Acute-Toxicity and in Vitro Rat Mast Cell Studies on Terephthalic Acid Dimethyl Ester (TADE) from Abies pindrow leaves

Dr. R. K. Singh
Department of Zoology,
Faculty of Life-Sciences
Dr. C.V. Raman University, Bilaspur,
Chhattisgarh, India.
rk20singh@gmail.com

Dr. B.L. Pandey
Prof. & Head, Department of Pharmacology.
Faculty of Medicine
Institute of Medical Sciences, Banaras Hindu University. Varanasi, India
blp53@rediffmail.com

Abstract: Monoterpenoid, terephthalic acid dimethyl ester (TADE) isolated from Abies pindrow leaves inhibited spontaneous as well as Compound 48/80 challenge mast cell on in vitro (0.5-5.0 mg/ml) direct treatment. Acute toxicity study of TADE was performed in mice (Swiss) given single dose 1.0, 2.5, 5.0 and 10.0 mg/kg, po showed normal behavior and no mortality upto 14 days. In agreement with the traditional remedially use in respiratory ailments.

Keywords: Abies pindrow: Acute- toxicity : Terephthalic acid dimethyl ester (TADE): Mast Cell degranulation

1. INTRODUCTION

Abies pindrow Spach (Pinaceae) leaves, described as “talisapatra” tree in Sanskrit and popularly called “morinda” in Hindi, is found in the deciduous forests of Himalayas [1]. Leaves have been used as Ayurvedic remedy for fever, respiratory and inflammatory ailments [2]. Anti-inflammatory, analgesic, hypnotic and anti-ulcerogenic activities in rats; hypotension in dogs and endurance enhancing in swim stress tests in mice have been observed with extracts and fractions of the Abies pindrow leaves [3]. Terephthalic acid dimethyl ester (TADE), a leaf isolate exhibits anti-inflammatory activity and inhibition of histamine induced bronchospasm in experimental studies [4]. The compound isolated from the leaves of A. pindrow include flavonoids[5,6] lactones[7] and terephthalic acid dimethyl ester (TADE) [8].

The present investigation was conducted to study acute toxicity and in vitro rat mesenteric mast cell in view of its medicinal importance in folklore medicine.

2. MATERIALS AND METHODS

2.1. Plant Material

A. pindrow Spach (Pinaceae) leaves, were harvested from Kumaon hills, Himalayas and specimen authenticated at the Regional Research Centre for Ayurveda, Jammu-Tawi, Jammu & Kashmir, India, with deposit of voucher specimens.

2.2. Extraction

The dried leaves powder (500 g) A. pindrow were extracted with ethanol by soxhlet extractor. The compound was isolated by silica gel column chromatograph of extract of the leaves of A. pindrow. The final yield of TADE was 40 mg (0.008%).

2.3. Ethical Clearance

All the experiments were conducted following the CPCSEA after the approval of Institutional Animal Ethics Committee, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

2.4. Animals

Albino mice (Swiss) 20-25g and Albino-rats (Wistar) 100-150 g of either sex, were obtained from the Central Animal House of IMS, BHU, Varanasi. They were housed in colony cages and fed standard Hind Lever pellet chow and kept at an ambient room temperature of 25°C ± 2°C and relative humidity 45-55% with 12 h light/12 h dark cycle.
2.5. Acute –Toxicity studies on Mice
Albino mice (Swiss: 3 M) weighing 20-25 g were given graded doses of TADE 1.0, 2.5, 5.0 and 10.0 mg/kg, po and Control. These animals were fasted 18 h prior to the experimentation. Both the test and control groups were received in a same volume of drug or vehicle control as per body weight. Experiments were conducted as per OECD guidelines [9].

<table>
<thead>
<tr>
<th>Treatment (mg/ml+2.5 µg/ml Comp. 48/80)</th>
<th>% degranulation</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>17.67±0.13</td>
<td>-</td>
</tr>
<tr>
<td>Comp. 48/80</td>
<td>91.02±0.26</td>
<td>-</td>
</tr>
<tr>
<td>TADE 0.5</td>
<td>8.49±1.16*</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>9.21±1.27*</td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>10.82±2.06*</td>
<td>-</td>
</tr>
<tr>
<td>5.0</td>
<td>11.63±2.90</td>
<td>-</td>
</tr>
<tr>
<td>0.5 TADE + Comp. 48/80</td>
<td>35.27±1.97*</td>
<td>61.25**</td>
</tr>
<tr>
<td>1.0 TADE + Comp. 48/80</td>
<td>41.67±1.23*</td>
<td>54.26**</td>
</tr>
<tr>
<td>2.5 TADE + Comp. 48/80</td>
<td>45.67±1.03*</td>
<td>49.82**</td>
</tr>
<tr>
<td>5.0 TADE + Comp. 48/80</td>
<td>53.12±2.07*</td>
<td>41.64**</td>
</tr>
</tbody>
</table>

Values are mean± SE (N=6) *P<0.001 Vs Control, **P<0.001 Vs Comp.48/80; Student’s t test.

2.6. Effect of TADE on In-vitro mesenteric mast cell of rats
Wistar rats were sacrificed by cervical dislocation. The abdomen was opened and mesentery of the jejunum and ileum were carefully exposed. The mesentry along with small pieces of jejunum or ileum were removed and placed in a petri dish containing oxygenated Ringer Locke’s solution (NaCl 9.0, KCl 0.42, CaCl2 0.24, NaHCO3 0.5 and glucose 1.0 g/L of double distilled water ph 7.4) at 37°C± 0.5°C. Tissue transferred to different dose (0.5, 1.0, 2.5 and 5.0 mg/ml) for 30 min and then challenged by Comp 48/80(2.5 µg/ml) for 10 min. The tissue was then stained 0.1% Toludine blue in 4% Formaldehyde in saline for 15-20 min [10]. The tissue was then transferred and kept in acetone (two changes) and then mounted on slides. Before mounting, excess pieces of fats were trimmed and the mesentery was stretched from the edges with the help of a needle.

Each cell was considered either disrupted or not disrupted. The term disrupted was selected instead of fragmented because granules were found around many cells which did not appear to be in fragments. The sole criterion for calling a cell disrupted was the presence of granules outside the cell. Many cells did not show extrusion of granules but appear swollen at low concentration of Comp. 48/80. For each dose concentration 100 to 150 mast cell were examined and average percentage of disruption was calculated.

2.7. Data analysis
All the data was analyzed by student's t-test followed by ANOVA.

3. RESULTS

3.1. Acute –Toxicity studies on Mice
All animals treated with different doses of TADE showed normal behavior and no mortality was recorded up to 14 days. Individual groups of animals were sacrificed under CO2 following the animal ethical guidelines. After postmortem, histopathological examination was performed. Organs viz. liver, kidney, lung, spleen, ovaries and testes were examined. The histological report of TADE treated group of animal tissues was compared with control. All vital organs showed normal architectures and no specific pathological changes have been detected.

3.2. Effect of TADE on In-vitro mesenteric mast cell of rats
TADE pretreatment with three doses reduced mast cell degranulation significantly (Table 1).

4. CONCLUSION
Acute toxicity of terephthalic acid dimethyl ester (TADE) from A. pindrow leaves has safe up to the doses of 10 mg/kgand caused no mortality and normal behavior. Inhibition of mediator release from rat...
mesenteric mast cells by direct pre-treatment with TADE, in addition to earlier demonstrated protective systemic effect against histamine induced bronchospasm in Guinea –pigs provide mechanistic basis for traditional use of A. pindrow leaves in respiratory ailments.

The present study thus suggests possible use of TADE in bronchial asthma in light of present finding and earlier reported safety margin[4].

ACKNOWLEDGEMENTS

The work was financed by Central Council for Research in Ayurvedic Sciences, Department of AYUSH, Ministry of Health & Family Welfare, New-Delhi, Government of India.

REFERENCES

AUTHOR’S BIOGRAPHY

Dr. R K. Singh received his Ph.D. in Zoology-Pharmacology from Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University of Varanasi, India. His M.Sc. degree was awarded in Zoology (Fishery- Biology) from Gorakhpur University, India. He is presently working as an HOD and Assistant Professor of Zoology at Govt MLS College, Sreet, Bilaspur under Bilaspur University (C.G., India). He has previously worked as a Senior Research Scientist at Department of Pharmacology, National Research Institute of Ayurvedic Drug Development, CCRAS, Department of AYUSH, Ministry of Health & Family Welfare, New-Delhi, Government of India. He has served as editorial board member for various journals like Journal of Medicinal & Aromatic Plant Sciences, Indian Journal of Pharmacology and Indian Journal of Physiology and Pharmacology. He has published sixty seven papers in international and national journals on Ethnopharmacology, Cardio-Vascular Pharmacology, Neuro psycho pharmacology and Toxicology

Dr.B.L. Pandey, MD,Ph.D.(Pharmacology) and Ph.D.(Ayurveda)BHU, India. Served as Professor and Head, Department of Pharmacology, IMS, BHU, Varanasi. 35 years standing in teaching and research profession. Was engaged as Secretary Clinical-Pharmacology IPS, Indian Journal of Pharmacology and member, editorial board of number of scientific journals. Field of research interest includes Indigenous herbal products and Immuno pharmacology. Clinical-Pharmacology and Toxicology. One hundred twenty four publications in various international and national journals.