Detection of Probe Attacks Using Machine Learning Techniques

Ch.Ambedkar

Assistant Professor, Department of C.S.E SRKIT, Vijayawada, India rahul59985@gmail.com

Abstract: In recent years, the number of attacks on the computer networks and its components are getting increasing. To protect from these attacks various Intrusion detection techniques have been used. Intrusion Detection System (IDS) is a system which collects and analyzes the information from the network to identify various attacks made against the components of a network. In this paper we presented a comprehensive analysis on Probe attacks, by various popular machine learning applying techniques such as Naïve Bayes, SVM, Multilayer Perceptron, Decision Trees etc. we used KDDcup99 data set to build the model. In this paper we proposed three layer architecture for detection of probe attacks. Principal Component Analysis is used for dimensionality reduction. We also removed duplicate samples from the training data set. Finally, we compared the performance of each classifier with the help of a line chart.

Keywords: *decision Tree, Intrusion Detection, Multilayer Perceptron, Probe Attacks, PCA.*

1. INTRODUCTION

Intrusion Detection System (IDS) is an active process or device that analyzes system and network activity for unauthorized activity [1]. An ID is hardware or software or a combination of both which is used to monitor a system or network of systems against any malicious or unauthorized activities [1]. Intrusion Detection Systems (IDSs) are used to improve network security. An ID improves the security of the network by identifying, assessing, and reporting unauthorized network activities. IDS are categorized into two classes: network-based and host-based. Network based Intrusion Detection Systems analyses network packets retrieved from the network. Hostbased Intrusion Detection System analyses system calls generated by individual hosts [2]. The data flows through a network is very large and it is difficult to analyze and detect the attacks using traditional methods. Today we have number of Machine learning techniques available which are very useful for analyzing the data and detecting the attacks. In this paper we have used various machine learning techniques for network intrusion detection [3].

V. Kishore Babu

Assistant Professor, Department of C.S.E. SRKIT, Vijayawada, India kishorebabu83@yahoo.co.in

The rest of the paper is organized as follows: section II describes the detailed analysis of the KDD cup 99 dataset. The detailed description of the Probe Attacks data set is given in section III. The proposed model and the process of building a classification model using RapidMiner is given in section IV. Experimental analysis and results are discussed in section V. Finally in section VI the conclusions and future work have been mentioned.

1.1. KDD Cup 99 Data Set Description

KDD CUP 99 data set [4] has been the mostly used data set for evaluation of anomaly detection methods. KDD training data set consists of approximately 4,900,000 samples with 41 features and each sample is labeled as either normal or attack [3][5]. KDD99 is actually composed of three datasets. The largest data set is called "Whole KDD", which consists of 4 million samples. A subset is created from the original data set by randomly selecting the samples from it.

TableI. Categories of Attacks of KDD Cup 99 Data

Category of	Attack name		
attack			
Denial of	Back, land, Neptune, pod,		
Service Attacks	smurf, teardrop		
User to Root	Buffor_overflow, loadmodule,		
Attacks	perl, rootkit		
Remote to Local	ftp_write, guess_passwd,		
Attacks	imap, multihop, phf, spy,		
	warezclient		
Probes	Satan, ipsweep, nmap,		
	portsweep		

This data set is called "10% KDD" data set which is used to train the IDS [3][5]. Each sample of the original KDD'99 dataset is classified as one of the following categories [3][6].

- Normal: not an attack
- DOS: denial of service
- R2L: unauthorized access from a remote to local machine.
- U2R: unauthorized access to local super user.

• Probe: a probe attack scans the network to gather the information of computers to identify the vulnerabilities.

The following Table I shows the possible types of attacks in each category.

TABLEII. Total Number of Attributes Given in KDDCup 99 Dataset

Feature Index	dex Feature Name		
1	Duration		
2	protocol_type		
3	Sevice		
4	Flag		
5	Scr-bytes		
6	dst_bytes		
7	Land		
8	wrong_fragment		
9	Urgent		
10	Hot		
11	num_failed_logins		
12	logged_in		
13	num_compromised		
14	root_shell		
15	su_attempted		
16	num_root		
17	num_file_creations		
18	num_shells		
19	num_access_files		
20	num_outbound_cmds		
21	is_host_login		
22	is_guest_login		
23	Count		
24	srv_count		
25	serror_rate		
26	srv_serror_rate		
27	rerror_rate		
28	srv_rerror_rate		
29	same_srv_rate		
30	diff_srv_rate		
31	srv_diff_host_rate		
32	dst_host_count		
33	dst_host_srv_count		
34	dst_host_same_srv_rate		
35	dst_host_diff_srv_rate		
36	dst_host_same_src_port_rate		
37	dst_host_srv_diff_host_rate		
38	dst_host_serror_rate		
39	dst_host_srv_serror_rate		
40	dst_host_rerror_rate		
41	dst_host_srv_rerror_rate		

The KDD CUP 99 Dataset contains 41 features. All these features are listed in the Table II.

2. DATA SET DESCRIPTION OF PROBE ATTACKS

Shows the major attacks in recent years, an increasing number of programs have been used by the attackers to scan a network of computers to gather information or find known vulnerabilities [7]. In probe attacks the attacker scans the network to gather the information of computers to identify the

vulnerabilities. These network probes are quite useful to an attacker who is staging a future attack. An attacker with a map of which machines and services are available on a network can use this information to look for weak points. Some of these scanning tools (satan, saint, mscan) enable even a very unskilled attacker to very quickly check hundreds or thousands of machines on a network for known vulnerabilities [7]. The following Table III probe data set. The training data set contains total 4107 records of four different kinds of probe attacks.

TableIII. Attacks in Probe Data Set

Attack Name	Attacks in Data Set
IPsweep	1247
Nmap	231
Portsweep	1040
Satan	1589
Total	4107

Ipsweep: An Ipsweep attack is a surveillance sweep which is used to determine which hosts are listening on a network.

Mscan: Mscan is a probing tool that uses both DNS zone transfers and/or brute force scanning of IP addresses to locate machines, and test them for vulnerabilities [8].

Nmap: Nmap is a general-purpose tool for performing network scans.

Saint: SAINT is the Security Administrator's Integrated Network Tool [9].

Satan: SATAN is an early predecessor of the SAINT. While SAINT and SATAN are quite similar in purpose and design, the particular vulnerabilities that each tools checks for are slightly different [10].

3. DETECTION OF PROBE ATTACKS

This section describes the proposed model for the detection of Probe attacks. The architecture of the proposed model is given in Fig. 1. This architecture consists of three Layers, in each layer a set of activities have been carried out.

Layer I: Initially KDD CUP 99 data set with 4,94,020 samples is taken, from which the Probe data set is created. Probe data set contains 4107 samples with 41 attributes. The data set description of Probe data set is given in Table III.

Layer II: Principal Component Analysis (PCA) is applied for Feature Selection. Before applying PCA the input data is normalized, so that each attribute falls in the same range [11]. PCA computes c orthonormal vectors that provide a basis for the normalized input data. These vectors are referred **to** *as the principal components. The principal* components are sorted in order of decreasing significance or strength [11]. By using PCA a subset of 18 attributes out of 41 attributes have been selected. The set of attributes selected are listed in Table IV. After applying the PCA we have got dimensional reduced data set with 18 features with so many duplicate samples. In order to remove duplicate samples from the data set, we applied an operator called Remove Duplicates in RapidMiner. After removing the duplicates the resulting data set now consists of only 1800 samples. At the end of layer II, the modified training as well as testing data sets are created.

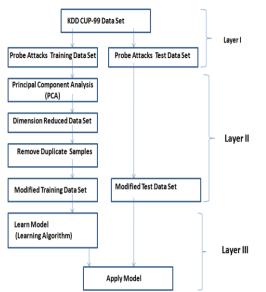


Fig1. The architecture of proposed model

Layer III: In this layer training and testing is done. For training different classification algorithms have been used. The classification algorithms used are Naïve Bayes, SVM, k-NN, Decision Tree, Random Forest, ID3, CHAD, Neural Net, MLP, Perceptron, *etc. The performance of these algorithms is discussed in section V.*

TableIV. Selected Attributes For Probe AttackAnalysis

Index Number	Attribute Name
2,3,4	Protocol_type, Service, Flag
23,27,28	Count, Rerror_rate, Srv_rerror_rate
29,30,31	Same_srv_rate, Diff_srv_rate,
	Srv_diff_host_rate
32,33,34	Dst_hosy_count, Dst_host_srv_count,
	dst_host_same_srv_rate
35,36,37	dst_host_diff_srv_rate,
	dst_host_same_src_port_rate,
	dst_host_srv_diff_host_rate
38,40,41	Dst_host_serror_rate,
	dst_host_rerror_rate,
	dst_host_srv_rerror_rate

4. EXPERIMENTAL ANALYSIS

The performance of the model can be evaluated using various metrics. Some of the metrics are explained bellow [3] [13].

- True Positive (TP): The number of positive samples correctly predicted by the classification model.
- False Negative (FN): The number of positive samples wrongly predicted as negative by the classification model.
- False Positive (FP): The number of negative samples wrongly predicted as positive by the classification model.
- True Negative (TN): The number of negative samples correctly predicted by the classification model.
- True Positive Rate (TPR): The fraction of positive samples predicted correctly by the model. TPR is also called as sensitivity.

$$TPR=TP / (TP+FN)$$
(1)

• True Negative Rate (TNR): The fraction of negative samples predicted correctly by the model. TNR is also called specificity.

$$TNR=TN / (TN+FP)$$
(2)

• False Positive Rate (FPR): The fraction of negative samples predicted as a positive class.

$$FPR=FP/(TN+FP)$$
(3)

• False Negative Rate (FNR): The fraction of positive samples predicted as a negative class.

FNR=FN / (TP+FN)(4)

• Precision: The fraction of records that actually turns out to be positive in the group the classifier has declared as a positive class.

$$Precision = TP / (TP + FP)$$
(5)

High precision indicates that the classifier has committed low number of false positive errors.

• Recall: The fraction of positive samples correctly predicted by the classifier. The value of recall is equivalent to the True Positive Rate.

$$call=TP / (TP+FN)$$
(6)

Classifiers with large recall have very few positive samples misclassified as the negative class.

• Accuracy: Accuracy is the ratio between the number of correct predictions to the total number of predictions.

$$Accuracy = (TP+TN)/(TP+TN+FP+FN)$$
(7)

Rule Model

Re

We used rule induction as one of the classification algorithm. Rule Induction generates a pruned set of rules. A rule based classifier is a technique for classifying records using a collection of " if... then..." rules [13]. The following are the set of rules generated by Rule Induction for detecting probe attacks.

if dst_host_same_src_port_rate ≤ 0.005 then satan. if dst host count ≤ 71.500 and dst host rerror rate > 0.490 then ipsweep. if rerror_rate > 0.095 then portsweep. if dst host srv diff host rate > 0.295 then ipsweep. if dst_host_count > 254.500 then satan. if service = private and dst_host_same_src_port_rate > 0.785 then nmap. if dst host srv count > 58.500 and dst host srv count \leq 201 and srv diff host rate > 0.500 then nmap. if dst_host_same_srv_rate > 0.750 and dst_host_srv_count ≤ 202.500 and dst_host_srv_count > 51 then ipsweep. if dst host srv count > 29 and dst host srv count \leq 42.500 and srv diff host rate > 0.500 then nmap. if dst_host_same_srv_rate > 0.750 and dst_host_srv_count ≤ 47 and count ≤ 23.500 and dst host srv count \leq 3.500 then ipsweep. if dst_host_srv_count > 48.500 and dst host count \leq 3.500 and srv diff host rate > 0.500 then nmap. if dst_host_same_srv_rate > 0.750 then ipsweep. if flag = SF and dst_host_diff_srv_rate > 0.035 then satan. if dst_host_rerror_rate ≤ 0.295 then nmap. else portsweep. correct: 1765 out of 1800 training examples.

The following Table V contains experimental results for various classification models. We have considered three measurements such as Precision, Recall, and Accuracy for each classification model.

<u> </u>	16	Type of Attack			
Classifier	Metric	Buffer_Overflow	loadmodule	Perl	rootkit
	Accuracy	93.89			
Naïve Bayes	Precision	97.09	97.86	75.54	90.33
	Recall	93.91	93.53	95.86	93.97
k-NN	Accuracy	91.73			
	Precision	85.74	93.22	84.09	100
	Recall	100	99.89	51.03	77.87
SVM	Accuracy	98.11			
	Precision	98.35	97.56	96.12	100
F	Recall	97.66	100	85.52	99.14
Decision tree	Accuracy	99.50			
	Precision	99.76	<i>99.77</i>	96	100
	Recall	98.59	100	99.31	99.43
	Accuracy	85.06			
Random Forest	Precision	80.19	84.29	100	100
Forest	Recall	99.53	99.89	2.07	64.37
	Accuracy	92.06			
ID3	Precision	75.18	99.77	100	100
	Recall	100	96.82	22.07	99.43
	Accuracy	91.8			•
CHAID	Precision	76.94	98.52	83.33	100
	Recall	100	98.18	20.69	95.40
	Accuracy	89.67			
Random Tree	Precision	81.84	96.47	41.67	93.37
Tree	Recall	93.91	96.03	20.69	97.13
	Accuracy	96.78			
Rule induction	Precision	96.89	98.97	99.22	90.77
mauchon	Recall	9.85	98.41	87.59	98.85

TableVI. Performance Comparison of Different Classification Algorithms

	Accuracy	99.44			
Neural Net	Precision	<i>99.53</i>	99.77	95.92	100
	Recall	<i>98.59</i>	100	97.24	100
Auto MLP	Accuracy	99.06			
	Precision	<i>99.53</i>	99.21	94.44	100
	Recall	<i>98.59</i>	99.77	93.79	100

Finally the comparison of performance of different classification models is carried out. Fig.2 shows the performance comparisons. X-axis represents classifier and Y-axis represents accuracy of each algorithm.

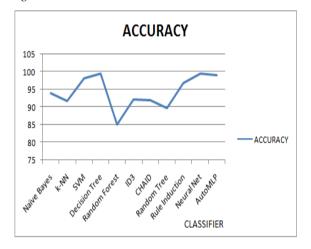


Fig2. Comparisons of accuracy of classification algorithms

5. CONCLUSION

In this paper, we have applied various data mining techniques such as Decision Tree, Naïve Bayes, SVM, Random Forest, Neural Net, AutoMLP, Random Tree, Rule Reduction, ID3, CHAID,k-NN on Probe data set. All most all the classification algorithms show high accuracy. Among these techniques Neural Net gave highest accuracy of 99.44%. AutoMLP gave second highest accuracy of 99.06%. The performances of these algorithms are clearly shown in the graph. In the future we will use ensemble methods to improve the accuracy of the system. In addition to these we will also use fuzzy techniques, genetic algorithms to improve the accuracy of the system.

REFERENCES

- [1] D.P. Vinchurkar, A. Reshamwala, "A Review of Intrusion Detection System using Neural Network and Machine Learning Technique", International Journal of Engineering Science and Innovative Technology (IJESIT), Vol 1, Issue 2, Nov 2012.
- [2] Li Tain, "Research on Network Intrusion Detection System Based on Improved K-means Clustering Algorithm", Computer Science – Technology and Applications, 2009.IFCSTA '09. International Forum.
- [3] T.V.N Lakshmi, V.K Babu, "Detection of User to Root Attacks using Machine Learning Techniques", International Journal of Advanced Engineering and Global Technology (IJAEGT), Vol. 3, Issue 3, Mar 2015.
- [4] KDD cup 99 dataset, available at http://kdd.ics.uci.edu/dataset/kddcup99/kddcup 99.html
- [5] Mathod T., E.Bhagheri, Wei Lu, and A.A. Ghorbani,"A Detailed Analysis of the KDD CUP 99 Data Set", p.2, 2009.
- [6] R. Shanmugavadivu, .N.Nagarajan, "Network Intrusion Detection System using Fuzzy Logic", Indian Journal of Computer Science and Engineering, Vol. 2 No. 1, pp-101-111,2011.
- [7] Simson Garfinkel and Gene Spafford. Practical Unix & Internet Security. O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol CA, 95472, 2ndedition, April 1996.
- [8] CERT Incident Note. http://www.cert.org/ incident_notes/IN-98.02.html. July 2, 1998.
- [9] J. Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann Publishers, Elsevier.
- [10] P. N. Tan, M. Steinbach, V. Kumar," Introduction to Data Mining", Pearson Education.