
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 2, Issue 3, March 2015, PP 59-62

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

©ARC Page | 59

New Metrics for System Understandability of Inheritance

Hierarchies

Mr. D.N.V.Syma Kumar
1
, Dr. R.Satya Prasad

2

Research Scholar of Krishna University, Machilipatnam, A.P., India

Assoc. Professor, Dept.ofCSE, AcharyaNagarjuna University, Guntur, A.P., India

Syam.researchscholar@gmail.com
1, profresp@gmail.com

2

Abstract: Understandability is a key concept in

every system maintenance on the design phase. In the

classification of the Inheritance multiple inheritance

hierarchy is a typical task to identify the class

understandability and system understandability.

Some of the understandability metrics were already

existed but they are giving the large complexity

values while measuring a system or a class. In this

research paper we proposed new metrics for class

and system understandabilities. These metrics poses

the lowest complexity values when comparing with

existed metrics. This helps the designers of the system

in easy way of understanding the system and get

better designs of the systems in future.

Keywords: software metrics, object-oriented,

inheritance hierarchy, DAG, system

understandability, system maintenance, weyker’s

properties.

1. INTRODUCTION

Inheritance is a good object-oriented mechanism

which can use the features of parent class into child

class. In this inheritance concept reuse technique will

be utilized. Inheritance hierarchy is a class level

structure which can be utilized to understand the

given object oriented program in effective manner.

Previous studies on the Inheritance through classes

reduce the redundancy and system maintenance

necessary that increases the efficiency of the system

[3, 17, 19, 20, 21, 22]. Inheritance is classified into

several types i.e., single, Multiple, Multi-level … etc.

Understanding of the inheritance hierarchy in the

view of system is a typical task because increasing

the number of class levels leads to typical design of

the system. So, evaluation of the inheritance

hierarchy is needed.

Object oriented metrics were used in evaluation of

the inheritance hierarchy of the system. Basically

software metrics are surveyed and classified into

several types for software quality [1,2].Object

oriented metrics were applied in various

programming languages and fields [18]. There are

several well known object – oriented inheritance

metrics were existed [3, 4, 5, 6, 7, 8, 24]. In this

inheritance metrics used attributes are number of

classes, number of methods inherited or overridden

and depth of inheritance hierarchy ...etc.

Every software metric has to show the theoretical and

mathematical foundation behind the metric to

evaluate the program. To measure the complexity

metrics Weyker [9] proposed set of properties which

have to be satisfied to give the good metrics. Several

researchers evaluated their proposed metrics [3, 4,

10, 11, 12, 13, 23, 25] with the help of Weyker’s

proposed properties. Most of the properties were

satisfied by the well known inheritance metrics as

DIT, NOC, NAC, NDC and AID. Some of the

weyker’s properties were not satisfied by these

metrics [23] because those properties were worked on

the traditional programming. Here, in the most of the

object oriented metrics mainly focuses only on class

not the inside information of the class.

In this paper we proposed two more metrics namely

Average Class Understandability (ACU) and Average

System Understandability (ASU). ACU and ASU are

utilized to find the complexity values on class wise

and system wise. Our main concentration is to reduce

the understandability as much as possible for the

better understanding of the given system design.

The frame of the proposed paper as follows: Section

2 presents the related work in the field of inheritance

hierarchy metrics and also the techniques like DIT,

NOC, NAC, NDC, AID and AU. Section 3 focuses

on our proposed metrics ACU and ASU. In Section 4

Weyker’s properties are evaluated with our proposed

metrics. Section-5 deals with the Comparison with

other existed inheritance metrics. In Section-6

Reduced complexity values of the understandability

are discussed. Section 7 and Section 8 were focused

on the conclusion and future scope of the paper

respectively.

2. RELATED WORK

In this section we stress the importance of

understandability metrics along with other well

known inheritance metrics like DIT, NOC, NAC,

NDC, AID and AU.

mailto:Syam.researchscholar@gmail.com1
mailto:profresp@gmail.com2
mailto:profresp@gmail.com2

New Metrics for System Understandability of Inheritance Hierarchies

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 60

Depth of Inheritance Tree (DIT) suggested by

chidamber-kerner [14, 15], DIT can be measured as

the depth in the hierarchy. Later it was modified as

maximum distance from node to the root of the tree

[3]. DIT shows the ambiguity problem in inheritance

hierarchy. W.Li [6] introduces Number of Ancestor

Classes (NAC) is a solution for the ambiguity

problem faced in the DIT mechanism. NAC measures

the total number of ancestor classes inherited by a

class in the inheritance hierarchy.

Consider the breadth of the inheritance hierarchy

rather than depth, chidamber-kerner [14] introduced

new mechanism called Number Of Childs (NOC). It

was modified as number of immediate sub classes in

the class hierarchy [3]. By NOC only immediate sub

classes have to be taken into account but not all the

sub classes which are influenced by the specified

class. To solve this problem W.Li [6] introduced

Number of Descendant Classes (NDC) of a class. It

states that the total number of subclasses of that class.

Henderson-Sellers [5] introduced a new metric called

Average Depth of Inheritance (AID) state that ratio

between the sum of individual depths of the classes to

the number of classes. This AID metric takes more

time for simplified systems comparing with other

systems.

For evaluating the system understandability Sheldon-

Jerath [8] proposed a new metric called Average

Understandability [AU].This AU mainly focused on

the predecessors of the given class. The resultant AU

metric gives the largest complexity values. This

metric takes more time to understand and design the

system. Hence we need new metrics in this area to

reduce the understandability complexity value for

better design and understandability of the given

system.

3. PROPOSED INHERITANCE METRICS

In this paper we propose two metrics ACU and ASU

for measuring the class and system understandability

purposes. ACU stands for Average Class

Understandability and ASU stands for Average

System Understandability. We are taken the class

diagrams as the Directed Acyclic Graph (DAG) with

no loops [16] in the situation of the multiple

inheritance hierarchies.

In these metrics we used the average complexity

method. For good results rather than best and worst

complexities. Average complexity values can be used

in various software features.ACU metric states that

understandability of the class includes the super

classes which are inherited in the present class and

sub classes which are inherited the present class.ASU

is the average of the total classes individual ACUs

with number of the classes in the system.

Average Class Understandability is

ACU = (i / n1) + (i / n2)

Supi=Depth from super class i.

n1= Number of super classes.

Subi=Height from sub class i.

n2= Number of sub classes.

Average System Understandability is

ASU = i / n

ACUi=Average Class Understandability of Class i.

n= Number of classes.

It is the easiest way to find the understandability of

the given inheritance hierarchy and understandability

complexity value is low when compared to existing

metrics.

4. PROPOSED METRICS EVALUATION WITH

WEYUKER’S PROPERTIES

The statistical measurement of the every software

metric can be evaluated by the Weyker’s properties

[9]. The Weyker’s properties state that the measuring

software metric is how much effective. It is very

important measure for every software metric, even

some of the researchers are criticizing the Weyker’s

properties. Our proposed object oriented metrics were

mainly focused on the class only, not the inside

information of the given class. Hence most of the

Weyker’s properties which can be observed on

software metrics obtained good results, but some of

the properties (7, 9) which cannot work on the object

oriented metrics properly [23].

Property-1:-Non-Coarseness-

Suppose our proposed metric M, work on two

different classes A and B always the Non-Coarseness

found that M(A)≠M(B).

Property-2:- Granularity –

This property states that there are a finite number of

cases of the program having the finite metric values.

The metric value must be non-negative value.

Property-3:- Non-Uniqueness-

 For two different classes A and B, proposed metric

values must be same as M (A) =M (B).

Property-4:- Design Implementation –

The class utilized in the metric has to present the two

different metric values designed by the two different

designers.

Property-5:- Monotonicity –

This property states that two different classes A, B

combination metric (A+B) is greater than or equal to

the individual classes metrics values. It mean M

(A+B) ≥M (A) and M (A+B) ≥M (B). A+B means

combination of two different classes A and B. The

combination of two classes may lead to the possible

cases in the object oriented design.

New Metrics for System Understandability of Inheritance Hierarchies

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 61

Every metric has to follow three possible cases to

satisfy the Monotonicity property.

1. If class A and class B are siblings.

2. If one class is the child of another class.

3. If class A and class B are neither siblings nor

children of each other.

Property-6:- Non-Equivalence of Interaction-

If two classes A and B having same metric values,

then combine the third class C with the existing A

and B classes. The result of A and C not equal to B

and C.

Property-7:- Significance of Permutation-

If program A and B such that B is formed with the

A’s permuting order of statements then evaluated

both metric values need not be equal.

Property-8:- No change of remaining

If class A is rename with class B then the metric

value not to be changed.

Property-9:-Interaction Complexity-

This property sates that interacting of two classes A

and B will be greater than the sum of class A and

class B.

M(A)+M(B)< M(A+B)

This ninth property is not satisfied by any object

oriented design [23] with classes because with the

combination of two classes leads to the highest value.

This gives bad design of the system. So, well-known

techniques of the inheritance hierarchy (DIT, NOC,

NDC, NAC, AID) also not followed the weyker’s

9
th

property.Hence our proposed metrics ACU and

ASU also not satisfied by the weyker’s 9
th

 property.

5. COMPARISON WITH OTHER INHERITANCE

METRICS

Here our metrics are compare to well known metrics

like DIT, NOC, NAC, NDC, AID and AU in the

view of the Weyker’s properties. Previously existing

results for DIT, NOC, NAC, NDC and AID were

taken with the evaluation of weyker’s properties.

Now we have done the evaluation of AU metric with

respect of weyker’s properties. Our metrics got the

good results rather than the previous results. Some of

the properties were not supported by our metrics also,

because those will be applicable for only traditional

programming purpose only not for the object oriented

purpose.

Results of the metrics against weyker’s properties are

give in the following table1.

Table1. Measurement of Inheritance Metrics in view

of Weyker’s properties.

√ - weyker’s property satisfied by the metric.

× - weyker’s property not satisfied by the metric.

Property

DIT

NOC

NAC

NDC

AID

AU

ACU

ASU

1 √ √ √ √ √ √ √ √

2 √ √ √ √ √ √ √ √

3 √ √ √ √ √ √ √ √

4 √ √ √ √ √ √ √ √

5 × √ × × × × √ √

6 √ √ √ √ √ √ √ √

7 × × × × × × × ×

8 √ √ √ √ √ √ √ √

9 × × × × × × × ×

Here some of the properties should not be satisfied by

the inheritance metrics [23] because the inheritance

hierarchy metrics mostly focus on the system outer

view not the inside details of the system.

In the results discussion we mainly comparing with

our metrics ASU with the existing AU metric. In this

comparison our metrics got the lowest complexity

values rather than the others. Hence by using our

metrics the designers can easily understand the

design of the system within optimum time.

6. CONCLUSION

In this paper we discussed so many useful and well

known inheritance metrics and especially we

compared our proposed metrics ACU and ASU with

the existing metric AU. Our proposed metrics obtain

lowest understandability complexity values rather

than AU. Here we tested our metric with the well-

knownweyker’s properties. Most of the weyker’s

properties are satisfied by our proposed metrics.

Some of the properties which were mainly worked on

traditional programming and inside data of the

system those were not supported by our proposed

metrics because our metrics were not focused on the

inside of the class. By using our metrics we reduced

the understandability complexity values drastically.

This will help the designers for understanding the

system design in easiest manner and design the

system in effective manner.

7. FUTURE SCOPE

With the reduced results of our proposed metrics we

identified that the designers overhead must be

reduced up to some extent .In future we want to focus

on the inside data of the classes and use the class

information in the understandability metrics. We

want to develop an innovative model for the

understandability by considering the data and

methods in the class. This may be utilized effectively

in the system maintenance and observe the behavior

of the system with the data and methods of the

classes in the inheritance hierarchy.

REFERENCES

[1]. AmjanShaik, C. R. K. Reddy, BalaManda

,Prakashini.

New Metrics for System Understandability of Inheritance Hierarchies

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 62

[2]. C,Deepthi. KMetrics for Object Oriented

Design Software Systems: A Survey Journal of

Emerging Trends in Engineering and Applied

Sciences (JETEAS) 2010, 1 (2): 190-198.

[3]. M.S.Ranwat,A.Mittal,S.K.Dubey Survey on

impact of software metrics on software quality

(IJACSA)International journal of Advanced

Computer Science and Applications,

Vol.3,No.1,2012.

[4]. Chidamber, S.R.—Kemerer, C.F.: A Metrics

Suite for Object Oriented Design.IEEE

Transactions on Software Engineering, Vol. 20,

1994, No. 6, pp. 476–493.

[5]. Abreu, F.B.—Carapuca, R.: Candidate Metrics

for Object Oriented Software within a

Taxonomy Framework. Journal of System

Software, Vol. 26, 1994, pp.87–96.

[6]. Henderson-Sellers, B.: Object Oriented Metrics:

Measures of Complexity. Pren-tice Hall PTR:

Englewood Cliffs, NJ, 1996; pp. 130–132.

[7]. Li, W.: Another Metric Suite for Object-

Oriented Programming. Journal of Systems and

Software, Vol. 44, 1998, pp. 155–162.

[8]. Lorenz, M.—Kidd, J.: Object-Oriented

Software Metrics. Prentice Hall 1994, ISBN:

013179292X.

[9]. Sheldon, F.T.—Jerath, K.—Chung, H.: Metrics

for Maintainability of Class In-heritance

Hierarchies. Journal of Software Maintenance

14, 3 May 2002, pp. 147–160.

[10]. Weyuker, E. J.: Evaluating Software

Complexity Measures. IEEE Transactions on

Software Engineering, Vol. 14, 1988, No. 9, pp.

1357–1365.

[11]. Cherniavsky, J.—Smith, C.: OnWeyukers

Axioms for Software Complexity Mea-sures.

IEEE Transaction on Software Engineering,

Vol. 17, 1991, No. 6, pp. 636–638.

[12]. Gursaran, G.R.: On the Applicability of

Weyuker Property Nine to Object-Oriented

Structural Inheritance Complexity Metrics.

IEEE Transaction on Software Engineering,

Vol. 27, 2001, No. 4, pp. 361–364.

[13]. Sharma, N.—Joshi, P.—Joshi, R.K.:

Applicability of Weyuker’s Property 9 to

Object-Oriented Metrics. IEEE Transaction on

Software Engineering, Vol. 32, 2006, No. 3, pp.

209–211.

[14]. Deepti Mishra: New Inheritance complexity

metricsfor object – oriented software

systems:An evaluation with weyker’s properties

Computing and Informatics, Vol. 30, 2011,

267–293.

[15]. Chidamber, S.R.—Kemerer, C.F.: Towards A

Metrics Suite for Object Oriented Design,

OOPSLA’91, pp. 197-211, 1991.

[16]. Chidamber, S.R.—Kemerer, C.F.: A Metrics

Suite for Object Oriented Design, M.I.T.Solan

School of Management 1993.

[17]. wang CC, shih TK ,paiWC An automatic

approach to object –oriented software testing

and metrics for c++ inheritance hierarchies,

proceedings International Conference on

Automated Software Engineering (ASE’97),

IEEE Computer Society press 1997;934-938

[18]. BasiliVR,Biand LC Melo WL A validation of

object-oriented metrics as quality indicators,

Technical Report,University of Maryland,

Department of computer science,1995; 242-

249.

[19]. Darcy, D.P.—Kemerer, C. F.: OO Metrics in

Practice. IEEE Softw. 22, 6 November 2005,

pp. 17–19. DOI: http://dx.doi.org/10.1109/MS.

2005

[20]. Ghassanalkadi, Application of a revised DIT

metric to Redesign an OO Design, Journal of

Object technology , Vol. 2,Issue 3,pp 897-

910,2005.

[21]. Basili, V.R.:Viewing Maintenance As Reuse

Oriented Software Development. IEEE

Software, Vol. 7, 1990, No. 1, pp. 19–25.

[22]. Cartwright, M.—Shepperd, M.: An Empirical

Analysis of Object Oriented Soft-ware in

Industry. In: Bournemouth Metrics Workshop,

April, Bournemouth, UK1996.

[23]. Li, W.—Henry, S.: Object-Oriented Metrics

That Predict Maintainability. Journal of

Systems and Software, Vol. 23, 1994, No. 2, pp.

111–122.

[24]. Sanjay Misra and Ibrahim Akman

:Applicability of Weyuker’s Properties on OO

Metrics: Some Misunderstandings ,ComSIS

Vol. 5, No. 1, June 2008

[25]. K. Rajnish, A. K. Choudhary, A. M. Agrawal,

―Inheritance Metrics for Object-Oriented

Design‖, IJCSIT, Vol. 2 No.6, December 2010,

pp.13-26.

[26]. K. Rajnish and V. Bhattacherjee, ―Class

Inheritance Metrics-An Analytical and

Empirical Approach‖, INFOCOMP-Journal of

Computer Science, Federal University of Lavras,

Brazil, Vol. 7 No.3, pp. 25-34, 2008.

http://dx.doi.org/10.1109/MS.2005

