
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 2, Issue 3, March 2015, PP 21-24

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

©ARC Page 21

Burr Type III Software Reliability with SPC-An Order

Statistics Approach

K. Sobhana

Department of Computer Science

Krishna University

Machilipatnam, Andhra Pradesh,India

msobhana@yahoo.com

Dr. R. Satya Prasad

Dept. of Computer Science & Engg

Acharya Nagarjuna University

Guntur, Andhra Pradesh (India)

prof_rsp@gmail.com

Abstract: In the past few decades research on

software reliability has been conducted and several

software reliability growth models have been

developed for estimating software reliability. Order

Statistics is an approach for estimating software

reliability for time domain data based on NHPP with

a distribution model. This paper presents the Burr

Type III model as a software reliability growth model

and derives the expressions for an efficient reliability

function using order statistics. Statistical Process

Control (SPC) can be used to monitor the software

reliability process and thereby improve the software

quality. Control Charts are one of the powerful SPC

tools to analyze the failure frequency. It is proposed

that the SPC can be applied to monitor the software

failure process of Burr Type III based NHPP.

Keywords: Software reliability; Burr type III; Order

Statistics; Statistical Process Control;NHPP

1. INTRODUCTION

Software reliability is one of the most important

characteristics of software quality. Reliable software

systems can be produced and maintained by

employing quality measurement and management

technologies during the software life cycle. Software

Reliability is the probability of failure free operation

of software in a specified environment during

specified time [1].

The monitoring of Software reliability process is a far

from simple activity. In recent years, several authors

have recommended the use of SPC for software

process monitoring. A few others have highlighted

the potential pitfalls in its use[2].

The main thrust of the paper is to formalize and

present an array of guidelines in a disciplined process

with a view to helping the practitioner in putting SPC

to correct use during software process monitoring.

Over the years, SPC has come to be widely used

among others, in manufacturing industries for the

purpose of controlling and improving processes. Our

effort is to apply SPC techniques in the software

development process so as to improve software

reliability and quality [3]. It is reported that SPC can

be successfully applied to several processes for

software development, including software reliability

process. SPC is traditionally so well adopted in

manufacturing industry. In general software

development activities are more process centric than

product centric which makes it difficult to apply SPC

in a straight forward manner.

The utilization of SPC for software reliability has

been the subject of study of several researchers. A

few of these studies are based on reliability process

improvement models. They turn the search light on

SPC as a means of accomplishing high process

maturities. Some of the studies furnish guidelines in

the use of SPC by modifying general SPC principles

to suit the special requirements of software

development [3] (Burr and Owen[4]; Flora and

Carleton[5]). It is especially noteworthy that Burr and

Owen provide seminal guidelines by delineating the

techniques currently in vogue for managing and

controlling the reliability of software. Significantly,

in doing so, their focus is on control charts as

efficient and appropriate SPC tools.

It is accepted on all hands that Statistical process

control acts as a powerful tool for bringing about

improvement of quality as well as productivity of any

manufacturing procedure and is particularly relevant

to software development also. Viewed in this light,

SPC is a method of process management through

application of statistical analysis, which involves and

includes the defining, measuring, controlling, and

improving of the processes[6].

2.1. Model Development

A. NHPP Model

Software reliability probabilistic models can be

classified as Markovian models and fault counting

models. In Markovian model a Markov process

represents the failure process. In fault counting model

the failure process is described by stochastic process

like Homogeneous Poisson Process (HPP), Non

Homogeneous Poisson Process (NHPP) and

Burr Type III Software Reliability with SPC-An Order Statistics Approach

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 22

Compound Poisson Process etc. A majority of failure

counting models are based upon NHPP described in

the following lines[7].

A software system is subject to failures at random

times due to the errors present in the system. Let

{N(t), t>0} be a counting process representing the

cumulative number of failures by time t. Since there

are no failures at t=0 we have N(0) = 0.

It is assumed that the number of software failures

during non-overlapping time intervals do not affect

each other. It can be mentioned that for finite times

t1<t2<t3<….< tn , the n random variables N(t1),

{N(t2)-N(t1)}, ….. {N(tn)-N(tn-1)} are independent.

It implies that the counting process {N(t), t>0} has

independent increments [8].

Let m(t) denote the expected number of software

failures by time ‘t’. Since the expected number of

errors remaining in the system at any time is finite,

m(t) is bounded, non-decreasing function of ‘t’ with

the boundary conditions

m(t) =

ta

t

,

0,0

where ‘a’ is the expected number of software errors

that need to be detected.

For t>=0 N(t) is known to have a Poisson Probability

mass function with parameters m(t) i.e.,

The behaviour of software failure phenomena can be

illustrated through N(t) process. Several time domain

models exist in the literature [12] which specify that

the mean value function m(t) will be varied for each

NHPP process.

The mean value function of Burr Type III software

reliability growth is given by

bc
tatm

]1[)((1)

Here, we consider the performance given by the Burr

Type III software reliability growth model based on

order statistics and whose mean value function is

given by

b
c

i
tm ta

r

)(1)(
 (2)

Where [m(t)/a] is the cumulative distribution function

of Ordered Burr

distribution

model

This is considered as Poisson model with mean a.

Let Sk be the time between (k-1)th and kth failure of

the software product. It is assumed that Xk be the

time up to the kth failure. We need to find out the

probability of the time between (k-1)th and kth

failures. The Software Reliability function is given

by

R=
)]()([

)1(

)/(
smsxm

X

k

k
es

X

S

 (3)

B. Estimation Based on Inter Failure Times

In this section, the expressions are generated for

estimating the parameters of the Ordered Burr Type

III model based on the time between the failures. The

expressions for a, b, and c have to be derived.

Let S1, S2, ….be a sequence of times between

successive software failures associated with an NHPP

N(t). Let Xk be equal to

k

i

i
kS

1

........3,2,1,

This represents the time at which failure k occurs.

Suppose we are given with ‘n’ software failure times

say x1, x2, …, xn, there are ‘n’ time instants at which

the first, second, third …. nth failure of software is

observed.

The mean value function of Order Burr Type III is

given by

r

b
c

i
tatm

)(1)((4)

The constants a, b and c in the mean value function

are called parameters of the proposed model. To

assess the software reliability, it is necessary to

compute the expressions for finding the values of a, b

and c. For doing this, Maximum Likelihood

estimation is used whose Log Likelihood function is

given by

LLF =
r

n

r

i

n

i

tmtLog)()([

1

 (5)

Differenciating m(t) with respect to ‘t’ we get (t)

 (t) =
)1()1(

])(1[*)(

brcc

i
tit

rabc
 (6)

The log likelihood equation to estimate the unknown

parameters a, b, c after substituting (5) in (4) is given

by

LogL= -[a[1+(tn)
-c]

b]r+

n

i

cbar

1

]logloglog[log +

n

i

i

c

i
tctbr

1

)]log()1())(1log()1([(7)

!

)(
})({

)(

n

etm
ntNP

tmn

n
lim

!
})({

n

ea
ntNP

an

.....2,1,0
!

)]([
})({

)(

n
n

etm
ntNP

tmn

Burr Type III Software Reliability with SPC-An Order Statistics Approach

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 23

Differentiating LogL with respect to ‘a’ and equating

to 0 (i.e)0
log

a

L
 we get

ar =
r

tn
brc

n
))(1(

 (8)

Differentiating LogL with respect to ‘b’ and equating

to 0 (i.e)0
log

b

L
 we get

g(b) =

))(1log(
))(1(

))(1log(
1

12

1

1

 n

br

n

n

i

i
t

r

tn
tr

b

n

We can group the inter-failure time data into non

overlapping successive sub groups of size 4 or 5 and

add the failure times within each sub group.

For instance if a data of 100 inter-failure times are

available we can group them into 20 disjoint

subgroups of size 5. The sum total in each subgroup

would denote the time lapse between every 5th order

statistic in a sample of size 5. In general for inter-

failure data of size ‘n’, if r (any natural (9)

Again Differentiating g(b) with respect to ‘b’ and

equating to 0 (i.e)0
log

2

2

b

L

g'(b) =

))(1(log.))(1(
1212

2

n

br

n
ttn

b

n
(10)

Differentiating LogL with respect to ‘c’ and equating

to 0 (i.e)0
log

c

L
 we get

g(c) =

))(1(

log)(
log)1

)(1

))(1(
(

1

c

n

nn

i

n

i i

i

t

tctn
t

ct

ctr

c

n

 (11)

Again Differentiating g(c) with respect to ‘c’ and

equating to 0

(i.e we get

g'(c) =

2

2

1

2

2

2
))(1(

)()log(

))(1(

)())(log1(

c

n

c

nn

n

i

c

i

c

ii

t

ttn

t

ttr

c

n

 (12)

The parameters ‘b’ and ‘c’ are estimated by iterative

Newton-Raphson Method using

 (13)

 (14)

which are substituted in (7) to determine ‘a’.

C. Order Statistics

Order Statistics can be used in several applications

like data compression, survival analysis, Study of

Reliability and many others [9]. Let X denote a

continuous random variable with probability density

function f(x) and cumulative distribution function

F(x), and let (X1 , X2 , …, Xn) denote a random

sample of size n drawn on X. The original sample

observations may be unordered with respect to

magnitude. A transformation is required to produce a

corresponding ordered sample. Let (X(1) , X(2) , …,

X(n)) denote the ordered random sample such that

X(1) < X(2) < … < X(n); then (X(1), X(2), …, X(n))

are collectively known as the order statistics derived

from the parent X. The various distributional

characteristics can be known from Balakrishnan and

Cohen [9].

The inter-failure time data represent the time lapse

between every two consecutive failures. On the other

hand if a reasonable waiting time for failures is not a

serious problem, we can group the inter-failure time

data into non overlapping successive sub groups of

size 4 or 5 and add the failure times within each sub

group.

Number less than ‘n’ and preferably a factor n, we

can conveniently divide the data into ‘k’ disjoint

subgroups (k=n/r) and the cumulative total in each

subgroup indicate the time between every rth failure.

The probability distribution of such a time lapse

would be that of the ordered statistic in a subgroup of

size r, which would be equal to power of the

distribution function of the original variable (m(t)).

The whole process involves the mathematical model

of the mean value function and knowledge about its

parameters. If the parameters are known they can be

taken as they are for the further analysis, if the

parameters are not known they have to be estimated

using a sample data by any admissible, efficient

method of estimation. This is essential because the

control limits depend on mean value function, which

in turn depends on the parameters. If software

failures are quite frequent, keeping track of inter-

failure is tedious. If failures are more frequent order

statistics are preferable [9].

D. Monitoring the time between failures using

control chart

The selection of proper SPC charts is essential to

effective statistical process control implementation

and use. There are many charts which use statistical

techniques. It is important to use the best chart for the

given data, situation and need[10].

There are advances charts that provide more effective

statistical analysis. The basic types of advanced

charts, depending on the type of data are the variable

and attribute charts. Variable control chats are

)0
log

2

2

c

L

)('

)(
- b = b

n1+n

n

n

bg

bg

)('

)(
- c = c

n1+n

n

n

cg

cg

Burr Type III Software Reliability with SPC-An Order Statistics Approach

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 24

designed to control product or process parameters

which are measured on a continuous measurement

scale. X-bar, R charts are variable control charts.

Attributes are characteristics of a process which are

stated in terms of good are bad, accept or reject, etc.

Attribute charts are not sensitive to variation in the

process variables charts. However, when dealing with

attributes and used properly, especially by

incorporating a real time pareto analysis, they can be

effective improvement tools. For attribute data there

are : p-charts, c-charts, np-charts, and u-charts. We

have named the control chart as Failures Control

Chart in this paper. The said control chart helps to

assess the software failure phenomena on the basis of

the given inter-failure time data[11].

E. Distribution of Time Between Failures

For a software system during normal operation,

failures are random events caused by, for example,

problem in design or analysis and in some cases

insufficient testing of software. In this paper we

applied Burr Type III to time between failures data.

This distribution uses cumulative time between

failure data for reliability monitoring.

The equation for mean value function of Burr Type

III from equation [1] is

bc
tatm

]1[)(

Equate the pdf of above m(t) to 0.99865, 0.00135, 0.5

and the respective control limits are given by.

99865.0]1[
 bc

u
tT

5.0]1[
 bc

c
tT

00135.0]1[
 bc

l
tT

These limits are converted to m(tu),m(tc)and m(tl)

form. They are used to find whether the software

process is in control or not by placing the points in

control charts.

2. CONCLUSION

Software reliability is an important measure of

quality that determines the failure free operation of a

computer system. In this paper we proposed Burr

type III software reliability model using order

statistics for estimating and monitoring reliability.

Equations to estimate the parameters based on time

domain data are obtained using Maximum likelihood.

We conclude that our method of estimation can be

used in applying the control charts an SPC tool for

early detection of software failure and thereby

improve software quality.

REFERENCES

[1] Musa J.D, Software Reliability Engineering

MCGraw-Hill, 1998.

[2] N. Boffoli, G. Bruno, D. Cavivano, G.

Mastelloni; Statistical process control for

Software: a systematic approach; 2008 ACM

978-1-595933-971-5/08/10.

[3] K. U. Sargut, O. Demirors; Utilization of

statistical process control (SPC) in emergent

software organizations: Pitfallsand suggestions;

Springer Science + Business media Inc. 2006.

[4] Burr,A. and Owen ,M.1996. Statistical Methods

for Software quality . Thomson publishing

Company. ISBN 1-85032-171-X.

[5] Carleton, A.D. and Florac, A.W. 1999.

Statistically controlling the Software process.

The 99 SEI Software Engineering Symposimn,

Software Engineering Institute, Carnegie

Mellon University.

[6] Mutsumi Komuro; Experiences of Applying

SPC Techniques to software development

processes; 2006 ACM 1-59593-085-x/06/0005.

[7] Goel. A.L and Okumoto. K., (1979). “A Time-

dependent error-detection rate model for

software and other performance measures”,

IEEE Trans. Reliability, vol R-28, Aug, pp 206 -

211.

[8] R.R.L.Kantam and R.Subbarao, 2009. “Pareto

Distribution: A Software Reliability Growth

Model”. International Journal of

Performability Engineering, Volume 5, Number

3, April 2009, Paper 9, PP: 275- 281.

[9] Balakrishnan.N, Clifford Cohen; Order

Statistics and Inference; Academic Press Inc;

1991.

[10] R.satyaprasad, Half Logistic Software

Reliability Growth Model,Ph.D. Thesis,2007

[11] M.Xie, T.N. Goh, P. Rajan; Some effective

control chart procedures for reliability

monitoring; Elsevier science Ltd, Reliability

Engineering and system safety 77(2002) 143-

150

[12] J.D.Musa and K.Okumoto,”A Logorithmic

Poisson Execution time modelfor software

reliability measure-ment”, proceeding seventh

international conference on software

engineering, Orlando, pp.230-238, 1984.

