FOCUS: An Enhanced Learning to Crawl Web Forums

Patan Rizwan, R Vinod Kumar, Mr. C. Rajendra, M.E., Ph.D., MISTE

1PG Scholor,CSE, 2,3Associate professor, Audisankara College of Engg & Tech Gudur

Abstract: In this paper, we present Forum Crawler under Supervision (FoCUS), a supervised web-scale forum crawler. The goal of FoCUS is to crawl relevant forum content from the web with minimal overhead. Forum threads contain information content that is the target of forum crawlers. Although forums have different layouts or styles and are powered by different forum software packages, they always have similar implicit navigation paths connected by specific URL types to lead users from entry pages to thread pages. Based on this observation, we reduce the web forum crawling problem to a URL-type recognition problem. And we show how to learn accurate and effective regular expression patterns of implicit navigation paths from automatically created training sets using aggregated results from weak page type classifiers. Robust page type classifiers can be trained from as few as five annotated forums and applied to a large set of unseen forums. Our test results show that FoCUS achieved over 98 percent effectiveness and 97 percent coverage on a large set of test forums powered by over 150 different forum software packages. In addition, the results of applying FoCUS on more than 100 community Question and Answer sites and Blog sites demonstrated that the concept of implicit navigation path could apply to other social media sites.

1. INTRODUCTION

Internet forums are important platforms where users can request and exchange information with others. For example, the Trip Advisor Travel Board is a place where people can ask and share travel tips. Due to the richness of information in forums, researchers are increasingly interested in mining knowledge from them. Zhai et al., Yang et al. and Song et al. extracted structured data from forums. Glance et al. tried to mine business intelligence from forum data. Zhang et al. proposed algorithms to extract expertise network in forums. Gao et al. identified question and answer pairs in forum threads. According to an article from eMarketer - Where Are Social Media Marketers Seeing the Most Success? - Forums are still part of the global social media strategy of the Top 500 Companies, and they are still getting really high marketing success with forums1.

To harvest knowledge from forums, their contents have to be downloaded first. Generic crawlers, which adopt a breadth first traversal strategy, are usually ineffective and inefficient for forum crawling. This is mainly due to two non-crawler-friendly characteristics of forums: (1) duplicate links & uninformative pages and (2) page-flipping links. A forum usually has many duplicate links which point to a common page but with different URLs, e.g., shortcut links pointing to latest posts or URLs for user experience functions such as “view by title”. A generic crawler that blindly follows these links will trawl many duplicate pages that make it inefficient. A Forum typically has many uninformative pages such as login control to protect users’ privacy. Following these links, a crawler will trawl many uninformative pages. Though there are standard-based methods such as specifying the “rel” attribute with “nofollow” value (i.e. “rel=nofollow”), Robots Exclusion Standard (robots.txt), and Sitemap, for forum operators to instruct web crawlers on how to crawl a site effectively, we found that over a set of 9 test forums more than 47% of the pages trawled by a generic crawler following these protocols are duplicate or uninformative. This number is a little higher than the 40% that Cai et al. reported but both show the inefficiency of generic crawlers.

Besides duplicate links & uninformative pages, a long forum board or thread is usually divided into multiple pages which are linked by page-flipping links. Generic crawlers process each page individually and ignore the relationship between such pages. These relationships should be preserved while crawling to facilitate downstream tasks such as page wrapping and content indexing. For example, multiple pages belonging to a thread should be concatenated together in order to extract all posts of this thread as well as the reply relationships between posts.
In addition to the above challenges, there is also the problem of entry URL discovery. A forum’s entry URL points to its home page, which is the lowest common ancestor page of all threads. Our experiment in Section 5.3.2 shows that a crawler starting from an entry URL could achieve much higher performance than starting from other URLs. Previous works by Vidal et al. and Cai et al. assumed that an entry URL is given. But entry URL discovery is not a trivial problem. An entry URL is not necessary at the root URL level of a forum hosting site and its form varies from site to site. Without entry URLs, existing crawling methods such as Vidal et al. and Cai et al. are less effective.

In this paper, we present FoCUS (Forum Crawler Under Supervision), a supervised web-scale forum crawler, to address these challenges. The goal of FoCUS is to trawl relevant content, i.e. user posts, from forums with minimal overhead. Forums exist in many different layouts or styles and powered by a variety of forum software packages, but they always have implicit navigation paths to lead users from entry pages to thread pages. Figure 1 illustrates a typical page and link structure in a forum. For example, a user can navigate from the entry page to a thread page through the following paths:

1. Entry \(\text{board} \rightarrow \text{thread}\)
2. entry \(\text{list-of-board} \rightarrow \text{board} \rightarrow \text{read}\)
3. entry \(\text{list-of-board} \& \text{thread} \rightarrow \text{read}\)
4. entry \(\text{list-of-board} \& \text{thread} \rightarrow \text{board} \rightarrow \text{ad}\)
5. entry \(\text{list-of-board} \& \text{thread} \rightarrow \text{board} \& \text{thread} \rightarrow \text{read}\)
6. entry \(\text{list-of-board} \& \text{thread} \rightarrow \text{board} \& \text{thread} \rightarrow \text{ad}\)

We call pages between the entry page and thread page which are on a breadth-first navigation path the \textit{index page}. We represent these implicit paths as the following navigation path (EIT path):

\[
\text{entry page} \rightarrow \text{index page} \rightarrow \text{thread page}
\]

Links between an entry page and an index page or between two index pages are referred as \textit{index URLs}. Links between an index page and a thread page are referred as \textit{thread URLs}. Links connecting multiple pages of a board and multiple pages of a thread are referred as \textit{page-flipping URLs}. A crawler starting from the entry page of a forum only needs to follow index URLs, thread URLs, and page-flipping URLs to traverse EIT path and achieve all thread pages. The challenge of forum crawling is then reduced to a URL type recognition problem. In this paper, we show how to learn regular expression patterns, i.e. ITF regexes, recognizing these three types of URLs from as few as 5 annotated forum packages and apply them to a large set of 160 unseen forum packages. Note that we specifically refer to “forum package” rather than “forum site”. A forum software package such as vBulletin5 can be deployed by many forum sites.

The major contributions of this paper are as follows:

1. We reduce the forum crawling problem to a URL type recognition problem and implement a crawler, FoCUS, to demonstrate its applicability.
2. We show how to automatically learn regular expression patterns (ITF regexes) that recognize the index URL, thread URL, and page-flipping URL using the page classifiers built from as few as 5 annotated forums.
3. We evaluate FoCUS on a large set of 160 unseen forum packages that cover 668,683 forum sites. To the best of our knowledge, this is the largest scale evaluation of this type. In addition, we show that the patterns are effective and the resulting crawler is efficient.
4. We compare FoCUS with a baseline generic breadth-first crawler, a structure-driven crawler, and a state-of-the-art crawler iRobot and show that FoCUS outperforms these crawlers in terms of effectiveness and coverage.
5. We design an effective forum entry URL discovery method. Entry URLs need to be specified to start crawling to get higher recall. But entry page discovery is not a trivial task since entry pages vary from forums to forums. Our evaluation shows that a naive baseline can achieve only 76% recall and precision; while our method can achieve over 95% recall and precision.
2. EXISTING SYSTEM

The existing system is a manual or semi-automated system, i.e., the Textile Management System is the system that can directly send to the shop and will purchase clothes whatever you wanted.

The users purchase dresses for festivals or by their need. They can spend time to purchase this by their choice like color, size, and designs, rate and so on.

But now in the world everyone is busy. They don’t need time to spend for this. Because they can spend whole the day to purchase for their whole family. So we proposed the new system for web crawling.

2.1. Disadvantages:

1. Consuming large amount of data’s.
2. Time wasting while crawling on the web.

3. PROPOSED SYSTEM

We propose a new system for web crawl as FoCUS: Learning to Crawl Web Forums. It is a system overcome by existing crawl systems. In this method for learning regular expression patterns of URLs that lead a crawler from an entry page to target pages. Target pages were found through comparing DOM trees of pages with a pre-selected sample target page. It is very effective.
but it only works for the specific site from which the sample page is drawn. The same process has to be repeated every time for a new site. Therefore, it is not suitable to large-scale crawling. In contrast, FoCUS learns URL patterns across multiple sites and automatically finds forum entry page given a page from a forum. Experimental results show that FoCUS is effective in large scale forum crawling by leveraging crawling knowledge learned from a few annotated forum sites. A recent and more comprehensive work on forum crawling is iRobot. iRobot aims to automatically learn a forum crawler with minimum human intervention by sampling forum pages, clustering them, selecting informative clusters via an informativeness measure, and finding a traversal path by a spanning tree algorithm. However, the traversal path selection procedure requires human inspection.

4. CONCLUSION

In this paper, we proposed and implemented FoCUS, a supervised forum crawler. We reduced the forum crawling problem to a URL type recognition problem and showed how to leverage implicit navigation paths of forums, i.e. entry-index-thread (EIT) path, and designed methods to learn ITF regexes explicitly. Experimental results on 160 forum sites each powered by a different forum
software package confirm that Focus could effectively learn knowledge of EIT path and ITF regexes from as few as 5 annotated forums. We also showed that FoCUS can effectively apply learned forum crawling knowledge on 160 unseen forums to automatically collect index URL, thread URL, and page-flipping URL string training sets and learn the ITF regexes from the training sets. These learned regexes could be applied directly in online crawling. Training and testing on the basis of forum package makes our experiments manageable and our results applicable to many forum sites. Moreover, FoCUS can start from any page of a forum, while all previous works expect an entry page is given. Our test results on 9 unseen forums show that FoCUS is indeed very effective and efficient and outperforms the state-of-the-art forum crawler, iRobot. The results on 160 forums show that FoCUS can apply the learned knowledge to a large set of unseen forums and still achieve a very good performance. Though, the method introduced in this paper is targeted at forum crawling, the implicit EIT-like path also apply to other sites, such as community Q&A sites, blog sites, and so on.

In the future, we would like to handle forums which use JavaScript, include incremental crawling, and discover new threads and refresh crawled threads in a timely manner. The initial results of applying FoCUS-like crawler to other social media are very promising. We would like to conduct more comprehensive experiments to further verify our approach and improve upon it.

REFERENCES