
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 2, Issue 3, March 2015, PP 16-20

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

©ARC Page 16

Aggregation Techniques on Software Metrics: A Study

S.V. Achuta Rao
1
, R. Kiran Kumar

2

1
Research Scholar,

2
Computer Science Department

Krishna University, Machilipatnam, India
1
sarachyuth@gmail.com,

2
kirankkreddir@gmail.com

Abstract: Metrics are usually defined on a micro

level like methods, classes and packages. These are

failed to provide an adequate picture of the entire

system effectively. By combine different metrics with

varying output values and ranges to get insight in

the evolution of the macro level system. We listed

various metrics like Product, Project & Process and

also various aggregation techniques in Traditional

methods such as mean, median, sum, and cardinality;

in Distribution fittings such as Log-Normal,

Exponential, Negative binomial; and in Inequality

Indices such as Theil, Gini, Kolm and Atkinson. The

theoretical criteria in Domain, Range, and

Invariance & Decomposability of various metrics are

discussed. The Aggregation Techniques from

simple mathematical operations to more complex

operations to get Macro level system would be

helpful as the outliers get pulled into the larger

amounts of data. The Developers or Managers have

an understanding of the parts of system are still

needed to make sure that the metrics not misused or

misunderstood. Metris are powerful tools that need

to be used with care. We wish to understand, the

aggregation techniques influence the strength of the

relations among metrics to asses software quality.

Keywords: Software Metrics, Aggregation

Techniques, Software Quality, Micro-Level & Macro-

Level

1. INTRODUCTION

A Quote on Measurement by Lord William Kelvin

(1824 – 1907) like this ―When you can measure

what you are speaking about and express it in

numbers, you know something about it; but when you

cannot measure, when you cannot express it in

numbers, your knowledge is of a meager and

unsatisfactory kind; it may be the beginning of

knowledge, but you have scarcely, in your thoughts,

advanced to the stage of science.‖ A software

metric is a quantitative measure of a degree to which

a software system process or posesses some property

[7]. Since quantitative measurements are essential in

all sciences, there is a continuous effort by computer

science practitioners and theoreticians to bring

similar approaches to software development. Metrics

are defined earlier in Micro level include: Bugs per

line of code, Comment Density, Code Coverage,

Cohesion, Coupling, Complexity(McCabe’s

Complexity), DSQI (Design Structure Quality Index),

Function Point Analysis, Halstead Complexity,

Instruction Path Length, Maintainability index,

Number of Classes and interfaces, Number of lines of

code, Number of lines of customer requirements,

Program execution time, Program Load time,

Program size(binary), Program Execution time,

Program Load time, Software Package metrics,

Weighted Micro Function points, Function points and

Automated Functional points, Object Management

Group Standards, CISQ automated quality

characteristics measures[3]. The metrics are not

adequately characterized all the attributes of

process, project and product requirements. Hence

practitioners and theoreticians are started combined

and aggregated metrics used on simple mathematical

assessments.

The goal is obtaining objectives of macro level

system which may have numerous valuable

applications in schedule and budget planning, cost

estimate, quality assurance testing, software

debugging, software performance optimization

influence the strength of the relations among

metrics[2,3]. The aggregation of different metrics to

obtain a single value helps in the global evaluation of

a task, project, etc. This need also arises when

different metrics are used. The more traditional

aggregation techniques are additive or similar,

namely mean, median, or sum. Sometimes these

techniques are too crude to be entirely useful. We

think that the aggregation methodology should be

clear to the analyst, but at the same time sophisticated

enough to represent the different aspects of the

underlying metrics used and flexible enough so the

model can be easily adapted to new quality assurance

requirements[4]. Let us note that there are two sides

to software metrics aggregation. One is when

applying different metrics – or the same metric– at

different levels of granularity of a given piece of

software. The other is when applying different

metrics – or the same metric – to different software

artifacts intended for comparison purposes. In general

all aggregation techniques apply to both. Apart from

mailto:1sarachyuth@gmail.com
mailto:2kirankkreddir@gmail.com
http://en.wikipedia.org/wiki/DSQI
http://en.wikipedia.org/wiki/CISQ
http://en.wikipedia.org/wiki/Software_quality#CISQ.27s_Quality_model
http://en.wikipedia.org/wiki/Software_quality#CISQ.27s_Quality_model

Aggregation Techniques on Software Metrics: A Study

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 17

the simplest strategies of metric aggregation, there

are also a number of other methods for aggregation

using different techniques, such as those using

indexes or coefficients employed in other areas such

as econometrics, e.g. Gini [1], Theil [2], coefficients

or even the Paretto principle [1,2]. B. Vasilescu [3]

analyzes several aggregation methods for the

aggregation of software metrics to measure software

quality. This is done from two points of view –first a

theoretical analysis is done and then an empirical one

is carried out. In [4] Mordal-Manet et al present not

only the problem that metrics alone are not enough to

characterize software quality but also an empirical

model –the Squale model [4] – for metric

aggregation. This model has four levels adding

practices as an intermediate level between criteria

and metrics that are the levels suggested in ISO 9126.

For assessment purposes it uses an evaluation scale

that falls in the interval [0:3], it uses a weighted

average, and the function uses a constant to define

hard, medium, or soft weighting. L. Etaati et al in [5]

employ a Fuzzy Group Analytical Network Process

method to integrate metrics to evaluate e-learning

systems. This is a similar method to our proposal

however it does not use Continuous Logic functions;

moreover the network is not as easy to comprehend

as the models obtained from the application of the

LSP method. Bearing the above in mind we have as

a main goal to aggregate the data obtained from

different quality evaluation metrics in coherent

groupings so as to get new singular values that can in

turn be aggregated again. The aggregation ends

getting a single global indicator for the software

object under evaluation, being this objects a software

unit or an entire software project.

To achieve this process we use operators from a

Continuous Logic, specifically the Logic employed

by the LSP method that proposes the aggregation of

preferences by using a group of logic functions called

Generalized Conjunction Disjunction (GCD)

operators. So we show here a model –based on the

ISO/IEC 9126 international standard [7] – to

aggregate software quality metrics employing a

Continuous Logic[6]. This standard establishes a

number of requirements to evaluate software quality,

however there is no prescription for the aggregation

of the different measurements proposed. Therefore,

there exists the need to propose an aggregation model

to obtain a single value out the evaluation with

different metrics.

2. TRADITIONAL AGGREGATION

TECHNIQUES

The traditional aggregation techniques are explained

in two stages. First, the earlier combined quality

metrics and their elements are explained. Second,

classical aggregationl techniques such as mean,

median, sum, and cardinality; Distribution fittings

and in Inequality Indices such as Theil, Gini, Kolm

and Atkinson and theoretical criteria in Domain,

Range, Invariance & Decomposability of various

metrics are discussed[3,4,5].

2.1 Combining Different Metrics

Aggregation of software metrics can be understood in

two ways. First, there is a need to combine di_erent

metrics as recommended by quality-model design

methods such as Factor-Criteria-Metric (FCM) [5], or

Goal-Question-Metric (GQM) [6], i.e., aggregation is

performed on values obtained by applying different

metrics to the same software artifacts. For example,

cyclomatic complexity might be combined with test

coverage metrics to stress the importance to cover

complex methods rather than simple accessors

[4].Second, there is a need to obtain insights in the

quality of an entire system based on the metric values

obtained from low-level system elements, i.e.,

aggregation is performed on values obtained by

applying the same metric to different software

artifacts. Example Weighted Methods per Class

(WMC) or average number of lines of code metrics,

as discussed in the Introduction. Additionally, using

the FCM model in [70] to assess the maintainability

of a system involves computation of such metrics as

number of source lines of code (SLOC), cyclomatic

complexity, number of methods per class, or

inheritance depth (DIT). All these metrics can only

be computed for methods and/or classes. However,

the maintainability assessment requires insights at

system level. aggregate each metric from method /

class level to the system level, and then combine

these system-level results into a unified assessment.

Here focus on the latter, i.e., aggregation performed

on values obtained by applying the same metric to

different software artifacts. In this sense, we study

three categories of aggregation techniques: standard

summary statistics (e.g., mean, median, etc.),

econometric inequality indices (e.g., Gini, Theil,

etc.), and threshold-based approaches (e.g., the

aggregation proposed in the Squale quality model [7].

2.2 Classical Aggregation Techniques On

Metrics

In The Theoretical comparison, we study a number of

mathematical properties of the aggregation

techniques relevant for their application to software

metrics.

Domain. Domain of the aggregation technique

determines applicability of this technique to classes

of software metrics. Econometric indices are usually

applied to income or welfare distributions, i.e., to sets

of positive values. Some software metrics, however,

may have negative values, e.g., the maintainability

index [7]. Since log z and √z are undefined for z < 0,

ITheil and IAtkinson are undefined as well. Unlike

these indices, the mean, IGini and IKolm can be used

to aggregate negative values. Moreover, as log 0 is

undefined direct application of the Theil index

Aggregation Techniques on Software Metrics: A Study

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 18

formula from is not possible. However, ITheil(x1, . .

. , xn−1, xn) can be defined for xn = 0 depending on

whether zero denotes emptiness (e.g., SLOC, number

of classes in a package) or not. All other aggregation

techniques considered in this paper can be applied to

zero values. Finally, formulas for the Gini index, the

Theil index and the Atkinson index involve division

by ￣x. Hence, these indices are undefined if ￣x = 0.

The mean and the Kolm index do not have additional

cases when their values are undefined.

Range: Interpretation of the aggregated value

depends on the range of the aggregation technique:

e.g., 0.99 indicates a very high degree of inequality if

IGini is considered, while in case of ITheil and

IAtkinson the interpretation would depend on the

number of values being aggregated. The values

obtained by applying the mean can range from −∞ to

+∞. The Gini index is often claimed to range over [0,

1] [2]: this is, however, the case only if all the values

being aggregated are positive.In general, this is not

necessarily the case: IGini(1, −1.5) = −2.5. Range of

ITheil and IAtkinson depends on the number of

values being aggregated: one can show that 0 ≤

ITheil(x1, . . . , xn) ≤ log n and 0 ≤ IAtkinson(x1, . . .

, xn) ≤ 1 − 1n . The Kolm index ranges over non-

negative reals.

Invariance: We say that the aggregation technique is

invariant with respect to addition if I(x1, . . . , xn) =

I(x1 + c, . . . , xn + c) for any x1, . . . , xn and c,

provided I(x1 + c, . . . , xn + c) exists. Similarly, we

say that the aggregation technique is invariant with

respect to multiplication if I(x1, . . . , xn) = I(x1c, . . . ,

xn c) for any x1, . . . , xn and c, provided I(x1c, . . . ,

xn c) exists. Aggregating lines of code measured per

file, aggregation-technique-invariant with respect to

addition allows to ignore, e.g., headers containing the

licensing information and included in all source files.

Results obtained by applying an aggregation

technique that is invariant with respect to

multiplication are not affected if percentages of the

total number of lines of code are considered rather

than the number of lines of code themselves.The

mean is neither invariant with respect to addition nor

to multiplication. It can be shown that IGini , ITheil

and IAtkinson are invariant with respect to

multiplication. Unlike these indices, IKolm is

invariant with respect to addition. Decomposability.

Decomposability is the key property necessary for

explanation of inequality by partitioning the values to

be aggregated into disjoint groups. In econometrics

such groups correspond, e.g., to education level,

gender or ethnicity, while in software evolution

research, e.g., to package, programming language and

maintainer’s name[5]. Formally, I is decomposable if

for any given partition {x1,1, . . . , x1,n1, . . . , xJ,1, . .

. , xJ,nJ } of {x1, . . . , xn} it holds that I(x1, . . . ,

xn) = I(x￣1, . . . , x￣J) + _J j=1 (wj ∗ I(xj,1, . . . ,

xj,nj)) for some coefficients w1, . . . ,wJ satisfying

_Jj =1 wj = 1, where x￣j is the mean of xj,1, . . . ,

xj,nj . Then the ratio of the inequality between the

groups and the total amount of inequality can be seen

as the percentage of inequality that can be explained

by partitioning the population into groups. Both

ITheil [1] and IKolm [2] are decomposable, while

IGini and IAtkinson are not [3]. It should be noted

that while some authors propose means of

decomposing IGini or IAtkinson, they use a slightly

different notion of decomposability [2 ,3].

The Gini index, the Theil index, the Kolm index and

the Atkinson index have already been applied to

software metrics in [2, 3], respectively.

IGini(X) = 12n2_xPni=1Pnj=1 jxi � xj j

IGini(x1, . . . , xn) = 12n ￣x_ni=1_n j=1|xi − xj [1]

ITheil(X) = 1nPni=1� xi_x log xi_x_

ITheil(x1, . . . , xn) = 1n_n i=1_xi￣x log xi￣x_ [2]

IAtkinson(X) = 1 � 1_x� 1nPni=1pxi_2

IAtkinson(x1, . . , xn) = 1 − 1￣x_1n_ni=1√xi_2 [3]

IKolm(X) = log_ 1nPni=1 e_x�xi

IKolm(x1, . . . , xn) = log_1n_ni=1 e￣x−xi_[4]

3. REQUIREMENTS IN COMPOSITION /

AGGREGATION ON METRICS

Composition: Metrics used to assess a practice can be

composed, e.g., by: – Simple or weighted averaging

of the different values of the metrics. This is only

possible when the different metrics have similar

range and semantic; – Thresholding on one metric

such as cyclomatic complexity to consider or not the

other metrics, for example, when cyclomatic

complexity is more than 50, one could decide to

divide the number of lines of comment by some value

to highlight the fact that overly complex methods

need to be overly commented; – Interpolating, given

examples components by the developers and their

perceived evaluation of quality (e.g., one method

with 50 LOC would be perceived of quality 2.5 —on

an interval of [0, 3]— and another example with 100

LOC would be perceived of quality 1.5), one can

interpolate a function to convert other values; The

result of the composition of metrics values for a

practice is called Individual Mark (IM). Individual

marks for a practice are computed from raw metrics

with multiple ranges, and constitute single marks in

the range [0, 3]. The raw metrics composed may have

multiple ranges.

 Aggregation: Aggregation of IMs for a practice

requires several steps (illustrated with an example

in Figure 1; the dark dots on the x-axis are the

IMs to be aggregated–0.5, 1.5, and 3): 1. A

weighting function is applied to each IM: g(IM) =

Aggregation Techniques on Software Metrics: A Study

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 19

λ −IM where IM is the individual mark and λ the

constant defining the ―hard‖, ―medium‖, or ―soft‖

weighting. Hard weighting gives more weight to

bad results than soft weighting. λ is greater for a

hard weighting and smaller for a soft one .

Theorem 1: Let x1, . . . , xn be real numbers and let

x¯ = 1 n Pn i=1 xi .

Then for λ > 1 min(x1, . . . , xn) ≤ I λ Squale(x1, . . .

, xn) ≤ x.

Proof: Since min(x1, . . . , xn) ≤ xi for all 1 ≤ i ≤ n,

then it also holds that −xi ≤ − min(x1, . . . , xn).

Since λ > 1 it holds that λ −xi ≤ λ − min(x1,...,xn) for

all i. Therefore, Pn i=1 λ −xi ≤ nλ− min(x1,...,xn) ≡ 1

n Pn i=1 λ −xi ≤ λ − min(x1,...,xn) ≡ logλ 1 n Pn i=1

λ −xi ≤ − min(x1, . . . , xn) ≡ min(x1, . . . , xn) ≤ I λ

Squale(x1, . . . , xn) Now, the geometric mean never

exceeds the arithmetic mean, i.e., pn Qn i=1 λ−xi ≤ 1

n Pn i=1 λ −xi . However, pn Qn i=1 λ−xi = λ − 1 n

Pn i=1 xi = λ −x¯ . Hence, λ −x¯ ≤ 1 n Pn i=1 λ −xi

Since λ > 1, −x¯ ≤ logλ 1 n Pn i=1 λ −xi ≡ − logλ 1 n

Pn i=1 λ −xi ≤ x¯ ≡ I λ Squale(x1, . . . , xn) ≤ x

―Must‖ requirements are imposed by our perception

of low-level metric values’ combination as a

sequence of two steps, composition and aggregation;

―should‖ and ―could‖ requirements were based on

properties of aggregation techniques found in the

literature .

Must:

 Aggregation: Must aggregate low level quality

results (from the level of individual software

components like classes or methods) at a higher

level (e.g., a subsystem or an entire project) to

evaluate the quality of an entire project, as

discussed

 Composition: Must compose different metric

values with different ranges to a single quality

interval, as explained in

 Composition/Aggregation Range and Domain:

Whether composition occurs before aggregation

or the opposite, the range (output) of the first must

be compatible with the domain (input) of the

second. For example, if the aggregation formula

contains a logarithm, the composition method

must have strictly positive range;

Should:

 Highlight problems: Should be more sensitive to

problematic values in order to pinpoint them, and

also to provide a stronger positive feedback when

problems are corrected, as discussed in §2; • Do

not hide progress: Improvement in quality should

never result in a worsening of the evaluation [1,2].

As a counter example, it is known that

econometric inequality indices will worsen when

going from an ―all equally-bad‖ situation to a

situation where all are equally bad except one;

 Decomposability: Should be decomposable in

order to measure to what extent the aggregated

value at the system level can be explained by a

specific partitioning of the system into subsystems

[4,5,6];

 Composition before Aggregation

Composition before Aggregation: Composition

should be performed at the level of individual

components to retain the intended semantic of the

composition;

 Aggregation range: Should be in a continuous

scale, preferably bounded (i.e., left and right-

bounded) ;

 Symmetry: The final result should not be

dependent on the order of the elements being

aggregated. This requirement is typically not

applicable for composition, since, for example,

one can hardly expect a composition function f

defined on size s and cyclomatic complexity v to

satisfy f(s, v) = f(v, s);

Could:

 Evaluation normalization: Could normalize all

results (metrics, combination, aggregation) to

allow unified interpretation at all levels

 Invariance and translatability: Both invariance

and translatability are interesting, e.g., for SLOC,

if the same header (containing licensing

information) is added to all classes (invariance

with respect to addition and translatability), or if

percentages of the total SLOC are considered

rather than the number itself (invariance with

respect to multiplication).

4. CONCLUSION

There are numerous software quality metrics

available to measure the varying aspect of the quality

of software, these metrics are defined at a low level

of individual components: functions, methods,

classes, whereas developers need a global view at the

level of an entire system. But this should not be an

issue in practice because it is unlikely to occur.

Because there is an important literature on

econometric indexes, it might be interesting to

continue studying them and see how they can be

adapted to the needs of quality assessment. We

suggest one area of research, noticing that the

experiments that the distribution of quality results for

individual components is limited to two small

intervals whereas in real life they could be much

more spread out.

The aggregation of software quality metrics study on

both traditional and econometric aggregation

techniques, applied techniques c should be

considered. Furthermore, we find a need to

investigate the nature of the relation between various

Aggregation Techniques on Software Metrics: A Study

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 20

aggregation techniques like linear (e.g., between

ITheil and IAtkinson), superlinear (e.g., between

ITheil and IGini), as well as chaotic (e.g., between

ITheil and IKolm) patterns can be observed in the

scatter plots. This led to the observation that some

indices may be more appropriate than others

depending on which dimension of inequality one is

interested in emphasizing, the choice of metric, or the

intended application.

Classical aggregation techniques have problems

when distributions are skewed. Inequality indices

look more promising.

REFERENCES

[1] S. M. Metev Karine Mordal, Nicolas Anquetil,

Jannik Laval, Alexander Serebrenik, Bogdan ,

Vasilescu and Stéphane Ducasse,Technische

Universiteit , The Netherlands, Software quality

metrics aggregation in industry , J. Softw. Evol.

and Proc.(2012)

[2] B. Vasilescu, “Analysis of Advanced

Aggregation Techniques for Software Metrics”.

Master thesis,Eindhoven University of

Technology, Department of Mathematics and

Computer Science. Eindhoven, Netherlands, July

2011.

[3] A. Serebrenik, M. van den Brand, “Theil index

for aggregation of software metrics values”

ICSM, pages 1–9, IEEE Computer Society, 2010.

[4] Bogdan Vasilescu, Alexander Serebrenik, Mark

van den Brand Technische Universiteit

Eindhoven, The Netherlands, You Can’t Control

the Unfamiliar: A Study on the Relations

Between Aggregation Techniques for Software

Metrics Software quality metrics aggregation in

industry, J. Softw. Evol. and Proc.(2012)

[5] Eric Bouwers, Software Improvement Group,

The Netherlands, Joost Vissser, Software

Improvement Group, Towards a catalog format

for software metrics, Software Engineering

Group Technical Report: WETSom 2014..

[6] Aristides Dasso, Ana Funes ,Software

Engineering Group, Universidad Nacional de

San Luis, Ejército de los Andes 950,San Luis,

Argentina; Software Quality Metrics

Aggregation, 13th Argentine Symposium on

Software Engineering, ASSE 2012

[7] K. Mordal-Manet et al., “An empirical model for

continuous and weighted metric aggregation”.

2011 15th European Conference on Software

Maintenance and Reengineering. March 1–4,

2011, Oldenburg, Germany.

[8] www.en.wikipedia.org/wiki/Software_Metricsl

[9] www.en.wikipedia.org/wiki/Software_quality

