
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 2, Issue 3, March 2015, PP 69-72

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

©ARC Page 69

Performance Evaluation of Procedural Metrics and Object

Oriented Metrics

P.Ashok Reddy
1
, Dr.K.Rajasekhara Rao

2
, Dr.M.Babu Reddy

3

1
Sr.Asst.Professor of Computer Applications LBRCE-Mylavaram, Krishna Dt., A.P, India

2
Director, Sri Prakash Educational Institutions, Tuni,W.G Dt.,AP, India

3
Asst Professor of Computer Science Krishna University, Machilipatnam, A.P, India.

Abstract: Software metrics are widely accepted tools

to control and assure software quality. A large

number of software metrics with a variety of content

can be found in the literature. Software metrics are

widely accepted tools to control and assure software

quality. A large number of software metrics with a

variety of content can be found in the literature. In

this paper, different software complexity metrics are

applied to study which software complexity measures

are the most useful ones in algorithm comparison,

and to analyze when the software complexity

comparisons are appropriate. Unfortunately, for

meaningful results, all the algorithms have to be

developed in the same fashion which makes the

comparison of independent implementations difficult.

Object-oriented (OO) metrics are measurements on

OO applications used to determine the success or

failure of a process or person, and to quantify

improvements throughout the software process.

These metrics can be used to reinforce good OO

programming techniques, which leads to more

reliable code. The process provides a practical,

systematic, start-to-finish method of selecting,

designing and implementing software metrics. These

metrics were evaluated using object oriented metrics

tools for the purpose of analyzing quality of the

product, encapsulation, inheritance, message

passing, polymorphism, reusability and complexity

measurement. It defines a ranking of the classes that

are most vital note down and maintainability.

Object oriented software development requires a

different approach from traditional development

methods including the metrics used to evaluate the

software. It means that traditional metrics for

procedural approaches are not adequate for

evaluating object oriented software primarily

because they are not designed to measure basic

elements like classes objects polymorphism and

message passing Even when adjusted to syntactically

analyze object oriented software they can only

capture a small part of such software and therefore

can just provide a weak quality indication.

Keywords: Metrics, Procedural Metrics, OO

Metrics, Software Metrics, Performance Evaluation,

Object Oriented Programming Concept, Procedural

Concepts.

1. INTRODUCTION

Software Metrics are standards to determine the size

of an attribute of a software product and a way to

evaluate it. Modern software engineering dictates that

software can be organized into a set of modules. A

module captures a set of design decisions which are

hidden from other modules and the interaction among

the modules should primarily be through module

interfaces.

2. OBJECTIVE

 To analyze of various procedural as well as object

oriented software metrics.

 To select the most useful software metrics.

 To design an automation system that will present

the software measurement analysis

3. METRICS

Metrics are used to evaluate the software project.

Project based metrics keep track of project

maintenance, budgeting etc. Design based metrics

describe the complexity, size and robustness of object

oriented and keep track of design performance.

Performance Evaluation of Procedural Metrics and Object Oriented Metrics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 70

4. TYPES OF METRICS

The first rule of quantitative software evaluation is

that if we collect or compute numbers we must have

a specific intent related to understanding, controlling

or improving software and its production. This

implies that there are two broad kinds of metrics:

product metrics that measure properties of the

software products; and process metrics that measure

properties of the process used to obtain these

products. Product metrics include two

categories.External product metrics cover properties

visible to the users of a product; internal product

metrics cover properties visible only to the

development team.

4.1. External Product Metrics Include

 Product non-reliability metrics, assessing the

number of remaining defects.

 Functionality metrics, assessing how much useful

functionality the product provides.

 Performance metrics, assessing a product's use of

available resources: computation speed, space

occupancy.

 Usability metrics, assessing a product's ease of

learning and ease of use.

 Cost metrics, assessing the cost of purchasing and

using a product.

4.2. Internal Product Metrics Include

Size metrics, providing measures of how big a

product is internally. Complexity metrics (closely

related to size), assessing how complex a product is.

Style metrics, assessing adherence to writing

guidelines for product components (programs and

documents).

4.3. Process Metrics Include

Cost metrics, measuring the cost of a project, or of

some project activities (for example original

development, maintenance, documentation). Effort

metrics (a subcategory of cost metrics), estimating

the human part of the cost and typically measured

in person-days or person-months. Advancement

metrics, estimating the degree of completion of a

product under construction. Process non-reliability

metrics, assessing the number of defects uncovered

so far. Reuse metrics, assessing how much of a

development benefited from earlier developments.

4.4. Internal and External Metrics

The second rule is that internal and product metrics

should be designed to mirror relevant external

metrics as closely as possible. Clearly, the only

metrics of interest in the long run are external

metrics, which assess the result of our work as

perceptible by our market. Internal metrics and

product metrics help us improve this product and the

process of producing it. They should always be

designed so as to be eventually relevant to external

metrics. Object technology is particularly useful here

because of its seamlessness properties, which reduces

the gap between problem structure and program

structure (the "Direct Mapping" property). In

particular, one may argue that in an object-oriented

context the notion of function point, a widely

accepted measure of functionality, can be replaced by

a much more objective measure: the number of

exported features (operations) of relevant classes,

which requires no human decision and can be

measured trivially by a simple parsing tool .

4.5. Designing Metrics

The third rule is that any metric applied to a product

or project should be justified by a clear theory of

what property the metric is intended to help estimate.

The set of things we can measure is infinite, and most

of them are not interesting. but this is unlikely to

yield anything of interest to product developers,

product users, or project managers it was connected

to a very precise hypothesis that the simplicity of

such interfaces is a key component of the ease of use

and learning (and hence the potential success) of a

reusable component library.

Performance Evaluation of Procedural Metrics and Object Oriented Metrics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 71

4.6. Calibrating Metrics

More precisely, the fourth rule is that most

measurements are only meaningful after calibration

and comparison to earlier results. This is particularly

true of cost and reliability metrics. A sophisticated

cost model such as COCOMO will become more and

more useful as you apply it to successive projects and

use the results to calibrate the model's parameters to

your own context. As you move on to new projects,

you can use the model with more and more

confidence based on comparisons with other projects.

5. PROCEDURAL METRICS

Procedure oriented metrics measure different

attributes of a project or smaller pieces of code. For

example, a metric may measure the number of code

lines, the complexity of code or the amount of

comments. Traditional/ Procedural metrics have been

applied for the measurement of software complexity

and size of structured systems.

6. OBJECT ORIENTED METRICS

Procedural metrics do not capture unique aspects of

Object Oriented Programs. Object Oriented Metrics

plays a pivotal role in the development of fault free

software product. Object oriented design and

development are popular concept in today’s software

development. Object oriented design and

development focuses on objects as the prime agents

involved in the computation; each class of data and

related operations are collected into a single system

entity. The main advantage of object oriented design

is its modularity and reusability. Object oriented

metrics are used to measure properties of object

oriented designs.

7. PROPOSED VIEW FOR OBJECT ORIENTED

METRICS

In this proposed view for object oriented metrics,

user may focus on the following parameters

 System and its Implementation

 Set of classes and their Implementation

 Cohesion and Coupling among modules in the

classes

 Supporting of Inheritance among the classes

 Reducing number of lines of code

 Maintaining class diagram with appropriate

relationships

 Avoiding duplicated code

 Eliminating Code Complexity

8. QUALITY METRICS TOOL FOR OBJECT

ORIENTED PROGRAMMING

“Metrics measure certain properties of a software

system by mapping them to numbers (or to other

symbols) according to well-defined, objective

measurement rules. Design Metrics are

measurements of the static state of the project’s

design and also used for assessing the size and in

some cases the quality and complexity of software.

Assessing the Object Oriented Design (OOD) metrics

is to predict potentially fault-prone classes and

components in advances”

9. SOFTWARE QUALITY FACTORS IN

PROCEDURE AND OBJECT ORIENTED

APPROACHES

 Functionality

The degree to which the software satisfies stated

needs

 Reliability

The amount of time that the software is available

for use

 Usability

The degree to which the software is easy to use

 Efficiency

The degree to which the software makes optimal

use of system resources

 Maintainability

The ease with which repair and enhancement may

be made to the software

 Portability

The ease with which the software can be

transposed from one environment to another

10. CONCLUSION AND FUTURE SCOPE

In this paper both procedural and object oriented

metrics are considered. Procedural oriented metrics

are not applicable to object oriented systems. For,

object oriented systems different approaches are used

to measure the size and complexity of code. software

metrics for object oriented paradigm embody the

complex set of characteristics inherent in large

software systems. It seems many complexity features

to enable the software engineer to monitor the

software development process. There is no single

measure that captures all the features of an object

oriented software product. As per this, a better

approach to measuring object oriented software

products is to isolate the features of the product that

are of concern to us and develop a suite of measures

that shows available features. In the high-level design

phase, the suite of metrics can be used.we have

concept of measures for cohesion and coupling,

which are important attributes of design. A number of

object oriented metrics have been proposed in the

literature for measuring the design attributes such as

inheritance, polymorphism, message passing,

complexity, Hiding Factor, coupling, cohesion,

reusability etc,.

Performance Evaluation of Procedural Metrics and Object Oriented Metrics

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 72

REFERENCES

[1] A Measurement Model for Detecting the most

Suitable Code Component from Object Oriented

Repository. By Sumit Jain and Mohsin Sheikh in

IJCA with Volume 104-Number by Oct 2014.

[2] A.D. Bakar, A. Sultan, H. Zulzalil and J. Din,

2014. Predicting Maintainability of Object-

oriented Software Using Metric Threshold.

Information Technology Journal, 13: 1540-1547.

[3] Reliability Quantification of Object Oriented

Software: A Revisit by A.K.Chand and

N.Dhanda with ISSN 2321-7782 in IJARCSMS

with Volume 2 Issue 11,Nov 2014.

[4] Reliability Measurement of an Object Oriented

Design: A Systematic Review by Nidhi Gupta,

Dr. Rahul Kumar with ISSN 2277-1581 in IJSET

with Vol 3 with Issue 12, pp :1483-1487 during

Dec-2014.

[5] Measuring Inheritance Patterns in Object

Oriented Systems: the Dynamic Inheritance

Ratio Metric by M.Niculescu, Ph.Dugerdil and

Blanco.M.Canedo with ISBN: 978-1-4503-3432-

7

By IJSE-15 from pages 130-138 during Jan-2015

[6] Software Complexity Metrics: A Survey by

Dr.P.Chitt Babu,A.Narasimha Prasad and

D.Sudhakar with ISSN : 2277-128X by

IJARCSE With Volume 3, Issue 8 and Aug

2013.

[7] Encyclopedia of Software Development Life

Cycle Metrics (http://www.sdlcmetrics.org/),

10.11.2010

[8] Lanza M., Marinescu R.: Object-Oriented

Metrics in Practice: Using Software Metrics to

Characterize, Evaluate, and Improve the Design

of Object-Oriented System. Springer, 1st Edition.

Edition, 2010

[9] N E Fenton “Software Metrics” Conference

Proceedings of on the future of Software

engineering ICSE 00(2000) Volume: 8, Issue: 2,

Publisher: ACM Press

[10] Roger S. Pressman “Software Engineering-A

Practitioner’s Approach” 6th Edition, McGraw

Hill International Edition pp 466-472

[11] Satwinder Singh, K.S. Kahlon, “Static Analysis

to Model & Measure OO Paradigms”, SAC,

ACM.

[12] S.R Chidamber and C.F. Kemerer, “A Metrics

Suite for Object Oriented Design”, IEEE

Transactions on Software Engineering, Vol. 20

No. 6

[13] KP Srinavan, Dr. T Devi, “Design and

Development of procedure for new object

oriented design metrics’, IJCA, Vol. 24, No. 8,

Jun 2011

[14] Booch, G: “Object-Oriented Analysis and

Design with Applications”, 2nd ed., Benjamin

Cummings, 1994

[15] Priya Walde and S.V.Kulkarni,” Metrics for

measuring the quality of object oriented software

modularization”, Emerging Trends in Computer

Science and Information Technology -

2012(ETCSIT2012)

[16] S. Chidamber, C. Kemerer, A Metrics Suite for

Object Oriented Design, IEEE Trans. Software

Eng., 20/6), 2000, pp. 263-265.

[17] A. Abran. Software Metrics and Software

Metrology. Wiley-IEEE Computer Society Pr,

2010

[18] Usha Chhillar, Sucheta Bhasin (2011): A

Journey of Software Metrics : Traditional to

Aspect-Oriented Paradigm, 5th National

Conference on Computing For Nation

Development, 10th -11th March, 2011, New

Delhi, pp. 289-293

[19] Chidamber, S.R., Kemerer, C.F. 1994. A Metrics

Suite for Object-Oriented Design. IEEE

Transactions on Software Engineering. vol.

20.no. 6. 476-493.

[20] Mark Lorenz. 1993. Object-Oriented Software

Development: A Practical guide. 1993. Prentice

hall, Englewood Cliffs, New Jersey.

[21] Srinivasan, K.P., Devi, T., Thiagarasu, V. 2009.

Analysis of Chidamber-Kemerer Metrics for

Object-Oriented Design. Proceeding of National

Conference on Emerging trends in Computer

Science, Avinasilingam University for Women,

Coimbatore.

[22] Measure the Reusability of Object Oriented

Interfaces in UML Diagrams by ukessays.com.

