field must be known (See Figure). 

 

Figure1. Interpolation Scheme Definition 
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The value of the new point is given by the following equation: 

 

Where λ and μ are two real numbers between 0 and 1defining the position of p according to the two 

domain axes (See Figure). 

For a stationary field, a streamline is similar to the trajectory of a massless particle carried by the 
flow. Given a function v(p)which gives the value of the vector at any point p of the domain (by 

interpolation if necessary), this trajectory is obtained by solving the following differential equation: 

                                                                                                  Equation   (1) 

Where: p(t)is the position of the point p at the instant t; And p0 is the starting point of the trajectory. 

The position of the particle after a time interval Δt is determined by the integral: 

                                                                         Equation (2) 
Several numerical integration methods have been proposed to solve Equation(2). 

By solving this integral iteratively, we obtain a sequence of points {pk, 0 <k <n}, which represents the 
trajectory of the particle. 

The  Runge-Kutta  method  is  a  second  order  numerical  method  that  approximates  the 

Equation(2) resolution. 

This method allows us to improve the precision of the Euler integrator by introducing an intermediate 

point p'k which is calculated by the following equation (midpoint equation): 

 

Then we compute the following point Pk+1: 

 

These definitions could be applied directly to generate greedy placement of streamlines. In this paper, 

we present an optimization approach to improve the placement quality according to streamline 

lengths. Longer streamlines are always preferred instead of shorter ones because they give a good 

view of the topology of the underlying flow. 

The rest of this paper is organized as follows: First, we present a short bibliography of streamline 
placement algorithms. Then, we present the original PSO method. Finally, we describe our idea to 

optimize streamline placement using PSO approach. 

2. PREVIOUS WORK 

Streamlines are ones of the first tools used to visualize the directional information of a vector field. 

Due to their very frequent use, several works have focused on improving the precision and the speed 
of their calculations. 

In 1996, Turk and Banks [1] proposed an iterative streamline algorithm. The domain is first covered 

by a randomly placed streamlines then the image is improved by successive refinements. The allowed 
changes on this set of streamlines are move, elongate, connect, create, and destroy operations. The 

interest of this method is the harmonious placement of relatively long streams, imitating the style of 

freehand illustrations. Its major disadvantage is the slow process of optimization which modifies each 
streamline randomly and only validates the change if the overall energy of the image is diminished. It 

should also be noted that the algorithm does not end up with the optimization at a deemed sufficient 

stage (no criterion of global evaluation of the quality of the obtained image). 

Jobar and Lefer developed an alternative algorithm to produce the same results in Turk and Banks in 
a much more efficient way [2].Their algorithm consists of a long and uniformly spaced streamlines (a 

minimum separation distance defined by the user between the control points to define the density of 

the field). They must create a first line and insert it in a queue. Then for each control point of each 
streamline in the queue, a search is performed for a valid seed point. After selecting a seed point that 

is quite distant from the already built streamlines (respecting the density), they integrate a streamline 
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until the latter comes out of the domain, or exceed the density criterion. The process is repeated until 

no more seed points can be found. 

To give more importance to the topology of the flow, Verma and al. start the integration of the 

streamlines in the vicinity of the critical points. This approach produces visualizations that best reflect 

the topology of the field but does not impose any constraints on the density or on the length of the 
lines. Moreover, the authors choose a random method to choose the seeds after having saturated the 

vicinity of the critical points [3]. 

Farthest Point Seeding Strategy tries to improves the quality of the streamlines, while, at the same 
time, obtain significant gains in efficiency, robustness and simplification of parameter numbers. 

Streamlines are approximated by polylines, the points of which are inserted in a 2D Delaunay 

triangulation. The empty circles defined by Delaunay's triangles provide us with a good 

approximation of the cavities in the domain [4]. 

First, it is necessary to insert in the Delaunay triangulation a set of points sampled on the edge of a 

square bounding the visualization domain. The aim of this step is to delimit the visualization domain. 

Without this initialization, we would have no information about the regions between the streamlines 
and the closest of the borders. To locate and measure the distances between the points, they used the 

diameters of the circumscribed circles to the triangles of the Delaunay triangulation built from the set 

of integrated points. 

Mebarki proposed a modified version of the Farthest Point Strategy using a simple data structure 

instead of the Delaunay triangulation. He presents an adaptive distance grid to model the visualization 

domain and get anywhere the local distance to all the other streamlines and the boundaries exactly 

without any approximation [15]. 

Many works exist to illustrate 3D placements of streamlines; almost of them are simple extensions of 

previously cited 2D works. The reader can refer to this paper references to get more information 

[6,7,8,9,10,11]. 

3. SWARM PARTICLE OPTIMIZATION 

Swarm intelligence is a family of metaheuristics inspired by natural phenomena and more specifically 

by the behavior of a group or a population of agents that communicate between themselves and 

interact with their environment in order to survive. These interactions allow the population of agents 

to perform complex tasks in an organized way [12]. 

In this paper, we are interested by Particle Swarm Optimization (PSO), a population-based method 

that was first introduced by Russel Eberhart and James Kennedy in 1995 [13]. The model was later 

extended to a simple and efficient optimization algorithm in several domains [14]. 

Particle Swarm Optimization draws heavily on the gregarious relationships of migratory birds that 

have long distances to fly, and have to optimize their movements in terms of energy expended, such 

as V formation. 

a. The Principle of the Method 

The principle of the algorithm is to move the particles to the optimum. Each of these particles, which 

is a possible solution, is provided with: 

 A position, that is, its coordinates throughout the domain definition. 

 A neighborhood, that is, a set of particles that interact directly with the particle, especially the one 

with the best criterion. 

 A velocity that allows the particle to move. In this way, during the iterations, each particle changes 

its position. It evolves according to its best neighbor, its best position, and its previous position. It 

is this evolution that makes it possible to fall on an optimum particle (See Figure). 

Changing the velocity of the particle based on its data and that of the neighbors implies: 

 An adventurous trend to continue at current velocity. 

 Or a conservative trend, bringing more or less the best position already found. 
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At every moment, each particle knows: 

 Its best position visited. We retain essentially the value of the calculated criterion as well as its 

coordinates. 

 The position of the best neighbor of the swarm that corresponds to the optimal scheduling. 

 The value it gives to the objective function because, at each iteration, it is necessary to compare the 

value of the criterion given by the current particle with the optimal value. 

Three types of behavior influence the displacement of a particle: 

 A physical component: the particle tends to follow its own path. 

 A cognitive component: the particle tends to return to the best site by which it has already passed. 

 A social component: the particle tends to move towards the best site already reached by its 

neighbors. 

The solutions found by the particles at a neighborhood represent local optimums, from these local 

optimums, and by propagating the best solution if it has been reached towards the other 

neighborhoods, the set of particles will normally, converge towards the optimal global solution of the 
corresponding problem. 

 

Figure2. Concepts of the best individual position in a two‐dimensional maximization problem [15] 

b. Formal Definition of the Problem 

The basic algorithm of the PSO works on a population called a swarm of possible solutions, 

themselves called particles. These particles (M particles) are placed randomly in the search space of 

the objective function. 

At each iteration, the particles move, taking into account their best position (selfish displacement) but 

also the best position of its neighborhood (Panurgian displacement). In fact, the new velocityis 

calculated from the following formula: 

   Equation (3) 

 vk+1 and vk are the velocities of the particle at the iterations k and k+1. 

 Posbest is the best position of the particle. 

 NPosbest is the best position of its neighborhood at iteration k. 

 Poscurr is the position of the particle at the iteration k. 

 w is the coefficient of inertia 

 c1 and c2 are the acceleration coefficients 

The next position of the particle can then be determined using the velocity just calculated: 

 

Where xk and xk+1 are the positions of the particle at the iteration k and k+1. 
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c. The Algorithm 

The following pseudo code describes the basic version of the PSO algorithm: 

 

4. NEIGHBORHOOD DEFINITION 

The neighborhood describes the structure of the population. The particles within a neighborhood 

communicate with one another. Several neighborhoods have been studied and are considered in terms 
of particle identifiers and not only topological information such as Euclidean distances in the search 

space [16,17] (See Figure). 

 

Figure3. Four kinds of neighborhood topologies: (1) Fully connected Topology, (2) Ring Topology, (3) Mesh 

Topology, (4) Star Topology 

a. Ring Topology 

In this kind of topology, neighbors are tightly connected so they react when one fitness particle raises, 
this reaction weakens proportionally with respect to the distance. Thus, one subdivision of the 

population might converge to a local optimum, while another subdivision might converge to a 

different point or remain searching. However, the optima will eventually pull the swarm. 

b. Fully Connected Topology 

The fully connected topology or the full topology is defined when all nodes are directly connected 
among each other. This topology is also known as the PSO’s GBest version, in which all individuals 

in the whole swarm direct their flight toward the best particle found in the whole population. 

1. Generate M initial solutions and evaluate their fitness values (objective function 

values) 

2. Initialize the velocities of all solutions randomly 

3. For j=1 to M 

Put PBestj = solutionj 

4. Set GBest = the best solution in the population 

5. While (termination criteria not satisfied) 

i. For j=1 toM 

If (Fitness (Solutionj) is better than PBestj) 

PBestj = solutionj 

If (PBestj is better than GBest) 

GBest = PBestj 

ii. For j=1 to M 

1. Velocity(solutionj) 

2. Control Velocity(solutionj) 

3. Update Solutionj 

iii. Evaluate Fitness for all solutions 

iv. Update inertia weight parameter w 

6. Report the best solution  
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c. Star Topology Mesh Topology 

In star topology, the information passes through only one particle. One central node influences and it 

is influenced by all other members of the swarm. 

d. Mesh Topology 

In this topology, one node is connected to limited number of other nodes according to their locations. 
An example of such a topology is to connect each particle to its four direct neighbors. We have to 

consider redundancy in the research process because of the overlapping neighbors in each particle. In 

this paper, we adopted this topology in such a way that each streamline is correlated with its direct 

neighbors. 

5. PSO-BASED OPTIMIZATION OF STREAMLINE PLACEMENT 

We present now our algorithm for optimizing streamline placements. 

The algorithm is based on the PSO approach where the particles are the seed points of the streamlines. 

Each streamline is integrated from its seed point by successive integrations until: 

 It reaches the boundaries of the domain; 

 It becomes very close to another streamline. 

The initial solution corresponds to the initial placement of the streamlines that are built from a 
randomly generated set of particles. 

The basic algorithm has to be adapted to our context in such a way to allow re-integrating streamlines 
at each iteration. In each step, and for each particle, we have to remove the corresponding streamline 

and its neighbors in order to evaluate the new position of the particle and reintegrate it since the 

neighboring streamlines stop the integration process. Removing neighbors is necessary to permit a 
maximum lengthening of the streamlines.  

The stop criteria is defined as follow: 

 The maximum specified number of iterations is reached. 

 The value of the objective function is acceptable. 

 The velocity variation is close to 0. 

a. The Proposed Algorithm 

 

1. Generate N initial solutions and evaluate their fitness values (objective function values) 

2. Initialize the velocities of all solutions randomly 

3. For j=1 to M 

Put PBestj = solutionj 

4. Set GBest = the best solution in the population 

5. While (termination criteria not satisfied) 

i. For j=1 toM 

If (Fitness(Solutionj) is better than PBestj) 

PBestj = solutionj 

If (PBestj is better than GBest) 

GBest = PBestj 

ii. For j=1 to M 

i. Remove the current streamline (j) and its neighbors  

ii. Calculate Velocity(solutionj) 

iii. Control Velocity(solutionj) 

iv. Reintegrate the current streamline (j) and its neighbors 

v. Update Solutionj 

iii. Evaluate Fitness for all solutions 

iv. Update inertia weight parameter w 

6. Report the best solution 
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b. Fitness 

In our approach, we considered a simple function that favor long streamlines instead of short ones. 

This function is equal to the ratio between streamline for a given particle and the average length of all 

other streamlines: 

 

6. EXPERIMENTAL RESULTS 

To experiment our approach, we defined the following configuration scheme for our tests: 

 A domain size equal to 512x512 to place streamlines. 

 Number of particles: 128 seed points. 

We experimented our algorithm with four different synthetic vector fields; the calculations converged 

after ten iterations. The results are presented inTable and Figure. 

Table1. The convergence of the global objective function for 4 different synthetic vectof fields over 10 iterations 

Iteration Vector Field 1 Vector Field 2 Vector Field 3 Vector Field 4 

1 143,931584 144,630555 143,931584 144,129016 

2 149,621779 153,360759 149,621779 145,940026 

3 168,965339 159,057542 168,965339 147,447136 

4 174,357213 165,593771 174,357213 149,703461 

5 179,993769 168,718661 179,993769 149,896458 

6 179,99523 171,579886 179,99523 150,261208 

7 183,546551 182,058246 183,546551 150,266143 

8 185,335604 183,841781 185,335604 150,276948 

9 187,871382 183,841781 187,871382 150,276948 

10 187,871382 183,841781 188,825062 150,276948 

 

Figure4. Convergence graph of the test vector fields over 10 iterations 

7. CONCLUSION 

In this paper, we presented an idea to optimize streamline placements. We tried to fit the PSO 

algorithm to improve the quality of already placed streamlines.  The quality is often correlated with 
streamline lengths. So, we defined our objective function in term of streamline length. The algorithm 

converge rapidly, and the obtained results are promising and uncourageous. 
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