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Abstract: Based on properties of the lowest common ancestor (LCA) of two nodes in a complete binary 

tree, the paper designs three algorithms as well as their C-language codes to compute the LCAs. The 

designed algorithms contain both an elementary version that is simple, easily-understood and easily-

realized and a high-efficient version that can be applied for developments of embedded systems and SoC. 

The paper is of a reference to development of embedded systems and related area. 
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1. INTRODUCTION 

Problem of seeking a lowest common ancestor (LCA) of nodes in a tree was first raised by Alfred 

Aho and John Hopcroft in 1973. As a basic and common problem in both graph theory and 

computer science, the problem has been paid attention to because the solution of the problem is 

helpful to other related problems, as introduced in [1] and [2]. Recent years, complete binary trees 

that are widely applied in bioinformatics [3], rapid location of data in industrial control [4-6] 

bring new values for developing algorithms of the problem. The bibliography [7] presents an 

algorithm for computing an LCA of two neighboring nodes in a complete binary tree, however 

algorithm for computing that in an arbitrary a complete binary has not been seen.  

A recent bibliography [8] has systematically presented properties of LCAs in a complete binary, 

but the paper does not present an algorithm for the related computations. Therefore, we present 

related algorithms for it. This paper designs algorithms and C language implementation of 

computing LCA of nodes in a complete binary tree. The paper also makes an analysis of time-

complexity for the algorithms. 

2. PRELIMINARIES 

This section first presents preliminaries for later sections. 

2.1 Basic Definitions and Symbols 

Symbol x  denotes a floor function of a real number such that satisfies 1x x x . Symbol 

{ }x  is the decimal function such that { }x x x  and symbol x  is the ceil function that holds 

1x x x . Symbol ( , )k jN  is to express the node at the j
th
 position on the k-th level in a binary 

tree, symbol ( , )

( , )

l j

k iG  is to express LCA if ( , )k iN  and ( , )l jN . The whole paper suggests the maximal 

depth of the binary tree is h. 

2.2 Lemmas 

Lemma 1 ([9]) For arbitrary real 0 , integer 2log 1J is the minimal j that fits the 

equation 0
2 j

. 
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Lemma 2([9]) For arbitrary real α, 0 and positive integer j, the condition 0
2 j

 is necessary 

for the equation 
2 2j j

. If a positive integer J is the minimal j that holds 0
2 j

, then 

0

12 2J J
. 

Lemma 3([10]) For arbitrary positive integer δ and non-negative I, the inequality 

1 1
( ) 2 ( ) 2

2 2

I I  has a unique solution
1

2 2I
. 

Lemma４([8]) Let 
( , )kN  and 

( , )kN 1(1 ;2 2 )k kk h  be two nodes on the k-th level in a 

complete binary tree; if I is the smallest i that fits the equation 
2 2i i

 and 
2I

; the 
( , )k IN  

is the LCA of  
( , )kN  and 

( , )kN . 

Lemma 5([8]) Let  
( , )kN  and 

( , )kN 1(1 ;2 2 )k kk h  be two nodes on the k-th level in a 

complete binary tree; if I is the smallest i that fits 10 mod2 2i i , integers α and χ are such that 

satisfy
2I

 and 
1 1

( ) 2 ( ) 2
2 2

I I , then ( , ) ( , )

( , ) ( , )

k k I

k k IG G . 

Lemma 6([8]) Let 
( , )kN  and 

( , )kN 1(1 ;2 2 )k kk h  be two nodes on the k-th level in a 

complete binary tree; then the two share a direct ancestor if and only if there exists an integer σ 

such that ,
2

j
i k l .This time 

( 1, /2 )k i
N  is the LCA of  

( , )k iN  and 
( , )l jN . 

Lemma 7([8]) For valid number ( , )k j , if I is the smallest i  that fits 10 mod2 2i i  and 

2I

j
, then ( , )k IN  is the LCA of  ( , )k jN  and ( , 1)k jN . 

3. ALGORITHM DESIGN AND ANALYSIS 

This section design concrete algorithms according to previous lemmas. The algorithms can be 

applied for arbitrary nodes ( , )mN  and ( , )nN  in a complete binary tree, where  and  are sequential 

indices and  < . 

3.1 Algorithm Design 

3.1.1 Algorthm I Based on Lemma 4 

The algorithm is by 4 steps as follows: 

i.  Compute m, n by  and  respectively, 2log 1m , 2log 1n ; 

ii. Compute | |,
2

n m ; 

iii. Compute I  by the following loop 

    I=1; 1 2,
2 2I I

; 

While (
1 2

)  

Begin 

I=I+1, 1 2,
2 2I I

; 

End 

iv.  Compute LCA= 
1( , )m IN . 
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The C++ language for the algorithm I is as follows 

int FindLCA(int a, int b) 

{ int t = 1, temp1 = a, temp2 = b, n, m, I; 

m= (int)(log10(i)/log10(2)); /*compute m*/ 

n= (int)(log10(j)/log10(2)); /*compute n*/ 

I = n-m; t <<= I; 

temp2 = (int)floor(j/t); 

for (int r = 1;;r++)  { 

temp1 >>= 1;temp2 >>= 1; 

if ( temp1==temp2)return temp2; }  

} 

3.1.2 Algorithm II Based on Lemma 5 and 6 

The algorithm is by 6 steps as follows: 

i.   Compute m, n by  and   respectively; 2log 1m , 2log 1n  

ii.  Compute ,
2

n m ; 

iii. Compute 1min( ){0 mod2 2 }i iI i ; 

iv. Compute | | , 
2I

; 

v.  Compute non-negative integer χ:  
1

2 2I
; 

vi.  If 0 , then 
( , )m IN  is the LCA, or if ，then  and goto step iii. 

The C++ language for the algorithm II is as follows： 

int FindLCA(int a, int b) 

{  int I, _2i=1,n, m, r,delta, rm; 

int x=b-a;                        

while(x!=0) 

{ a=(int)floor(a/((double)_2i)); r=a+x;                        

       m= (int)(log10(a)/log10(2));       

n= (int)(log10(r)/log10(2));        

I = n-m;   _2i=1; _2i<<=I; 

       r=(int)floor(r/((double)_2i));       

if (r==a) return a/2; 

 else if (r<a) Swap(&a,&r);         

_2i = 1; 

     for(int i=1;;i++)  { 

 _2i <<= 1; rm=a&(_2i - 1);           

if(rm<_2i/2)  {I=i; break;} }                            

delta = abs(r-a);   _2i=1;    _2i<<=I;                       
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x=(int)ceil(delta/((double)_2i)-0.5);} 

return (int)floor(a/((double)_2i));} 

3.1.3 Algorithm III Based on Lemma 1, 2, 6 and 7 

The algorithm is by 6 steps as follows: 

i.  Compute m, n by  and   respectively, 2log 1m , 2log 1n ; 

ii. Compute ,
2

n m ; 

iii. Compute | | ; 

iv. Compute 1 2log 1I , 
1 1

1 2,
2 2I I

; 

v. If 
1 2

, then 
1 1( , )m IN  is what we need; Or if 

12I
, then goto step vi; 

vi. Compute 1

2 min( ){0 mod2 2 }i iI i , Compute 
22I

; then 
1 2( , )m I IN  is LCA 

The C++ language for the algorithm III is as follows： 

int FindLCA(int a, int b) 

{ int I,I1,I2, _2i=1,n, m, r,rm; 

int sigama1,sigama2,sigama,delta; 

   m= (int)(log10(a)/log10(2));         

   n= (int)(log10(b)/log10(2));          

  I = n-m;    _2i=1;  _2i<<=I;                        

  r=(int)floor(b/((double)_2i));        

if (r==a) return a/2; else if (r<a) Swap(&a,&r);          

delta=r-a;                      

I1=(int)floor(log10(delta))/log10(2))+1;  

  _2i=1;   _2i<<=I1;                        

sigama1=(int)floor(a/((double)_2i)); 

sigama2=(int)floor(r/((double)_2i)); 

 if(sigama1==sigama2) return sigama2; 

 a=sigama1;    _2i = 1; 

 for(int i=1;;i++){                 

  _2i <<= 1; rm=a&(_2i - 1);            

if(rm<_2i/2) {I2=i; break;} }                             

sigama= (int)floor(a/((double)_2i)); 

return sigama;} 

3.2 Analysis of Algorithms 

The step iii in Algorithm I is a loop that wastes most time. By Lemma 4, the number of loops 

depends on the number of level m. Hence it at most needs m loops. Consequently, the time 

complexity of Algorithm I is 
1( ) ( )T m m O m . 

Algorithm II is a bi-looped one. Its inner loop is to search the minimal I that fits 10 mod2 2i i . 

By Lemma 1, this needs 2log 1  computations. The other loop is from step iii to step vi with 
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initial condition  and terminal condition 0 . In the loop, it requires to divide χ by 2I , 

which needs at most 2log 1  computations. Therefore, the whole time needed is  

2 2 2( , ) ( log 1)( log 1)T  

It is easy to prove the worst case is that  and this time it holds 

2 2 2

2 2 2max( ( , )) ( log 1) (log 1) (ln )T O  

Particularly, when 1 , 

2 2max( ( ,1)) log 1 (ln )T O  

Since in a complete binary tree, the level of node α lying is 2log 1 , hence we have  

2

2max( ( ))T m m  

The algorithm III contain a loop in step vi, which takes at most 
1

2log 1
2I

 computation. Hence 

the total time needed is 
1 1 1

3 2 2 2 2 2( ) log 1 log 1 log 1 log log
2 2 2I I I

T . 

Namely 

3 2( ) log (ln )T O  

4. CONCLUSION AND FUTURE WORD 

Seen from the time complexities, each of the previous designed three algorithms has its own 

specialty. From point of view of a programmer, the algorithm I is easy to program because it is 

simple. However, it is a little rough because we can only know its time complexity to its level 

while the other two can reach to a node.  

It is obviously the algorithm II is the lowest efficiency seen from the time complexity. However it 

is strictly derived from properties of the floor function and it is worth of more digging out. For 

example, if the step vi is improved by other means, it might be a better one. It remains us a 

problem whether there is some other better approach to develop. 

The algorithm III, we think it the best one because it is a most industrial one. This is because it 

contains two industrial traits: one is a better time complexity, and the other is its reconstructability. 

In fact, the core of the algorithm III is its step vi, namely, computation of 
2 min( )I i {0 mod  

12 2 }i i . Note that, nodes in a complete binary tree can be previously coded by the way from top 

to bottom and from left to right. Hence each node α must have a minimal I that fits 
10 mod2 2i i . If we preprocess and record these Is, it only takes (ln )O  time. After that 

preprocess, computation of LCA is turned to be an (1)O  inquiry process, which is quite suit for 

developing embedded system. 
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