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Abstract: there has been a developing pattern to create programming utilizing distinctive parts. Along these 

lines the expense of the product diminishes and the designer has the capacity finish the framework productively. 

The parts code could possibly be obvious to the designer. Testing, for this situation, requires the improvement of 

an arrangement of test setups that can be connected on the product. In any case, for programming that contains 

an extensive number of parts, it is infeasible to test every last test arrangement inside of the constrained testing 

spending plan and time. In this paper we propose a CA-based system that recognizes an arrangement of test 

Configurations that are required to amplify pair-wise scope, with the imperative that the quantity of test setups 

is predefined. Pairwise testing is a combinatorial procedure used to decrease the quantity of experiment inputs 

to a framework in circumstances where comprehensive testing with every conceivable data is unrealistic or 

restrictively costly. Given an arrangement of information parameters where every parameter can tackle one of a 

discrete arrangement of qualities, a pairwise test set comprises of a gathering of vectors which catches every 

single conceivable blend of sets of parameter qualities. The era of negligible pairwise test sets has been 

indicated to be a NP-complete issue and there have been a few deterministic calculations distributed. This paper 

introduces the aftereffects of an examination of creating pairwise test sets utilizing a hereditary calculation. 

Contrasted and distributed results for deterministic pairwise test set era calculations, the hereditary calculation 

methodology delivered test sets which were equivalent or better regarding test set size in 39 out of 40 cases. In 

any case, the hereditary calculation methodology obliged longer preparing time than deterministic 

methodologies in all cases. The outcomes show that the era of pairwise test sets utilizing a hereditary 

calculation is conceivable, and recommend that the methodology may be functional and valuable in certain 

testing situation 
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1. INTRODUCTION 

Pairwise testing is an effective, combinatorial testing technique that, for each pair of input parameters 

to a software system, tests all possible combinations of these parameters. It is based on the 

observation that most software errors are caused by interactions of at most two factors such as input 

values. Its test suite is much smaller than that of exhaustive testing yet still very effective in finding 

errors. However, one problem of pairwise testing is that finding the least number of test cases has 

been proven to be an NP-complete problem. This means that an efficient way to find an optimal 

solution is not known and that the time required for finding a minimum number of test cases grows 

rapidly when the numbers of parameters and possible values increase.  

Pairwise testing is a combinatorial testing technique in which every pair of input parameters of 

software is tested. It is regarded as a reasonable cost-benefit compromise among combinatorial testing 

methods; it can be performed much faster than exhaustive testing that tests all combinations of all 

input parameters, and is more effective than less exhaustive methods that fail to exercise all possible 

pairs of input parameters. The reasoning behind pairwise testing is that the majority of software errors 

are caused by a single input parameter or a combination of two input parameters. Pairwise testing thus 

requires that each pair of input parameter values be captured at least by one test case. As an example, 

let us consider software that takes three input parameters, say x, y, and z.  
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If each parameter can have three different values, then there will be 27 different pairs: (x1, y1), (x1, 

y2),.,., (y3, z3). A test case (x1, y3, z2), for example, captures three of these 27 pairs: (x1, y3), (x1, z2), 

and (y3, z3). By selecting test cases judiciously, all pairs of input parameters can be exercised with a 

minimum number of test cases; e.g., a set of nine test cases can capture all 27 pairs of three 

parameters, each with three different values. 

A genetic algorithm is a technique that simulates the natural process of evolution. It was discovered as 

a useful tool for dealing with search and optimization-related problems and is known to be effective 

for finding solutions for problems with a huge search space and complexity. In a genetic algorithm, a 

population of candidate solutions, called individuals, to a problem evolves toward better solutions. 

The evolution is governed by so-called genetic operators such as mutation and crossover that select 

and modify individuals to form a new population. In general, a fitter individual has a better chance to 

survive and prevail in a population. 

Genetic algorithms use biological models to emulate the process of evolution, where a population is 

made of a set of possible solutions called individuals]. The search starts with an initial population of 

which individuals are typically generated randomly. The population is evolved into a new generation 

by applying operations inspired by genetics and natural selection, such as selection, crossover, and 

mutation. This evolution process is repeated until a solution is found in the population or a certain 

stopping condition, e.g., the maximum number of iterations, is met. The search is guided by a fitness 

function that calculates the fitness values of the individuals in the population in that the fitter ones 

have a better chance to survive and thus evolve into the next generation. The effectiveness of a genetic 

algorithm is thus determined in part by the quality of its fitness function. For an algorithm to be 

considered to be genetic, it should at least have the following key elements.  

Chromosome encoding. This is a way to represent a possible solution. A chromosome consists of 

genes representing a feature of an individual, and the possible values for a gene are called alleles. For 

example, the eye color feature of a person is a gene, and the alleles for the gene could be black, 

brown, blue, and green. The combination of genes in a chromosome is what defines an individual’s 

set of features, and its encoding can vary widely depending on the specific problem to be solved. 

Fitness function. This is a means to measure each individual’s potential. It determines how good an 

individual is amongst all the others. The fitness value—calculated by a fitness function and associated 

with each individual— is the element used to determine which individuals have more opportunities to 

prevail in a population.  

Genetic operations. These are the rule for evolution, as they are applied to the individuals of a 

population to facilitate their evolutions. The most common genetic operations are (a) selection that 

selects individuals for reproduction, (b) crossover that combines the genes of two parents and 

generates two new children, (c) mutation that modifies the genes of individuals randomly, and 

(d)replacement that defines the rules of replacing existing individuals in a population with the newly 

created individuals. 

1.1 History 

Pairwise testing is a wildly popular approach to combinatorial testing problems.  The number of 

articles and textbooks covering the topic continues to grow, as do the number of commercial and 

academic courses that teach the technique.  Despite the technique's popularity and its reputation as 

a best practice, we find the technique to be over promoted and poorly understood. Knowledge of 

the weaknesses of the pairwise testing technique, or of any testing technique, is essential if we are 

to apply the technique wisely.   

Different test generation strategies have been published for pairwise testing. One strategy starts with 

an empty test set and adds one test at a time. To generate a new test, the strategy produces a number 

of possible candidate tests according to a greedy algorithm and then selects one that covers the most 

uncovered pairs. Another approach to generating a pairwise test set is to use orthogonal arrays. The 

original method of orthogonal arrays requires that all parameters have the same number of values and 

that each pair of values be covered the same number of times. The first requirement can be relaxed by 

adding don’t care values for missing values. But the use of don’t care values creates extra tests. The 

second requirement is considered unnecessary for software testing and also creates extra tests for 

pairwise testing. 
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1.2 Motivation 

Pairwise testing (or 2-way testing) is a specification based testing criterion, which requires that for 

each pair of input parameters of a system, every combination of valid values of these two parameters 

be covered by at least one test case. Empirical results show that pairwise testing is practical and 

effective for various types of software systems. By seeing the graph we have found that there are 75% 

of errors can be covered by applying pair wise testing. Hence pair wise testing can be used in web 

applications. 

 

2. LITERATURE SURVEY 

T. Shiba et al, [226] had used artificial life techniques to generate test cases for combinatorial testing. 

Combinatorial testing is a specification-based testing criterion, which requires that for each t-way 

combination of input parameters of a system, every combination of valid values of these t parameters 

be covered by at least one test case. Their approach is motivated by the observation that in many 

applications a significant number of faults are caused by interactions of a smaller number of 

parameters. They had proposed a new test generation algorithms for combinatorial testing based on 

two artificial life techniques: a genetic algorithm (GA) and an Ant Colony Algorithm (ACA). 

Bestoun S. Ahmed, et al, [93] had applied the Particle Swarm Optimization strategy to uniform and 

variable strength covering array construction. 

 B.S. Ahmed and K.Z. Zamli [145] had proposed PSTG-a t-way strategy adopting particle swarm 

optimization. As an activity to ensure quality and conformance, testing is one of the most important 

activities in any software or hardware product development cycle. Often, the challenge in testing is 

that the system may support a wide range of configurations. Ideally, it is desirable to test all of these 

configurations exhaustively. However, exhaustive testing is practically impossible due to time and 

resource limitations. To address this issue, there is a need for a sampling strategy that can select a 

subset of inputs as test data from an inherently large search space. Recent findings demonstrate that t-

way interaction testing strategies based on artificial intelligence (i.e. where t indicates interaction 

strength) have been successful to obtain a near optimal solution resulting into smaller test set to be 

considered. Motivated by such findings, they have developed a new test generation strategy, called 

Particle Swarm Test Generator (PSTG). They had discussed the design of PSTG and demonstrate 

their preliminary test size reduction results against other competing t-way strategies including IPOG, 

WHITCH, Jenny, TConfig, and TVG. 

A. Calvagna, G. Pappalardo and E. Tramontana, [243] had proposed a novel approach to effective 

parallel computing of t-wise covering arrays. They had presented a novel parallel technique to 

compute t-wise covering arrays. The massive computational work, implied by the considered task 

when large configuration spaces are modeled, is distributed over a scalable set of parallel computing 

resources by means of an MPI-compliant algorithm. Due to NP-completeness of the covering array 

problem, existing research on combinatorial generation algorithms commonly assumes this 

computation task as strictly sequential. Conversely, basing on inherent combinatorial properties, we 

show that it is possible to scatter the overall workload into several and independent processing sub-

tasks, and then collect all outcomes into a global solution whose size is still comparable to that of a 
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sequentially computed solution. Their reported results show that in this way significant speed-up is 

achieved on the computation times with respect to the sequential computation of the same task. 

Mohammed I. Younis and Kamal Z. Zamli, [233] had presented the MC-MIPOG- A Parallel t-Way 

Test Generation Strategy for Multicore Systems. Combinatorial testing has been an active research 

area in recent years. One challenge in this area is dealing with the combinatorial explosion problem, 

which typically requires a very expensive computational process to find a good test set that covers all 

the combinations for a given interaction strength (t). Parallelization can be an effective approach to 

manage this computational cost, that is, by taking advantage of the recent advancement of multicore 

architectures. In line with such alluring prospects, their work presents a new deterministic strategy, 

called multicore modified input parameter order (MC-MIPOG) based on an earlier strategy, input 

parameter order generalized (IPOG). Unlike its predecessor strategy, MCMIPOG adopts a novel 

approach by removing control and data dependency to permit the harnessing of multicore systems. 

Experiments are undertaken to demonstrate speedup gain and to compare the proposed strategy with 

other strategies, including IPOG. The overall results demonstrate that MC-MIPOG outperforms most 

existing strategies (IPOG, IPOF, IPOF2, IPOG-D, ITCH, TConfig, Jenny, and TVG) in terms of test 

size within acceptable execution time. Unlike most strategies, MC-MIPOG is also capable of 

supporting high interaction strengths of t > 6. 

B.S. Ahmed and K.Z. Zamli, [146] had proposed T-Way Test Data Generation Strategy Based on 

Particle Swarm Optimization. Due to market demands, software has grown tremendously in size and 

functionalities over the years. As side effects of such growth, there tend to be more and more 

unwanted interaction between software and system parameters. These unwanted interactions can 

sometimes lead to nasty and difficult bugs to detect. In order to address these issues, t-way strategies 

(i.e. where t indicates interaction strength) are helpful to generate a set of test cases (i.e. to form a 

complete suite) that cover the required interaction strength as least once from a typically large space 

of possible test values. They had highlighted a new t-way strategy based on Particle Swarm 

Optimization, called PSTG. Preliminary results demonstrated that PSTG compares well against other 

existing t-way strategies. 

Bestoun S. Ahmed, Kamal Z. Zamli and Chee Peng Lim  [147] had  constructed  a t-way interaction 

test suite using the particle swarm optimization approach. 

Yu Lei et al, [201] had proposed a IPOG- a general strategy for t-way software testing. Most existing 

work on t-way testing has focused on 2-way (or pairwise) testing, which aims to detect faults caused 

by interactions between any two parameters. However, faults can also be caused by interactions 

involving more than two parameters. They had generalized an existing strategy, called In-Parameter-

Order (IPO), from pairwise testing to t-way testing. A major challenge of their generalization effort is 

dealing with the combinatorial growth in the number of combinations of parameter values. They had 

described a t-way testing tool, called FireEye, and discuss design decisions that are made to enable an 

efficient implementation of the generalized IPO strategy. They also report several experiments that are 

designed to evaluate the effectiveness of FireEye. 

3. EXISTING PHASE 

Combination strategies are a class of test-case selection methods where test cases are identified by 

choosing “interesting” values1, and then combining those values of test object parameters. The values 

are selected based on some combinatorial strategy. Some combination strategies are based on 

techniques from experimental design. 

This section first explains the different coverage criteria, normally associated with combination 

strategies and then briefly describes the combination strategies that were identified in the literature. 

The combination strategies have been organized into different classes based on the amount of 

randomness of the algorithm and according to how the test suites are created. Figure 2.1 shows an 

overview of the classification scheme. The combination strategies labeled non-deterministic all 

depend to some degree on randomness. A property of these combination strategies is that the same 

input parameter model may lead to different test suites. The simplest non-deterministic combination 

strategy is pure random selection of test cases. The group of non-deterministic combination strategies 

also includes two heuristic methods, CATS and AETG. 
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Figure2. Classification Scheme for Combination Strategies 

The deterministic combination strategies group is further divided into three subgroups, instant, 

iterative, and parameter-based. All of these combination strategies will always produce the same 

result from a specific input parameter model. The two instant combination strategies, Orthogonal 

Arrays (OA) and Covering Arrays (CA), produce the complete test suite directly. The largest group of 

combination strategies is iterative. They share the property that the algorithms generate one test case 

at a time and add it to the test suite. 

Each Choice (EC), Partly Pair-Wise (PPW), Base Choice (BC), All Combinations (AC), and Anti-

random (AR) all belong to the iterative combination strategies. The parameter-based combination 

strategy, In Parameter Order (IPO), starts by creating a test suite for a subset of the parameters in the 

input parameter model. Then one parameter at a time is added and the test cases in the test suite are 

modified to cover the new parameter. Completely new test cases may also need to be added.  

Like many test-case selection methods, combination strategies are based on coverage.. The following 

subsections define the coverage criteria satisfied by combination strategies are included. 

Each-used (also known as 1-wise) coverage is the simplest coverage criterion. 100% each-used 

coverage requires that every interesting value of every parameter is included in at least one test case in 

the test suite.   100% Pair-wise (also known as 2-wise) coverage requires that every possible pair of 

interesting values of any two parameters are included in some test case. Note that the same test case 

may cover more than one unique pair of values. 

A natural extension of pair-wise (2-wise) coverage is t-wise coverage, which requires every possible 

combination of interesting values of t parameters be included in some test case in the test suit, t-wise 

coverage is formally defined. A special case of t-wise coverage is N -wise coverage, where N is the 

number of parameters of the test object. N -wise coverage requires all possible combinations of all 

interesting values of the N parameters be included in the test suite. 

The each-used, pair-wise, t-wise, and N -wise coverage criteria are purely combinatorial and do not 

use any semantic information. More coverage criteria can be defined by using semantic information. 

Cohen et al. indicate that valid and error parameter values should be treated differently with respect to 

coverage. Normal values lie within the bounds of normal operation of the test object, and error values 

lie outside of the normal operating range. Often, an error value will result in some kind of error 

message and the termination of the execution. To avoid one error value masking another author 

suggests that only one error value of any parameter should be included in each test case. This 

observation was also made and explained in an experiment also. 

4. PROPOSED SYSTEM 

Our proposed approach uses Genetic algorithm to generate the configuration sets and based on fitness 

of each set we can select a set that can serve as S. There are two objectives for the test configuration 

coverage problem. 

1) To generate a set of configurations, S, that can cover all the pair-wise interactions between the 

components. 

2) To minimize |S|, i.e., to minimize the number of configurations that can cover all interaction 

elements.  
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Chromosome structure Recall from the previous sections that we have a number of parameters, p. 

and each parameter may a number of equivalence classes of values v. Each chromosome T sub set of 

C consists of a number of configurations, where T is the set of all possible test configurations. Each 

configuration (in the chromosome) is in the form of {v... vp} having one value for each parameter. 

 Fitness function The fitness function used for evaluating a chromosome C is calculated as the 

number of distinct pair-wise interaction configurations covered by all of the chromosome’s 

configurations, divided by the total number of possible pair-wise interaction configurations |Ф2|, 

where Ф2 is the set of all possible pair-wise interaction configurations.  

For example, assume that there is a chromosome having two configurations for three parameters: {{1, 

2, and 2}, {l, 1, 2}}, let’s suppose each of the parameters can take two possible values, namely 1 or 2. 

In this case, the set of pair-wise interaction configurations covered by the chromosome in hand is 

calculated as follows.  

N 1 = {{l, 2, X}, {l, X, 2}, {X, 2, 2}} 

N 2 = {{1, 1, X}, {1, X, 2}, {X, 1, 2}}. 

Where Ni is the set of distinct pair-wise interaction elements covered by configuration i.  

Accordingly, the overall number of distinct pair-wise configurations covered by the chromosome = 

3+3-1=5 and 

Ф = {{l, 1, X}, {1, 2, X}, {2, 1, X), {2, 2, X), {1, X, 1}, {1, X, 2),{2, X, 1}, {2, X, 2}, {X, 1, 1}, {X, 

1, 2}, {X. 2, 1}, {X, 2, 2} },i.e., Ф2 = 12.  

Accordingly, the fitness of the chromosome {{1, 2, 2}, {l, 1, 2}} for this particular case is 5/12 = 

0.42. While the chromosome {{l, 2, 2}, {l, l, l}} would have a fitness = 0.5.  

Consider a system which has n input parameters where each parameter can take on a single, discrete 

value. In many situations exhaustive testing of all possible combinations of input values is not 

feasible. For example, if n = 20 input parameters, where each parameter can be assigned one of 10 

values, there are 1020 different input sets. If tests can be executed at a rate of 1,000 cases per second, 

a test run would require 1017 seconds, or roughly 3 billion years, to complete. Even when the total 

number of test case combinations is small, exhaustive testing may not be possible if each test case is 

expensive. Pairwise testing is a combinatorial technique which selects a subset of all possible test case 

input combinations.  

A pairwise test set consists of a collection of test vectors which captures all possible combinations of 

pairs of input parameter values. In informal terms, for two parameters p0 and p1, and any valid values 

v0 for p0 and v1 for p1, there is a test vector in which p0 has the value v0 and p1 has the value v1. 

The concept is best illustrated by example. Suppose a system has four parameters, p0, p1, p2, and p3. 

Further, suppose that parameter p0 can accept one of two possible values, {a0, and a1}. And suppose 

the possible values for parameters p1, p2, and p3 are {b0, b1, b2, b3}, {c0, c1, c2}, and {d0, d1} 

respectively. For this situation there are a total of 2 * 4 * 3 * 2 = 48 combinations of input values. For 

example, one arbitrary test vector is {a0, b2, c1, d0}. Additionally, for this situation there are a total 

of 44 pairs of input values:   

{a0, b0}, {a0, b1}, {a0, b2}, {a0, b3}, {a0, c0}, {a0, c1}, {a0, c2}, {a0, d0}, {a0, d1}, {a1, b0}, {a1, 

b1}, {a1, b2}, {a1, b3}, {a1, c0}, {a1, c1}, {a1, c2}, {a1, d0}, {a1, d1}, {b0, c0}, {b0, c1}, {b0, c2}, 

{b0, d0}, {b0, d1}, {b1, c0}, {b1, c1}, {b1, c2}, {b1, d0}, {b1, d1}, {b2, c0}, {b2, c1}, {b2, c2}, {b2, 

d0}, {b2, d1}, {b3, c0}, {b3, c1}, {b3, c2}, {b3, d0}, {b3, d1}, {c0, d0}, {c0, d1}, {c1, d0}, {c1, d1}, 

{c2, d0}, {c2, d1}.   

A pairwise test set for this scenario consists of a collection of test vectors which capture all input 

pairs. For example, the following test set of 12 test vectors captures all 44 possible pairs of input 

values:   

0: a0 b0 c0 d0    1: a1 b0 c1 d1     2: a1 b1 c2 d0  

3: a0 b2 c2 d1    4: a1 b3 c0 d1     5: a0 b1 c1 d0 

6: a1 b2 c0 d0     7: a0 b3 c1 d0     8: a0 b0 c2 d0 

9: a0 b1 c0 d1   10: a0 b2 c1 d0   11: a0 b3 c2 d0 
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Because the intent of pairwise testing is to reduce the number of test cases, smaller test set sizes are 

better than larger test set sizes. The fundamental notion behind pairwise testing is the premise that 

most software faults result from either single-value inputs or by an interaction between pairs of input 

values. Generating minimal size pairwise test sets is an NP Complete problem. One approach to 

pairwise test set generation is the use of orthogonal arrays. Another approach is the use of an iterative 

technique which employs a greedy algorithm to construct a test set one vector at a time until all 

possible pairs are captured. A third approach is to generate a test set for the first two parameters, and 

then iteratively extend the test set to account for each remaining parameter. A comprehensive review 

of the research literature on pairwise test set generation techniques yielded a single paper which 

explored the use of a genetic algorithm.  

That our project presented the results of a feasibility study performed on a single input set. However, 

the input set was small (four parameters, each of which could take on one of three values) and the 

resulting pairwise test set size was non-optimal (10 test vectors rather than 9 vectors). Additionally, 

the study did not compare the effectiveness of the approach with other techniques. This project 

extends that feasibility study and demonstrates the use of a genetic algorithm to generate pairwise test 

sets. The technique is referred to as GAPTS (Genetic Algorithm for Pairwise Test Sets) generation. 

The GAPTS algorithm was executed against seven benchmark input sets, and the GAPTS results were 

compared with the results produced by five other pairwise test set generation algorithms. 

Genetic Algorithms (GAs) are a class of computational procedures inspired by biological evolution. 

GAs encode a potential solution to a specific problem using a simple chromosome-like data structure 

and then apply operators modeled after genetic recombination and mutation to these structures in a 

way that is designed to preserve essential information. GAs maintains a population of individuals each 

of which consists of a chromosome/solution and a fitness value which measures how well the 

individual's chromosome solves the problem. Individuals with high fitness values are selected to serve 

as the basis for producing offspring solutions. Individuals with low fitness values are removed from 

the population of solutions and replaced by offspring solutions.  

Genetic algorithms are typically used to solve maximization and minimization problems that are 

combinatorial complex and which do not lend themselves to standard algorithmic techniques. In 

pseudo code, one typical form of a GA is:  set generation := 0 initialize population while (generation < 

maxGenerations)   evaluate population fitness values   sort population based on fitness   if (optimal 

solution exists)     break   select high-fitness individuals   produce offspring   stochastically mutate 

offspring   replace low-fitness individuals end while return best individual. There are many variations 

of the basic algorithm structure which are possible.  

Genetic algorithms merely provide a basic framework for solving a problem and the implementation 

of a specific genetic algorithm which solves a specific problem requires several design decisions. 

Some of the major design decisions include the following. First, a chromosome representation of a 

solution to the target problem must be designed. Second, a fitness function which measures how well 

a chromosome solves the target problem must be constructed. Third, stochastic algorithms to 

implement genetic crossover and mutation must be designed. Additional GA design parameters 

include selection of the population size, a method for determining which chromosome-solutions are 

selected for reproduction, and a method for determining which chromosome solutions are selected for 

removal from the population. 

Algorithm 

Begin 

Step 1: P = initializePopulation() 

Step 2: i = 0 

Step 3: while (i < MAX_GEN && !has Solution(P))  

do 

       calculateFitness(P) 

Step 4: C = ∅ while (|C| < NUM_CROSSOVER)  

do 
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   (p1….., pn) = selectParents(P) 

            (c1……. cn) = crossover (p1… pn); 

Step 5: if (mutate?) then 

c1 = mutate (c1); 

c2 = mutate (c2); 

end 

Step 6: C = C ∪ {c1; c2} 

           end 

Step 7: if (immigration?) then 

I = createImmigrants(); 

end 

Step 8: P = updatePopulation(P, C ∪ I) 

Step 9: i = i + 1end 

End 

5. EXPERIMENTAL RESULTS 

The GAPTS algorithm is compared with other deterministic algorithms which are shown in Table1. 

Using published results as guidelines, for a given input set an initial test set size was supplied to the 

GAPTS algorithm. We have implemented a tool called GAPTS based on ANNs algorithm.  

Experiments have been conducted by considering different systems which can be defined using 

different parametric values.  The parametric values considered for different systems have shown 

below 

S1: 4 (12-value parameters), S2: 4 (11-value parameters), S3: 13 (3-value parameters), S4: 61 

parameters (15 (4- value parameters), 17 (3- value parameters), 29 (2- value parameters)), S5: 75 

parameters (1 (4- value parameters), 39 (3- value parameters), 35 (2- value parameters)), S6: 100 (2- 

value parameters), S7: 20 (10- value parameters). 

The numbers of test cases generated for different systems which can be defined using various 

parametric combinations are shown in the table 2. It can be seen from the above table that the number 

of test cases generated by ANN-PTCG are minimal considering any of the system configurations. 

Table2. Comparison of Different Strategies 

System  S1 S2 S3 S4 S5 S6 S7 

AETG n/a 9 15 41 28 10 194 

PICT 12 13 20 38 31 16 216 

QICT 12 11 22 42 34 16 219 

All Pairs 12 10 22 41 30 16 664 

Pair Test n/a 9 19 36 29 15 218 

GAPTS 12 9 15 35 27 10 196 

From the above table, it is seen that the number of test cases generated by our technique is quiet 

minimal for considering any of the system configurations. 

6. CONCLUSION 

Hence we concluded that a genetic algorithm test generation strategy was proposed to generate 

the optimal test cases and improve the quality of pair wise testing result. We have implemented 

this test generation algorithm and have shown some empirical results. When used properly, pair 

wise test set generation is an important technique that can help you produce better software 

systems. 

 The GA strategy was presented in this paper can be easily extended for multi-way testing. We are 

investigating possible improvements of algorithm without increasing time complexity. 
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