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1. INTRODUCTION 

Traditional Chinese herb Lycium barbarum (also called Goji berries, wolfberry), popular for its 

biological and pharmacological functions, is widely grown in the dry or semidry regions of China 

(such as Gansu province, Ningxia province, etc.), Korea, Japan, as well as Europe. High soil and air 

temperature, low latitude, strong light intensity, and moderate soil moisture are favorable geographical 

and climatic conditions for the production of nutrient-rich Goji berries [1]. It was estimated that there 

were eighty species of Lycium barbarum, of which seven species were found in China [2]. Lycium 

barbarum has long been used as medicine in China that could be traced back to the Tang Dynasty. 

According to Chinese traditional medicine, Lycium barbarum berries were considered to have the 

ability of improving the function of eyes, the activity of liver and kidneys, as well as enhancing the 

endurance/physical energy [3]. Moreover, its novel applications were explored such as Lycium 

barbarum was cultivated and consumed as nutritious supplements. Particularly, adding juice 

concentrate or extract of Lycium barbarum fruit to beverages could effectively improve liver function 

and reduce oxidative stress [4]. Due to the potential health benefits, ingredients from Lycium 

barbarum were extensively identified and analyzed, including but not limited to polysaccharides, 

flavonoids, carotenoids and polyphenols, of which Lycium barbarum polysaccharides (LBPs) were 

among the most bioactive ingredients. LBPs were composed of a bunch of water-soluble 

monosaccharides and glycoconjugates [5], including arabinose (Ara), rhamnose (Rha), glucose (Glc), 

xylose (Xyl), fucose (Fuc), glucuronic acid (GlcA), etc [6].  

LBPs were supposed to have a variety of biological effects, including antioxidant, anti-tumor effects, 
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blood glucose and lipids metabolism regulation, anti-ageing, immune regulation, anti-radiation, etc 

[7-12]. Further, we summarized and updated pharmacological functions of LBPs according to recent 

studies, to provide theoretical basis for extensive comprehension and making full use of LBPs.  

2. PHARMACOLOGICAL ACTIVITIES AND POTENTIAL HEALTH BENEFITS OF LBPS 

In line with other polysaccharides, LBPs have a variety of biological activities. At present, the 

biological functions of LBPs has covered anti-oxidation, neuroprotection, anti-tumor, 

anti-inflammation, anti-apoptotic effects, etc (as shown in Figure. 1). 

2.1 The neuroprotective effect of LBPs 

According to former studies, LBPs exhibited great neuroprotective effects on in vivo and in vitro 

models of neurological diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), stroke, 

and so on [13-15]. 

AD, a neurodegenerative disease with characteristics of gradual memory loss and cognitive disorders, 

is the most common cause of dementia [16]. The neuropathological features of AD contained 

progressive hippocampal and cortical atrophy, the presence of neurofibrillary tangles and the 

aggregation of β-amyloid (Aβ) in extracellular senile plaques [17]. Evidence from genetics and 

biochemical studies proved that excessive production of cytotoxic Aβ generated via amyloid precursor 

protein (APP) hydrolysis was responsible for the development and progression of AD [18]. The 

proteolytic processing of APP was comprised of amyloidogenic and non-amyloidogenic ways, where 

the former was mediated by β- and γ-secretase resulting in the generation of Aβ, while the latter was 

mediated by α- and γ-secretase leading to the production of a non-Aβ fragment termed p3 [19, 20]. 

One prospective strategy for AD prevention is to suppress the generation or assembly of Aβ [21]. 

Some study demonstrated that LBP1C-2 could reduce the production of Aβ42 by decreasing the 

expression of APP cleavage enzyme 1 (BACE1) and upregulating the expression of ADAM10 

[22-24]. 

Several studies indicated that crude LBPs could significantly attenuate cytotoxicity triggered by Aβ in 

vitro, and their sulfated derivatives were proved to possess anti-angiogenic activity [22, 23, 25]. LBPs 

pretreatment could markedly protect neurons from Aß-mediated cellular apoptosis possibly via 

depressing the activity of caspase-2 and -3, underlining the potential beneficial role of LBPs in AD 

[26]. 

One of the vital clinical features and standards for AD diagnosis is cognitive dysfunction [27]. In 

APP/PS1 double-transgenic mice, LBPs drastically improved the cognitive functions as determined 

by novel object recognition test and Morris water maze (MWM), as well as enhanced neurogenesis 

and proliferation, restored hippocampal synaptic plasticity. Moreover, LBPs decreased Aβ levels, 

amyloid plaque burden in vivo [28]. Similarly, LBPs treatment could significantly enhance cognitive 

and memory ability according to MWM and NORT, and prevent the decrease of cell proliferation and 

differentiation in scopolamine-treated rats [29]. 

PD is also known as dyskinesia, with the prevalence secondary to AD among neurodegenerative 

diseases. The protective effect of LBPs on pathological alterations and neurobehavioral defects was 

confirmed in a PD mouse model mediated by methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). 

LBPs could enhance the expression of SOD2, GSH-Px, CAT as well as repress MPTP-mediated 

aberrant α-synuclein aggregation. Moreover, phosphorylation of AKT and mTOR could also be 

upregulated by LBPs treatment, indicating the protective effect of LBPs on attenuating 

MPTP-induced nigrostriatal degeneration was probably due to the activation of PTEN/AKT/mTOR 
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signaling pathway [30]. Besides, LBPs could dose-dependently decrease cell apoptosis, impede 

amassing of ROS and NO, as well as suppress the expression of NF-κB and iNOS mediated by 

6-hydroxydopamine exposure, and the mechanism was found to be associated with the regulatory 

effect of LBPs on ROS-NO pathway [31]. 

The protective effect of LBPs on neurobehavioral defects mediated by cerebral ischemia was also 

sufficiently studied. A study reported that LBPs pretreatment could significantly ameliorate regional 

cortical blood flow, enhance motor coordination ability and memory, and repress microglia and 

astrocytes activation after perfusion in middle cerebral artery occlusion (MCAO) mice. The results 

further implied that LBPs could inhibit MCAO-mediated stimulation of NF-κB and p38 pathway, as 

well as decrease the expression of proinflammatory mediators in the hippocampus [32]. LBPs could 

also protect primary cultured hippocampal neurons from cerebral ischemia/ reperfusion injury 

possibly due to the activation of PI3K/Akt/mTOR signaling pathway [33]. Similarly, Wu et al. 

conducted a study on investigating the potential effect of LBPs on MCAO mice, where LBPs were 

administered prophylactically to MCAO mice by intragastric administration for 7 days, followed by 

cerebral ischemia for 2 hours and reperfusion for 24 hours. Consequent results suggested that 

neuronal morphological damage and neuronal apoptosis were markedly reduced, and caspase-3 

activity and Bax protein expression was significantly decreased while Bcl-2 expression was increased 

with LBPs pretreatment [34].  

LBPs pretreatment could also effectively protect retinal nerves and photoreceptor cells from 

light-induced retinal damage [35]. Li et al. reported that LBP could obviously retard the secondary 

degeneration of retinal ganglion cells, ameliorate the polarization of microglia/ macrophages, as well 

as decrease the autophagy level upon partial optic nerves injury [36]. Similarly, in an electric 

stimulation-induced microglial injury system, pretreatment with LBPs dramatically restored the 

appearance of cells, as well as attenuated inflammatory response, oxidative damage, and cell 

apoptosis possibly due to the modulation on endogenous autophagy and MAPK signaling pathway 

[37]. Another study demonstrated that LBPs could dose-dependently reduce the expression of Bax and 

Caspase-3 in hippocampal neurons exposed to sevoflurane, as well as promote the phosphorylation of 

ERK1/2 and the expression of Bcl-2 [38]. Furthermore, LBPs treatment could also exert 

neuroprotective effects against hypoxia, as manifested by reduced brain apoptosis, improved 

performance in MWM test in CoCl2-exposed rats [39]. Similarly, Deng et al. obtained Lycium 

ruthenicum polysaccharide 3 (LRP3) from crude polysaccharide through using ion exchange and gel 

permeation chromatography approaches. They found that LRP3 also exhibited neuroprotective effect 

on rat primary cortical neurons against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced 

neuronal damage [40]. 

2.2 The antioxidant property of LBPs 

Former reports suggest that LBPs and related glycoconjugates could effectively scavenge superoxide 

anions, 1,1-diphenyl-2-picrylhydrazyl (DPPH)-, hydroxyl-, and ABTS radicals, as well as improve the 

level of antioxidant enzymes [41-44]. Free radicals could be dose-dependently eliminated by LBPs, 

and the clearance rate reached a plateau as the concentration of LBPs increased [44]. 

LBPs could exert antioxidant effects by increasing enzymatic activity and expression of anti-oxidative 

enzymes including glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) 

and decreasing malondialdehyde (MDA) in vivo and in vitro [45, 46]. LBPs could also repress 

hydrogen peroxide-induced embryonic stem cell death, MDA and caspase-3 expression, as well as 

improve Bcl-2 expression [47]. Similarly, Li et al. proposed that LBPs inhibited hydrogen 
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peroxide-induced oxidative stress by lowering reactive oxygen species (ROS) and lactate 

dehydrogenase (LDH) levels while increasing SOD activity in trophoblast HTR8/SV cells [48]. 

Moreover, LBPs could effectively ameliorate cellular damage, cell apoptosis as well as autophagy 

induced by hydrogen peroxide via down-regulating miR-194 in PC-12 cells [49]. Chen et al. fed 

weaned piglets with different concentrations of LBPs and found that LBPs could effectively promote 

antioxidant properties through improving antioxidant enzyme activities including CAT, SOD, and 

GSH-Px, etc., as well as decreasing the MDA content in serum and liver of piglets [50]. Tang et al. 

extracted LBPs to obtain LBP-1 and LBP-2, where LBP-2 was acquired by deproteinating LBP-1 

using Sevag method. Consequent supplementation of Drosophila melanogaster with dietary LBP-1 or 

LBP-2 resulted in increased SOD and CAT activities but reduced MDA levels [51]. 

Nuclear factor E2-related factor 2 (Nrf2) played a significant role in the endogenous antioxidant 

system. Nrf2 could bind to antioxidant response element (ARE) thus upregulate downstream genes 

with antioxidant activities, such as heme oxygenase1 (HO-1), SOD and GSP-Px [52, 53]. LBPs were 

supposed to inhibit hydrogen peroxide-induced Nrf2 and HO-1 decrease and facilitate the binding of 

Nrf2 to HO-1 promoter [39]. Similar research implied that LBPs could decrease the level of ROS and 

lipid peroxide, while increase cell viability, SOD and GSP-Px levels mediated by silencing Nrf2 gene 

in fibroblastic HSF cells [12]. In vivo and in vitro studies indicated that LBPs could markedly 

attenuated high fat-mediated insulin resistance, manifested by improved expression of antioxidant and 

detoxifying enzymes, upregulated phosphorylation of Nrf2 and GSK3β, whereas ROS levels as well 

as phospho-JNK levels were decreased possibly due to the activation of PI3K/AKT/Nrf2 signaling 

pathway. Besides, LBPs dramatically attenuated expression of glycolytic and gluconeogenic genes by 

activating Nrf2 [54]. Similarly, Tang et al. proposed that LBPs pretreatment could markedly protect 

photoreceptor cells from light-mediated injury possibly via enhancing the expression of Nrf2 and 

TrxR1, eliminating oxygen free radicals, and decreasing resultant oxidative stress [35].  

Antioxidants strongly related to ageing, and LBPs were identified as efficient antioxidants and 

anti-ageing agents according to former studies [55]. The expression of antioxidant enzymes including 

SOD, GSH-Px and CAT was markedly upregulated in senile mice treated with LBPs intragastrically 

(200, 350 and 500 mg/kg respectively), whereas the formation of MDA (metabolite of lipid 

peroxidation products) was significantly decreased [56]. Another study showed that hydrogen 

peroxide-induced apoptosis, ROS and MDA production, as well as loss of Δψm were markedly 

attenuated in the human lens epithelial cells upon LBPs treatment. Further, LBPs also upregulated the 

expression of Bcl-2, downregulated the expression of Bax, attenuated cellular senescence, as well as 

improved the enzyme activity of SOD and GSH in human lens epithelial cells [57]. 

2.3 The immunomodulatory effect of LBPs 

Previous studies indicated that inflammatory reactions were involved in numerous diseases. The 

nuclear factor B (NF-B) plays an important role in cell survival and inflammation, where 

abnormally elevated NF-B level was deemed as a key indicator of inflammatory or autoimmune 

diseases. NF-B pathway could be stimulated by translocation of NF-B to nucleus in response to 

various irritative substances including IL-1β, TNF-α, growth factors, TLR4, etc [58, 59]. Ni et al. 

established an in vitro cartilage inflammation injury model by exposing ATDC5 cells to IL-1β. 

Subsequent results suggested that either COX-2 elevation or the activation of NF-kB signaling 

pathway mediated by IL-1β was significantly suppressed by LBPs treatment [60]. Another study 

indicated that LBPs treatment could suppress hepatotoxicity, mitigate immune organ injury, improve 

immune indexes, as well as increase the generation or secretion of cytokines including IL-1, IL-2, 
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TNF-, IL-6, and IFN- in cyclophosphamide- mediated mice [61]. Moreover, LBPs significantly 

repressed the increase of IL-1β, IL-6, IL-8, NF-κB and TNF-α mediated by lipopolysaccharide (LPS) 

exposure in a dose-dependent manner, as well as upregulated the mRNA levels of HO-1, NQO1 and 

Nrf2 but downregulated the expression of NF-κB and Keap1 [62]. Peng et al. purified LRGP3 from L. 

ruthenicum Murr. using hot water extraction method followed by Savage method for purification. 

Subsequent results showed that LRGP3 could significantly decrease NO production, prevent IκBα 

from degradation, as well as repressed pro-inflammatory cytokines like IL-1α, TNF-α, IL-6 in mouse 

macrophage cells exposed to LPS. Meanwhile, LRGP3 could also decrease the expression of Toll-like 

receptor 4 (TLR4) and the phosphorylation of NF-κB p65, suggesting the anti-inflammatory effect of 

LRGP3 might be relevant to TLR4/NF-κB signaling pathway [63]. Similarly, Zhang et al. purified a 

fraction named LBPF4-OL from LBPs by hot water extraction and Savage method. They stated that 

LBPF4-OL could significantly facilitate the expression of TLR4/MD2 and phospho-p38 MAPK 

though depressing the expression of phospho-JNK and phospho-ERK1/2, suggesting a potential role 

of LBPF4-OL as an inducer or activator in TLR4/MD2/MAPK signal pathway [64]. Analogously, 

LBPs markedly decreased the expression of IL-1 and TNF-, and restored the lung morphology in 

hyperoxia-mediated mice, possibly due to the inhibitory effect of LBPs on SIRT1-mediated 

stimulation of NLRP3 inflammasome [65]. Furthermore, LBPs could facilitate the activation and 

multiplication of immune cells including B cells, T cells, macrophagocytes, NK cells and dendritic 

cells [66-69]. Studies indicated that LBPs could stimulate the maturation of dendritic cells both 

phenotypically and functionally, as manifested by enhanced expression of CD-40, -80, -86, decreased 

ingestion of Ag, up-regulated allostimulatory effect, as well as improved Th1/Th2 response, implying 

the potential role of LBPs as an adjuvant for dendritic cells associated vaccines [70]. 

2.4 The anti-apoptotic activity of LBPs 

Apoptosis is automatically controlled to maintain a stable internal environment [71]. LBPs were 

deemed to have bidirectional regulation effects, i.e. promoting apoptosis of tumor cells or tumor 

volume shrinkage, as well as repressing apoptosis in normal cells or tissues. Hydrogen peroxide was 

frequently used in establishing oxidative damage cell models, while oxidative stress could lead to 

apoptosis [72, 73]. One study demonstrated that LBPs repressed Δψm decrease and cell apoptosis 

mediated by hydrogen peroxide via enhancing the expression of Bcl-2, survivin, and HIF1-α, but 

inhibiting the expression of Bax [48]. The accumulation of excessive ROS could exacerbate damage 

of retinal tissue, since free radicals trigger lipid peroxidation, protein damage and DNA breakage. 

LBPs could also protect retinal ganglion cells from CoCl2-induced apoptosis by increasing Δψm and 

decreasing ROS [74]. Moreover, LBPs significantly protected human retinal pigment epithelial cells 

from hydrogen peroxide-induced cell apoptosis as manifested by increased expression of Bcl-2 and 

decreased expression of Bax [75]. 

Excessive apoptosis is increasingly associated with ageing and ageing-related diseases [76]. One 

study carried out in a zebrafish model implied the protective effect of LBPs against ageing and cell 

apoptosis, with the level of ageing-related genes including p53, p21 as well as Bax was 

downregulated, while the expression of anti-ageing genes like Mdm2 and TERT was upregulated 

upon LBPs treatment [77]. Chen et al. reported that LBPs could significantly reduce cell death 

induced by LPS and repress the activation of caspase-3 in vitro [78]. LBPs could also 

dose-dependently suppress osteoblast apoptosis mediated by palmitate (PA), which was relevant to the 

inhibition of endoplasmic reticulum stress (ERS)-mediated JNK phosphorylation [79]. Similarly, Yang 

et al. reported that LBPs could inhibit cisplatin-mediated cell apoptosis in MLTC-1 cells through 

downregulating the expression of caspase-3, -7 and -12 [80]. Another study showed that LBPs 
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treatment could greatly downregulate the expression of pro-caspase and cleaved caspase, while 

upregulate the expression of PARP as well as cleaved PARP in photoreceptor cells exposed to 

N-methyl-N-nitrosourea [81].  

2.5 The anti-cancer effect of LBPs 

Apoptosis played an indispensable role in preventing canceration by eliminating damaged cells or 

abnormally excessive cells. A series of studies suggested that LBPs had favorable anti-tumor activity 

and stimulated apoptosis of cancer cells [82]. One study demonstrated that LBPs could inhibit 

proliferation and mediate apoptosis in human hepatoma cells [83]. Deng et al. separated four 

water-soluble LBPs fractions (i.e. LBP-2, LBP-3, LBP-4, and LBP-5) with different MW. In vitro 

experiments suggested that all of the LBPs fractions exhibited great inhibitory effect on murine 

hepatoma H22 cell line viability, but cell apoptosis, S-phase arrest and mitochondrial dysfunction 

were only observed in cells treated with LBP-3 [84]. Furthermore, LBP-3 repressed transplanted 

tumor growth by 37.97% as well as prolonged survival time in tumor-bearing mice. Similar studies 

reported that LBPF5 obtained from purification of LBPs with ion-exchange chromatography could 

notably suppress the multiplication and migration of BIU87 cells originated from bladder cancer [85] 

via downregulating PI3K/AKT pathway [86]. Similarly, studies on primary human hemangioma 

endothelial cells (HemEC) indicated that LBPs could effectively inhibit the proliferation of HemECs 

and induce apoptosis of HemECs through PI3K/AKT signaling pathway [87]. Shen and Du 

demonstrated that LBPs could dose-dependently stimulate Erk1/2 activity and S phase cell cycle 

arrest in MCF-7 cells [88]. Analogously, combined usage of LBPs and recombinant interferon 

(IFN-α2b) significantly promoted cell cycle arrest, facilitated cell apoptosis, as well as repressed cell 

multiplication in mouse Renca cells. Further, tumor volume and the ratio of myeloid-derived 

suppressor cells were significantly decreased in mice with transplanted tumor upon LBPs and 

IFN-α2b combined treatment [89].  

2.6 The Hypoglycemic activity of LBPs 

A significant decrease in serum glucose and increase in proinsulin indexes was uncovered after 3 

months oral administration of LBPs at a dose of 300 mg/day according to a clinical trial on 67 patients 

with type II diabetes. Moreover, high-density lipoprotein levels in diabetic patients were increased 

upon LBPs treatment, suggesting the potential role of LBPs as therapeutic adjuvants for type II 

diabetes [90]. Tang et al. obtained crude LBPs using hot water extraction method at the optimum 

temperature of 30°C and working pressure of 0.25 MPa, and further purified and obtained four 

components named LBP1, LBP2, LBP3 and LBP4 respectively. Two components LBP3a and LBP3b 

were purified from LBP3 using Sephadex G-150 columns (2.5 cm × 60 cm), and the hypoglycemic 

activity of LBP3b was studied. LBP3b repressed the uptake of glucose in a dose-dependent manner in 

vitro, possibly due to the combination of LBP3b with bit points of glucose absorption, thus delayed 

the absorption of glucose, and finally decreased postprandial blood glucose [91]. Li also proposed that 

oral administration of LBPs could effectively improve oxidative indexes of blood, kidney and liver in 

streptozotocin-induced diabetic rats [92]. Moreover, LBPs were always used in treating certain 

diabetic complications, such as diabetic peripheral neuropathy, testicular dysfunction, vascular disease, 

and diabetic retinopathy, etc [93-95]. LBPs were found to slightly reduce blood glucose, partly relieve 

hyperalgesia, and greatly ameliorate nerve fiber myelin structural damage in diabetic rats, suggesting 

the protective effect of LBPs against diabetic peripheral neuropathy [96]. Besides, LBPs played a 

protective role by increasing cell proliferation, inhibiting apoptosis, regulating the expression of 

sirtuin 1 (SIRT1) and hypoxia-inducible factor 1-alpha (HIF-1α) in diabetic rats [97]. Testicular 
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dysfunction was regarded as a serious secondary complication to diabetes. Shi et al. reported that 

LBPs could inhibit excessive testicular autophagy via activating PI3K/AKT signaling pathway, 

thereby protect diabetic mice against testicular dysfunction [98]. 

2.7 Other Biological Activities 

In addition to above mentioned bioactivities, LBPs were reported to have the ability of radioresistance 

[99], anti-fatigue [100], intestinal microbiota regulation [101, 102], cardioprotection [103], protecting 

male reproductive organs [104, 105] as well as kidney and liver from damage [106-110]. As bioactive 

ingredients, LBPs exhibited versatile biological activities as well as benefits for human health. 

 

Figure1. Summary of biological effects of polysaccharides from Lycium barbarum (LBPs). LBPs exerted a 

remarkable protective effect on in vitro and in vivo models. LBPs treatment increased the activity of SOD, CAT 

and GSH-Px but decrease the expression level of ROS and MDA via PI3K/AKT/Nrf2 pathway, and reduced 

apoptosis by inhibiting the generation of oxidative stress. LBPs decreased the expression of genes related to 

aging like p53, p21, and decreased the expression of apoptosis-related protein caspase 3, caspase 7 and caspase 

12. Moreover, LBPs exerted neuroprotective effects via inhibiting the production of Aβ by reducing the 

expression of β-APP cleavage enzyme 1 (BACE1) and up-regulating the expression of ADAM10. Besides, LBPs 

also enhanced neuroprotective function by inhibiting the generation of oxidative stress. LBPs could also 

down-regulated the expression of proinflammatory mediators and chemokines like IL-2, 8 IL-6, IL-1, TNF- 

and IFN- via NF-B pathway. 

3. PERSPECTIVES  

In conclusion, Lycium barbarum has been explored both medically and nutritionally so far. 

Particularly, it has been used to improve the function of liver, kidney and lung as Chinese traditional 

medicine for a long time. Lycium barbarum berries were edible either fresh or dried, or could be 

processed into jam, juice, wine and tea. At present, Lycium barbarum berries were widely used in 

food supplements and Chinese herbal medicine, such as Goji Yishen Capsule, Goji Cream Formula, 

Compound Goji Granules, and Wolfberry pulp, etc. What’s more, Lycium barbarum has a variety of 

physiological activities, which is highly related to its abundant content of polysaccharides i.e. LBPs. 

Studies suggest that LBPs possessed plenty of biological functions, including anti-oxidation, 

neuroprotective effect, anti-tumor, immunomodulation, anti-apoptosis, anti-inflammation, 
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hypoglycemic effect, etc, though the mechanism involved in biological activities of LBPs was yet to 

be clarified. Thus, further studies using systematic pharmacology approaches such as proteomic and 

metabolomic analysis are required to uncover the molecular target networks of LBPs. Besides, 

researchers acquired good effect by using LBPs in clinical trials for patients with type II diabetes, 

though clinical safety data on LBPs are still lacking. Moreover, the safe and effective use of herbal 

medicines like LBPs requires a full understanding of their side effects and mechanism of action. 

Therefore, it is necessary to establish a relationship between dose response and dose toxicity of LBP 

in animal and human studies to provide effective evidence for further development of LBPs-related 

health products. Last but not least, the relation between LBPs bioactivities and chemical structures 

was not properly established. Accordingly, further study on relationship between structure and 

bioactivity, could be one of the research priorities on LBPs. 
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