
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) 

Volume 4, Issue 1, 2017, PP 33-45 

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) 

DOI: http://dx.doi.org/10.20431/2349-4859.0401005 

www.arcjournals.org

 

©ARC                                                                                                                                                           Page 33 

Multi-Scale Entropy and Neural Networks for Detection of Depth 

of Anaesthesia within EEG Signals 

Mohamed H. Almeer 

Computer Science & Engineering Dept, College of Engineering, Qatar University, POB 2713, Qatar 

Abstract: In recent years, multi-scale sample entropy (MSSE) is rapidly gaining popularity as an interesting 

tool for exploring neurophysiological mechanisms. In this paper, we propose a new method based on MSSE for 

on-line monitoring of the depth of anaesthesia (DoA) to quantify the anaesthetic effect with real-time 

electroencephalography by using MSSE. Empirical mode decomposition (EMD) was used successfully to filter 

EEG recordings of artefacts before the imitation of the recognition phases. Artificial neural networks were used 

to classify three scales of the MSSE into three stages of hypnosis. Results showed 95% accuracy of the tested 

clinical anaesthesia EEG recordings obtained for 20 patients. 
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1. INTRODUCTION 

Electroencephalogram (EEG) signals are a proven method for monitoring the depth of anaesthesia 

(DoA). In general, many anaesthesiologists monitor the depth of anaesthesia by means of clinical 

parameters such as blood pressure, heart rate, muscle movement, pupil size, lacrimation, and airway 

pressure[1-3]. However, these physiological parameters change in response to anaesthetic agents and 

are also affected by other factors such as body weight and age. Therefore, these parameters alone may 

not provide an accurate assessment of anaesthesia. Since anaesthetic agents affect the brain cortex, 

monitoring brain activity using EEG signals would be a suitable method to measure the DoA. EEG 

signals are generally non-stationary, although they may include some stationary epochs; these signals 

reflect the non-stationary activity of the brain. 

Many studies have been conducted on the measurement of DoA using various methods and with 

multiple algorithms [21, 22, 25]. Neural networks [10, 11, 14, 15, 17, 18, 20], both feed-forward and 

recurrent, as well as DWT wavelets [8, 11] have also been used to classify the anaesthesia levels. 

Empirical mode decomposition (EMD) [11] and its variants have been employed to filter the samples 

of artefacts and obtain a clean EEG before attempting recognition. Some studies have investigated the 

value of different frequency bands in EEG [16]in the measurement of the DoA; for example, the 

alpha-frequency band showed a strong correlation to the level of consciousness during surgery under 

anaesthesia. Furthermore, some studies have utilised the chaotic feature as described by the chaos 

theory to follow the hypnotic levels [9]. 

Many scientific standards have been developed recently to measure DoA, but the most preferred 

important monitor is the bispectral analysis index (BIS) [4, 5]. BIS, one of the high-grade spectral 

analysis methods, is a complex measure encompassing the domains of time and frequency as well as 

high-order spectral parameters.  It is determined by the analysis of the correlation of the different 

phases of the parts of the EEG signal. Generally, BIS readings are obtained from signals of four 

different EEG electrodes. BIS monitors are the most common tools used to measure the DoA, except 

in the case of some anaesthetic drugs. However, some investigations have indicated that the patient 

could awaken momentarily even if the BIS reading is between 40 and 60.  

BIS entropy monitors have been recently developed to monitor the DoA using EEG signals. These 

monitors mainly display two readings simultaneously: response entropy (RE) and state entropy (SE) 
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[27]. Both parameters reflect the degree of regularity (or irregularity) of the EEG signal. The RE and 

SE measures are based on spectral entropy which relies heavily on fast Fourier transformation 

(FFT)for the calculations [28];therefore, the spectral entropy may miss some nonlinear and non-

stationary information within the EEG signal. 

Approximate entropy (ApEn) [30] and sample entropy (SampEn) [31] are two recently developed and 

widely used entropy measures that have been shown to be efficient in the detection of complexity of 

any time series. In particular, SampEn has been shown to perform even better than ApEn in detecting 

the DoA of patients in surgeries [29-31]. SampEn measures complexity based on only one time scale, 

which makes it likely to miss some features. On the other hand, multi-scale entropy (MSE) [7, 13, 23, 

33, 34, 35] used multiple scales to determine the complexity and can therefore capture the dynamic 

changes associated with multiple time scales. This property makes MSE much more suitable than 

other techniques in computing the degree of complexity for the EEG time series.    

Although the use of MSE improves the correlation between the hypnosis level and the entropy value, 

but ultimately its is a value between 0 and 3. Because of these multiple entropy values, this method 

does not allow for a straightforward assessment of the DoA [35]. Artificial neural network (ANN)is 

one of the best artificial intelligence methods that has the ability to learn from a set of presented data 

through matching inputs with the outputs and then generalise the learned relationship to other foreign 

inputs [36]. By updating unknown weights and functions until a match is reached, a good relation is 

constructed on the basis of the weights and functions that correlate the input to the output sets. 

The purpose of this research study is to estimate the level of anaesthesia based on EEG time series 

using multi-scale SampEn with the help of an ANN model that maps the three scales of SampEn to the 

anaesthetic condition of the patient under surgery, by using only generic filtering obtained by the 

generic EMD algorithm. 

2. MATERIAL AND METHODS 

2.1. Data Source 

The single-channel EEG recording tested in this study was collected from 20 patients aged between 

23 and 70 years through a forehead-mounted sensor placed on patients went under surgery of ENT 

cases under general anaesthesia at the National Taiwan University Hospital (NTUH) of Taiwan. The 

EEG data recording has been acquired using Philips Intellivue MP60. The anaesthetic drug 

sevoflurane or sesflurane was used for tracheal intubation of all 20 patients. 

2.2. Data Processing 

The standard operation procedure with general anaesthesia was divided into 4 stages: pre-operation, 

induction, maintenance, and recovery. The collected EEG recordings were divided to 2 parts. One set 

of recordings was collected from 6 patients to estimate the distinction between different anaesthesia 

levels since they show clear separation boundaries, can help determine the sensitivity level of MSE 

for the generated time indices, and for the neural network training. The other set of recordings was 

used for the testing and validation of the proposed neural prediction system. 

The EEG signals were recorded with a sampling frequency of 128 Hz (samples per second) and its 

microvolt readings were digitised using 12-bit analogue-to-digital converter, thus giving a scalar 

range between 0 and 2
12

 = 4096 values. Figure 1 shows some samples for an EEG recording during 

general anaesthesia covering three anaesthetic levels in addition to a recovery level, as shown below. 

2.3. Expert Assessment of Consciousness Level 

During the period of anaesthesia, the patients were observed by two research nurses who carefully 

observed the signs of unconsciousness and recorded the vital parameters such as heart rate and arterial 

blood pressure besides other clinical signs. Further, they recorded the time points and durations of 

various anaesthetic events such as induction, muscle signs; stimulus and clinical signs of the patients; 

and the duration of surgery. 
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Figure1. Four single-channel EEG epochs, each of 10 seconds, representing brain function at different depths 

of anaesthesia. X-axis represents the epoch index ( /10 seconds) and y-axis represents the captured epochs index 

(1-840). 

Five expert anaesthesiologists were then asked to score the DoA of the patient on a scale of 10 to 100 

based on the recordings of the patient‟s signs only. A non-correlated and independent decision was 

then collected from each expert solely based on the data provided, without any contact with the 

patients. Finally, the average of the opinions of the 5 experts was determined by plotting on a graph, 

with time on the X-axis and their scores (from 10 to 100 for consistency the BIS-based anaesthesia 

level) on the Y-axis. 

The standard for anaesthetic level defined as per the BIS machines is explained in Table 1. Values 

between 40 and 60 are defined as „anaesthetic depth suitable for surgery‟, those below 40 indicate that 

the anaesthesia is deep, and those between 60 and 85 indicate that the anaesthesia is light and may be 

suitable only for some types of surgeries. 

Table1. Range of BIS value for different levels for depths of anaesthesia 

Depth of Anaesthesia 

(Consciousness Level) 

Level Description Range 

Awake  BIS (100 – 80) 

Light Anaesthesia  BIS 80 – 60 

Moderate Anaesthesia Suitable for Surgery BIS 40 – 60 

Deep Anaesthesia  BIS 10 -40 

Finally, it is noteworthy that in this study, 20 anaesthesia charts were digitised and were used as a 

gold standard for determining the DoA and were used to train the neural network as training targets. 

2.4. Sample and Multi-Scale Entropy 

SampEn [44] is a modification of ApEn; both are used to examine physiological time series signals 

such as EEG and other signals. SampEn is independent of the data length and can be implanted more 

easily in software but is computationally different. In ApEn, the comparison between the template 

vector and the rest of vectors includes the comparison with itself, and it is always possible to have the 

logarithm of the probability. 

SampEn is a measure of complexity but does not include self-similar patterns as found in ApEn. As in 

ApEn, if an embedding dimension m is given as well as tolerance r and number of the data points N, 

then we can define SampEn as negative logarithm of the probability that two sets of similar data 

points of length m have for distance < r. Then, two sets of similar data points of length m+1 also have 

distance < rare and represented by 

SampEn(m, r, N), or by SampEn(m, r, t, N) 

Where t is the sampling time. 

If a time-series data set of length N = { x1, x2 , x3 , . . . , x N } with a constant time interval τ, we define 

a template vector of length m, such that Xm(i) = {xim xi+1, …,xi+m-1}have Chebyshev or Euclidean 
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distance. Then, compute the total distances <R =r*SD (standard deviation of original signal). The 

distance function has the formula: 

d[Xm(i), Xm(j)] <r, and i≠j                                               (1) 

We compute the number of vector pairs in template vector of length m and m+1 having d[Xm(i), 

Xm(j)] <r. We can define the sample entropy: 

SampEn = - log(A/B)                                                (2) 

where  

A = number of template vector pairs having d[Xm(i), Xm(j)] < r of length m+1 and  

B = number of template vector pairs having d[Xm(i), Xm(j)] < r of length m.  

Therefore, SampEn( m , r , τ )  will be always be either zero or any other positive value. A smaller 

value of SampEn also indicates more self-similarity in data set or less noise. 

Previous studies on SampEn have been shown that m =1 or 2 would be appropriate; further, having r 

= 0.1 to 0.2SD (SD = Standard Deviation) are more suitable values for clinical data analysis. 

Traditional entropy measures quantify only the regularity (predictability) of time series based on a 

single scale. There is no direct correlation between regularity and complexity. Neither completely 

predictable or periodic signals, which have minimum entropy, nor completely unpredictable or 

uncorrelated random signals, which have maximum entropy, are actually complex. There is no 

consensus on the definition of complexity. Intuitively, complexity can be defined as the correlation 

over time and space scales. 

The MSE method incorporates two aspects. First, a coarse graining process is applied to the time 

series data by averaging data within non-overlapping windows but of increasing length. The coarse-

grained element yj
(τ)

 

 

𝑦𝑗
(𝜏)

=
1

𝜏
 𝑗𝜏𝑖=(𝑗−1)𝜏+1 𝑥𝑖                                                              (3) 

 

Where τ represents the scale factor and 1≤ j ≤ N/τ. The length of each coarse-grained time series is 

N/τ. 

 

Figure2. An illustrations of multiscale decomposition procedures. (a) Coarse-graining procedure and (b) 

Moving average procedure [45]. 

Second, SampEn is calculated for each coarse-grained time series and then plotted as a function of the 

scale factor. SampEn is a „regularity statistic‟. It „looks for patterns‟ in a time series and quantifies its 

degree of predictability or regularity (see Figure 2). 

2.5. Empirical Mode Decomposition (EMD) 

EMD is an adaptive method to decompose a non-linear or non-stationary time series signal into its 

intrinsic mode functions (IMF) [46]. This process to obtain the IMFs is called sifting, and it can be 

outlined into the next phases: 
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1. Create upper envelope Eu(t) by local maxima and lower envelope El(t) by local minima of data x(t).  

2. Calculate the mean of upper and lower envelope  

𝑚1(𝑡) =  
𝐸𝑢1(𝑡)+𝐸𝑙1(𝑡)

2
                                                (4) 

3. Subtract the mean from original data 

h1(t) = x(t) – m1(t)                                                (5) 

4. Verify that h1(t) satisfies conditions for IMFs. Repeat steps 1 to 4 with h1(t), until it is an IMF.  

5. Get first IMF (after k iterations) 

c1(t) = h1(k-1)(t) – m1k(t)                                                            (6) 

6. Calculate first residue 

r1(t) = x(t) – c1(t)                                                (7) 

7. Repeat whole algorithm with r1(t), r2(t), … until residue is monotonic function.  

8. After n iterations, x(t) is decomposed per equation (1).  

The decomposition process can be stopped when 𝑟 𝑛 becomes a monotonic function, i.e., no more IMF 

can be extracted from it. Nevertheless, it is known that only a determined number of IMFs have 

physical meaning, and it is only important to apply a certain number of IMFs to extract relevant 

information from the main signal. 

2.6. Artificial Neural Networks (ANNs) 

ANNs are considered to be excellent classifiers due to their properties of adaptive learning, robustness 

to signal distortion, and good generalisation effect. For the classification of the anaesthetic level, a 

Feed-Forward Back Propagation Multi-Layer Perceptron was chosen. This particular type of neural 

networks is considered a „de facto’ and is widely known in neural classification and recognition types 

of applications. Since it has multiple layers and nonlinear activation functions (tan sigmoid or log 

sigmoid), the network can learn and recognise nonlinear beside linear correlations between the input 

and the output sets. The proposed neural network is shown in Figure 3. 

The feed-forward network has one or more hidden layers beside the input and output layers. With 

those multiple layers of neurons, each utilising non-linear activation function enables the network to 

learn non-linear relation(s) between the input and output sets. Each neuron on different layers has a 

standard architecture which depends on storing multiple weights, a non-linear activation function, and 

a single bias. The following equation simplifies the equation core of the neurons: 

𝑌 = 𝑓(  𝑁𝑗=1 𝑤𝑗  . 𝐼𝑗  )                                                (8) 

where f is the required activation function that could be one of the next two functions: LogSig 

activation function or TanSig log activation function. 

LogSig(n) = 1 / (1 + exp(-n))                                               (9) 

TanSig(n) = 2/(1+exp(-2*n))-1                                                         (10) 

 

Figure3. Neural network for recognition of depth of anaesthesia. (A) shows one perceptron; while (B) shows a 

3-layers multi-perceptron neural network. 
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3. RESULTS 

In this study, some aspects of the raw EEG recording have prompted us to perform an early sorting of 

both trained and tested EEG recordings. The sorting was necessary because of the nature of the EEG 

signals itself. The signals showed 2 unpleasant properties: the artefact contamination from the patient 

signals themselves, as observed in electrocardiograms and electromyograms, as well as some signal 

discontinuity experienced during the EEG recording due to the patient‟s movements as well as re-

fixing of the electrodes and other unknown sources.  

The artefacts and non-continuity in the recorded signal distort the original signal to a level that the 

SampEn gives misleading outputs, while bearing in mind the high sensitivity of such SampEn 

algorithm toward noise. However, considering the cleaning of the EEG recording, the application of 

EMD (Empirical Mode Decomposition)or any of its counters (such as EEMD, CEEMD, or MEMD) 

for filtration would shorten the amplitude of the signal such that it makes it difficult to discriminate 

between anaesthetic levels copied from SampEn by visual inspection although these EMD algorithms 

can clean and filter the signal to some extent. Because of this property, it was decided to compare two 

cases simultaneously: one with generic EMD filtering and one with no filtering. 

3.1. Phase_1: Choosing the Appropriate Sections of the EEG Signals 

All the patients‟ EEG recording were carefully screened in two stages – first by visual inspection with 

the help of Matlab plotting method to identify then discard all the distorted, the non-continuous, 

clipped, and weak (less than threshold) epochs and then a second phase when SampEn of the whole 

patient is experimentally calculated and the Doctor Plot for consciousness level (1 to 100) is brought. 

From some careful entropy screening, it was noted that the entropy of the patient will change between 

0.1 and 2.2. Next, all the patterns within specific regions where SampEn did not match with the 

expert‟s plot were removed, and the remaining blocks which abide with the expert‟s plot were taken 

to complete the training set with. Table-6 lists all the 6 patients‟ appropriate blocks that were taken in 

the training process. From the table, it can be seen that the epoch is a 10-second recording of EEG 

signal yielding 1280 samples with 128 Hz sampling frequency. 

Table2. Range of BIS value taken for different levels of depth of anaesthesia 

Depth of Anaesthesia 

(Consciousness Level) 

Level Description Range 

A wake (C1)  BIS (85 - 100) 

Light Anaesthesia (C2)  BIS (60- 85) 

Moderate Anaesthesia (C3) Suitable for Surgery BIS (40 - 60) 

The common anaesthetic level which classifies the patient depth of consciousness is detailed in Table 

1.However, since all our patient‟s records showed that DoA is between 45 and 100, we have reduced 

the levels to only three, as listed in Table-2. 

3.2. Phase_2: Statistical Analysis of the Trained Set: 

Statistical analysis was carried out on the selected training patterns. First, we extracted the standard 

deviation, mean, covariance, and the maximum with the minimum coverage of all the samples in each 

anaesthesia level.  

The MSSE measurements were calculated on 6 patients‟ EEG records at 5 scales for the DoA. 

Measurements were computed over a window of 10 seconds with no overlap with and without EMD 

filtering. Figure 4 shows the MSSE for 4 patients with and without EMD filtering. 

 

Figure4. Multi-scale sample entropy for four patients with and without EMD 
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To clearly investigate the trends in signal variation, median values of all the indices from the 6 

patients in two states (Awake and Unconscious) were plotted together for comparison (Figure 5)and 

visualised by boxplot plotting. Figure 5 has 4 subplots; the first row has 2 plots of Awake and 

„Unconscious‟ when no EMD filtering was applied. It is obviously seen that the mean for the 

„Conscious‟ state was around 1.0 and almost exhibits no change when scales 2 to 5 are observed. The 

variation range (minimum to maximum) becomes relatively larger from scale1 to 5. 

The bottom part of the Figure shows a similar boxplot for the sample entropy for 5 scales with EMD 

filtering. It is seen that the trend of the 5 means are clearly different for the „Awake‟ state: starts from 

SampEn = 0.8 for scale 1 and increases until scale 3; then, from scale 4 to scale 5, it decreases to 

around SampEn = 1.5. The „Unconscious‟ mean level trend has a logarithmic shape; it starts from 0.70 

for scale number1;raises until it settles near a value of 1.5 with scale numbers from 2 to 5; and then it 

settles.  

It is evident from the previous boxplot that the boundaries of the SampEn for the 3 classes are 

distinguishable for the time scale 1as well as indices 2 and 3. Table 3 outlines the means, standard 

deviations, covariance, and max-min values of the 3 state boundaries. It is also noticeable that the 

variation of SampEn increases as the scale number increases. 

Table3. Different statistical properties outlining the 3 different classes of anaesthesia 

Statistical Measurement Name Class 1 Class 2 Class 3 

Mean 

1.5117     

1.4395     

1.6575 

1.2545     

1.6493     

1.9802 

0.9887    

1.2573    

1.5832 

Standard Deviation 

0.0864     

0.2209     

0.2980 

0.0478     

0.1855     

0.1545 

0.1188    

0.1120    

0.1420 

Covariance 

0.0075 

0.0488 

0.0888 

0.0023 

0.0344 

0.0239 

0.0141 

0.0125 

0.0202 

Lower to Upper Bound 

1.3959-1.7017    

1.1396-1.9828 

1.1876-2.1353 

1.1455-1.3789 

1.4138-

2.25441.5571-2.4343 

0.6964-1.2455    

0.8152-1.5135    

0.8060-1.9213 

This verified that entropy (or scale 1 MSSE) can make a low distinction between the „Awake‟, „Light 

Anaesthesia‟, and „Unconscious‟ states, although the best distinction is noticeable between the 

„Awake‟ and „Unconscious‟ states. Nevertheless, MSSE has much better distinction ability between 

these two states when all five scales are observed. The neural network classifier (mentioned in the 

next few section) will play the main role in recognising different states of anaesthesia based on 

different scales of the MSSE. 

3.3. Phase_3: Organising and Sorting the Extracted Epochs for Training 

To accurately extract the best representation for DoA from EEG recordings, careful selection of the 

appropriate epochs should be undertaken. Sequences of EEG Blocks should be chosen for artefact-

clean samples and those with good SampEn readings that strongly correlate to the expert‟s decision 

about the DoA. 

As shown from Table 1, the data of the 6 selected patients (Table 6) had recordings that clearly cover 

the 100 to 40 BIS level readings with sufficient number of blocks covering the 3 chosen 

consciousness states, in order to ensure the general diversity needed for successful training. Besides, 

the chosen blocks for the same class showed some acceptable correlation in SampEn values. 

From the six patients‟ EEG recordings, we obtained only 169 blocks of EEG recording, each of 10 

seconds, for the first class (BIS 100 to 85);224 blocks for the second class (BIS 85 to 62) and 770 

blocks representing the third class (BIS 40 to 60). Then, all those selected epochs were inserted in 2-D 

arrays (3-time indexed scaled entropy readings for each block giving an array depth of 1163 lines by 3 

columns), which is called the main training database (MTDB). A corresponding output vector has 

been prepared such that it gives a reading of 0.9 corresponding to input class one, a reading of 0.5 for 

a class two, and a reading of 0.25 for class three. This is the vector target that the training should 

reach within a small error boundary. That output vector will be added to the reconstructed MTDB 

table (Table 6). 
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Figure5. The statistical box plots for MSSE with EMD and without EMD, at scales 1, 2, 3, 4, and 5 in the awake 

state (upper row) and unconsciousness state (lower row). 

3.4. Phase_4: Training the network 

From the MSE values, only 3 time indices levels were considered as inputs for the ANN(NN Tools 

the neural network toolbox in Matlab). The output target was the depth of anaesthesia score assigned 

by the experts in the plot after digitisation. Data from six patients out of 20 were collected to train the 

ANN with, and data from the remaining 14 patients were used to test the ANN.  

A multi-layer perceptron network was chosen for its good generalisation effect, with 30 hidden 

neurons in its first layer employing TAN activation function and another 50 neurons in the second 

layer with TAN activation function. A single neuron in the output layer with LOG activation function 

was dedicated to give the output ranges between 0.1 to 0.9. 

The network was trained using back propagation method with a TRAINRP training function and 

LEARNGDM for its adaptation learning function. The performance function was MSE (Mean Square 

Error). The epochs reached and the training goal for the three networks is listed in Table 4. 

Table4. Feed-Forward Back-Propagation Neural Network training parameters 

Description Neural Network 1 Neural Network 2 Neural Network 3 

Learning Criteria 3 Levels, 

MSSampEn, 

EMD 

2 levels, 

MSSampEn, 

No EMD 

2 levels, 

MSSampEn, 

EMD 

Anaesthetic Levels  3 2 2 

Number of Layers 1+2+1 1+2+1 1+2+1 

Neurons in Input Layer 3 3 3 

Neurons in Hidden Layer 1 and 2 30, 50 (Tan) 30, 50 (Tan) 30, 50 (Tan) 

Neurons in Output Layers 1(Log) 1(Log) 1(Log) 

Training Epochs 75,776 108 100,000 

Training Goal Reached 0.00406  0.00048  0.0021  

3.5. Phase_5: Testing the network on the remaining patients’ records 

The neural network was trained with the MSE entropy values of 3 time scales obtained from pre-

processed EEG segments (epochs of 1280 sample of 10 s duration). A total number of 2639 prepared 

testing patterns of 10-second duration corresponding to the remaining 15 patients were used as a test 

data set for evaluating the performance of the neural network.  

The classification results are shown in Table-5 for three networks: NW1 is a model for recognising 3 

levels of anaesthesia when no EMD filtering is enabled; NW2 is a model for recognising 2 levels of 
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anaesthesia without embedding EMD filtering; and NW3 is the same as NW2 but EMD filtering is 

implemented. Figure 6 shows the output of the neural network model corresponding to the 2 and 3 

levels of anaesthesia when tested with the unseen test data of 2639 test patterns. Figure 7 shows the 

first 400 patterns of each output. 

In addition, Table 5 shows the accuracy of the recognition for each anaesthetic level. The performance 

of the ANN is evaluated using two parameters: sensitivity for each anaesthetic level and overall 

accuracy. The following equations show the performance evaluation parameters formulae. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐴𝑤𝑎𝑘𝑒  =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝐴𝑤𝑎𝑘𝑒  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎

𝑇𝑜𝑡𝑎 𝑙  𝑜𝑓  𝑎𝑐𝑡𝑢𝑎𝑙  𝐴𝑤𝑎𝑘𝑒  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎
 . 100                                         (11) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑜𝑤  𝐴𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝐿𝑜𝑤  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎

𝑇𝑜𝑡𝑎𝑙  𝑜𝑓  𝑎𝑐𝑡𝑢𝑎𝑙  𝐿𝑜𝑤  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎
 . 100                                        (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒  𝐴𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎   =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎

𝑇𝑜𝑡𝑎𝑙  𝑜𝑓  𝑎𝑐𝑡𝑢𝑎𝑙  𝑀𝑜𝑑𝑒𝑟 𝑎𝑡𝑒  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎
 . 100   

                                                             (13) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇𝑜𝑡𝑎𝑙 =  
𝑇𝑜𝑡𝑎𝑙  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎  𝑙𝑒𝑣𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙  𝑜𝑓  𝑎𝑝𝑝𝑙𝑖𝑒𝑑  𝑎𝑛𝑎𝑒𝑠𝑡 ℎ𝑒𝑠𝑖𝑎  𝑙𝑒𝑣𝑒𝑙𝑠
 . 100                                        (14) 

Table5. Results of classification of depth of anaesthesia 

Anaesthetic Level 

Class 

Total Applied 

Patterns 

Correctly Detected Patterns 

with Class Sensitivity 

  NW1 NW2 NW3 

Wake 

BIS100-85  

98 85 (86%) 73 (74%) 90(92%) 

Light Anaesthesia 

BIS 85-62  

68 18 (26%) --- --- 

Surgery 

Anaesthesia 

BIS 60-40  

2473 1801 

(72%) 

2250 

(91%) 

2347 

(95%) 

Over all Accuracy 

with Sensitivity 

2639 1904 

(72%) 

2323 

(90%) 

2437 

(95%) 

 

Figure6. Neural network output for the three networks: 3 levels without filtering and 2 levels without and with 

filtering. 
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Figure7. The 3 network outputs for the 400 test patterns: patterns [1-98] for class ‘Awake’, and patterns [99-

400] for class ‘Moderate Anesthesia’, while those for the first subplot 3 classes are represented; and finally the 

previous two beside ‘Light Anaesthesia’[99-167]. The red rectangles shows the three classes for each network. 

Table6. Records for the six selected patients that were used for training, with their IDs, total epochs, surgery 

time, and the chosen epochs indices. Numbers (1, 2, and 3) in small font indicate the DoA three levels. 

Event Patient EEG Record 

ID 

Total 

number of 

Epochs 

Surgery 

Time 

Actual Epochs 

Range* 

Appropriate Epochs Extracted 

(1280 Samples each) 

Patient 1 1017-61-1106 918 
11:07- 

13:40 

[1 to 60]
1
 

[61 to 75]
2 

[780 to 840]
2 

[76 to 285]
3
 

[286 to 675]
3
 

[23, 33, 41, 55, 58, 56, 57, 60, 

61]
1
 

[65, 69, 81]
2
,  [728 to 751]

2
 

[767 to 772]
2
, [802 to 839]

2
 

[90 to 95]
3
,     [120 to 123]

3
 

[109 to 112]
3
, [128 to 141]

3 
 

[145 to 188]
3
, [192 to 243]

3
 

[274 to 303]
3
, [308 to 361]

3
 

[370 to 412]
3
, [370 to 412]

3
 

[431 to 478]
3
, [486 to 515]

3
 

[548 to 560]
3
, [579 to 597]

3
 

[625 to 637]
 3
 

Patient 2 1017-61-1348 954 
13:51 – 

16:30 

[1 to 30]
1
 

[35 to 45]
2
 

[48 to 894]
3
 

[14, 17, 21, 23, 31]
1
 

[278 to 302]
3
, [308 to 346]

3
 

[452 to 481]
3
, [500 to 541]

3
 

[552 to 601]
3
, [611 to 659]

3
 

[704 to 721]
3
, [728 to 753]

3
 

Patient 3 1104-23-1345 816 
13:46 – 

15:30 

[1 to 38]
1
 

[42 to 63]
2
 

[588 to 630]
2
 

[72 to 573]
3
 

[48, 50, 62, 63, 67]
2 

[576, 578, 582, 585, 586]
2
 [587, 

600]
2
 

[322 to 376]
3
, [392 to 425]

3
 

[456 to 490]
3
, [517 to 535]

3
 

Patient 4 1017-65-1436 594 
14:36 – 

16:15 

[1 to 12]
1 

[426 to 594]
2
 

[24 to 407]
3
 

[24]
1 

[21, 22, 23, 27, 28, 29]
2
 

[490, 497, 501, 507]
2
 

[510 to 513]
2
, 

[178 to 227]
3
, [240 to 272]

3
 

[300 to 346]
3
, [356 to 376]

3
 

[392 to 407]
3
 

Patient 5 1029-65-1010 576 
10:09 – 

11:45 

[1 to 115]
1
 

[120 to 132]
2 

[520 to 570]
2
 

[137 to 509]
3
 

[29, 77, 116, 121]
1
 

[[142]
2
 

[285 to 303]
3
, [311 to 342]

3
 

[368 to 381]
3
, [430 to 482]

3
 

Patient 6 1107-17-1334 486 
13:34 – 

14:55 

[1 to 65]
1
 

[72 to 77]
2
 

[[85 to end]
3
 

[33, 49]
1
, [51 to 54]

1
 

[145 to 219]
3
, 267 to 283]

3
 

[310 to 349]
3
 

As shown in Table 5, NW-1 showed weak recognition (26%) for the Class-2 „Light Anaesthesia‟, but 

showed much better accuracy for Classes 1 and 3, „Awake‟ and „Moderate Anaesthesia‟, respectively. 

The reason comes from the close values for the 3 scales of the SampEn measures. The difference 

between the „Awake‟ and the „Moderate Anaesthesia‟ is wide. Therefore, the accuracy for Class-2 

was 18% and that for the remaining two classes, „Awake‟ and „Moderate anaesthesia‟, were 86% and 

72%, respectively. 
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For the other two networks under study, NW-2 and NW-3, which were trained for only two levels 

without EMD filtering, i.e., the „Awake‟ and the „Moderate anaesthesia‟, the results showed more 

accuracy. In particular, accuracy for Class-1 and Class-3 was 74% and 91%, respectively. For NW-3, 

which was trained for 2 levels with EMD filtering, the accuracy of classification reached 92%to 95%. 

The overall accuracy is valued as 72%, 90%, and 95% for NW-1, NW-2,and NW-3, respectively. 

4. CONCLUSION 

In summary, we propose a new method to assess the DoA. The main feature of this method is the use 

of EMD to filter the EEG set in its generic form along with the use of MSE with SampEn and three 

time scales to obtain additional dimensions for better recognition of the three anaesthetic levels. 

Statistical analysis showed a distinct correlation between samples in the same class and distinction 

between the three different levels of consciousness. ANN was the sole classifier used in this method 

and its effectiveness was evaluated by testing on the EEG data of 14of the 20 patients. An accuracy 

rate of over 95% was obtained using this method of using MSSE and EMD filtering with ANN 

classifier in detecting the 3 levels of DoA. 
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