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1. INTRODUCTION 

There are many evidences that vascular fluid dynamics plays a major role in the development and 

progression of arterial diseases, one of the most widespread diseases in lungs. Arteries are 

narrowed by the development of Atherosclerosis [shown in fig. (a)] or stenosis. Stenosis denotes 

the narrowing of the artery due to the development of arteriosclerosis plaques. The presence of 

stenosis can lead to serious circulatory disorders. There is strong evidence that hydrodynamic 

factors such as resistance to flow, wall shear stress and apparent viscosity may play a vital role in 

the development and the progression of arterial stenosis. Many researchers [1, 2, and 3] feel that 

the hydrodynamic factors may be helpful in the diagnosis, treatment and fundamental 

understanding of many disorders. 

 

Fig .(a). Atherosclerosis 

Clark [5] has made experimental studies with different models of stenosis. However, the models 

do not account for the size effects due to the suspension of blood cells in plasma. It should be 

noted that in the case of an advanced stenosis, the size of the artery reduces considerably. In such 

a case a Newtonian fluid cannot represent blood, because the size effects influence the flow 

characteristics significantly. With the advent of the fact that rheologic properties and the flow 

Tear in artery wall 

Macrophage cell 

Cholostrol deposits  

Red blood cell 

Macrophage foam cell 

Fat deposits 

 

mailto:1980jan@rediffmail.com


Sapna Ratan Shah 

 

International Journal of Research Studies in Biosciences (IJRSB)                                               Page | 25 

behaviour of blood are of immense importance in the fundamental study of arterial stenosis. 

Shukla et al. [6] have studied the effect of stenosis on the resistance to flow through artery by 

considering the behaviour of blood as a power-law fluid and a Casson fluid. Murata
 
[7] has 

proposed a sedimentation model in which he considered constant values of hematocrit and 

Newtonian viscosity in the circular core region, containing red cell aggregates. A theoretical 

model for sedimentation of red cell aggregates in narrow horizontal tubes have proposed by 

Secomb and El-Kareh [8] in which they modelled the core region as a solid cylinder moving 

inside the tube. A little attention [9, 10, 11, and 12] has been made to study the effect of stenosis 

through tubes with double constriction on physiological fluid flows. The present work describes 

two fluids model for blood flow through an artery. In this study the effects of peripheral layer 

viscosity on physiological characteristics of blood through the artery with mild stenosis have been 

studied. To study the influence of stenosis shape parameter (m) through an artery in blood flow a 

suitable geometry is considered such that the axial shape of the stenosis can be changed just by 

varying a parameter. In this model the suspension of erythrocytes in the core region is assumed to 

be non-Newtonian fluid and peripheral plasma layer is treated as Newtonian fluid. 

2. ANALYSIS OF THE PROBLEM 

Consider the axisymmetric flow of blood in a uniform circular tube with an axially non-

symmetric but radially symmetric mild stenosis. The geometry of the stenosis as shown in (Fig.1) 

is assumed to be manifested as: 

R(z) (m 1) m1 A[L (z d) (z d) ], d z d L
0 0R

0

1, otherwise,

                   (1) 

 

                                                                                              

                                                                               Peripheral layer (Newtonian fluid)                                                                                                 

                                                           d               L0                     Central layer (Herschel-Bulkley fluid) 

                                                           R0       αR0                       

                                                                                           

                                                                                                                    

 

Fig 1. Geometry of stenosed artery with peripheral layer 

where R(z) and R0  is  the  radius  of  the  capillary  with  and  without  stenosis, respectively. L0  

is  the  stenosis  length  and  d  indicates  its  location,  m ≥ 2  is  a parameter  determining  the  

stenosis  shape  and  is  referred  to  as  shape  parameter. Axially  symmetric  stenosis  occurs  

when   m = 2 , and  a  parameter  A  is  given  by: 

m/(m-1)
δ m

A = m (m-1)R L
0 0

 

where denotes the maximum height of stenosis at z=d+L0/m
1/(m–1)

. δ/R0<<1                                                     
The function R1 (z) representing the shape of the central layer assumed as,  
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R (z) (m 1) m1 α, A [L (z d) (z d) ], d z d L
1 0 0R

0

α, otherwise,

                     (2) 

m/(m 1)
1

0 0

δ m
A m1 (m 1)R L

 

where denotes the maximum bulging of interface at z = d + L0 / m
1 / (m – 1)

 due to the presence of 

stenosis and is the ratio of the central core radius to the tube radius in the unobstructed region.  

3. CONSERVATION EQUATION AND BOUNDARY CONDITION 

The equation of motion for laminar and incompressible, steady, fully developed, one-dimensional 

flow of blood whose viscosity varies along the radial direction in a capillary is: 

dP 1
(- ) [r μ ( u r)] 0

dz r r
,                                                                                      (3) 

where (z, r)  are  (axial, radial)  co-ordinates  with  z  measured  along  the   axis  and  r  measured  

normal  to  the  axis  of  the  capillary.  

Following boundary conditions are introduced to solve the above equations, 

u
 = 0           at  r = 0,      u = 0         at  r = R (z),  

r
P    = P       at  z = 0,     P    = P        at  z = L, 

L0

τ is finite at r =0.

                                      (4)     

To see the effect of peripheral layer viscosity on the stenosis shape parameter, resistance to flow, 

shear stress and apparent viscosity, we consider the viscosity function as follows: 

1 1

2 1

μ = μ , 0 r R (z),

μ = μ , R (z) r R(z),
                                                                                                        (5) 

where μ1  and  μ2  are the viscosities of the central and the peripheral layers respectively. 

Herschel-Bulkley Fluid Model- The stress-strain relation of Herschel-Bulkley fluid is given as: 

,
R

dz

dp
τ,

r

dz

dp
τwhere

ττ,
dr

du
)τ(f

ττ,ττ
μdr

du
)τ(f

c

n

                                                          (6)                               

and µ  denotes  Herschel-Bulkley viscosity  coefficient,  o  is  yield  stress,    is  shear  stress,  Rc  

is  the  radius  of  the  plug-flow  region,  u  is  the  axial  velocity  along the  z direction and n is 

the flow behavior index. The relation correspond to the vanishing of the velocity gradients in 

regions, in which the shear stress τ is less than the yield stress τo this implies a plug flow wherever 

τ ≤ τo when the shear rates in the fluid are very high, τ ≥ τo, the power-law fluid behavior is 

indicated. 
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4. SOLUTION OF THE PROBLEM 

The flow flux Q, at any cross section is defined as  

R(z) R(z)
2

0 0

duQ= 2πrudu = πr (- )dr,
dr

                                                                                     (7) 

On using equation (3, 6) and boundary condition (4), we get 

1/ n

1/ n

1 c

p
Q = - r - R ,

2 μ
                                                                                                   (8) 

R (z)1
2 4

1 1 1

0

Q = πr (-du/dr)dr=(πPR (z)/8μ )  

R(z)
2 4 4

1

2R (z)1

π PduQ = πr (- )dr = [R (z)-R (z)]
2 dr 8μ

 

value  of  f ( )  from  equation  (1)  in  equation  (7), 

11/ n (3+ )nπ P R
Q = f (y),

2 2μ (1+ )1
n

                                                                                                (9) 

where f y
R

R n

R

R n n

R

R

R

R

c n c n

c n n c

( ) [ ( )
(( / ) )

( )
(( / ) )(( / ) )

(( ) (( ) ( )))],

(( / ) ) (( / ) )

(( / ) ) (( / ) )

2 1
4

1 2
1

4

1 2 1 3

1 1

1 1 1 2

1 3 1 3

 

/cy = (R R) 1.  

Using equation (8) we have,  

n

(1+3n)

dp 2μ 2Q
P = - = (1+ )

dz π f (y)R

1
n

                                                                              (10) 

to  determine  λ,  we  integrate  equation  (11)  for  the  pressure  PL  and  Po  are  the  pressure  at  

z = 0  and  z = L,  respectively,  where  L  is  the  length  of  the  tube. 
n

1+3n (1+3n)L 0 n
00 0

2μ dz
ΔP = P -P = 2Q +1

π R (R(z) / R )

1
n

f(y)

L
                                 (11) 

The resistance to flow is given by the coefficient λ is defined as follows:  

L 0
λ = (P -P /Q)                                                                                                                     (12) 

1+3n0
0

(M)

n
12Q(1+ )2μ nλ =

πR
                                                                                      (13) 
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d+Ld L0

n n1+3n
0 d d+Ln 000

0

dz dz dz
M = + +

(f )f
f(y)

R(z)
R

 

) )
1 1 1(1+ ) (2+ ) (3+ 1(3+n n n n+

0 1 1 1 1

c1 0

4
f = 2 1- y - 1- y ,

( + 2)

where y (R / R )

4
1- y - (-1) y

1 11 (2+ )(3+ )n n n
 

When there is no stenosis in artery then R = R0, the resistance to flow,   

n1+3nN
00

L

(f )

n
12Q(1+ )2μ nλ =

πR
                                                                                 (14) 

from  equation  (12)  and  (13)  the  ratio  of  (  / N ) is given  as: 

d + Ln 0
0 0 0

1+3 n n
dN o

L (f ) dz
λ = =1- +

L L (R(z) / R ) f(y)

                                                      (15) 

The apparent viscosity ( 0/ ) is defined as follow:   

0

1+3 n
appμ = (1/ (R(z) / R ) f(y))                                                                                           

R (z)1
2 4

1 1 1

0

Q = πr (-du/dr)dr=(πPR (z)/8μ )                                                                            (16) 

R(z)
2 4 4

1

2R (z)1

π PduQ = πr (- )dr = [R (z)-R (z)]
2 dr 8μ

                                                               (17) 

the total flux, Q is  

Q Q Q1 2  

and Q is written as; 

4 4
1

2

π P
Q= [R (z)-(1-π)R (z)]

8 μ
                                                                                    (18) 

Where  

from equation (10) the pressure gradient is written as follows: 

4 4
2 1P=(8μ Q/π[R (z)-(1-μ) R (z)])                                                                                   (19) 

To determine  λ,  we  integrate  equation  (11)  for  the  pressure  PL  and  P0  which  are  the  

pressures  at  z = 0  and  z = L,  respectively,  where  L  is  the  length  of  the  tube. 

The resistance to flow is defined as follows: 
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L0 0
λ =(P -P /Q)                                                                                                                       (20) 

Let  N  is the resistance to flow for Newtonian fluid with no stenosis, then   

4

N 1 0
λ =(8 μ L/π R )                                                                                                               (21) 

from equation (12) and (13) we have, 

0

4
4 40 0 1

N 0 0

λ L R (z)(1-(1-μ) α ) R(z)d+L
λ= =1- + (dz/[( ) -(1-μ) ( ) ])

d R Rλ L L
                              (22) 

Equation (12) can be rewritten as: 

4
app/Q=(π PR 8 μ )                                             

where μapp is the apparent total tube flow viscosity given by: 

app 4 4
0

μ 1
μ =

[1-(1-μ)α ] (R(z) R )
                                                                                         (23) 

The shearing stress at the maximum height of the stenosis can be written as: 

3 4 4
2 0

0 0 0

δ δ δτ =(4μ Q (1- )/πR [(1- ) -(1-μ) (α- ) ])s R R R
                                                        (24)                                          

and the shear stress for Newtonian fluid with no stenosis is as: 

3

N 1 0
τ =(4 μ Q/π R )                                                                                                               (25) 

now the ratio of shearing stresses at the wall can be written as:  

4 3
NS

0

δτ=(τ /τ )=(μ/[1-(1-μ)α ](1- ) )
R

                                                                             (26) 

5.  RESULTS AND DISCUSSION 

The model presented above contributes to the fact that blood possesses an inbuilt mechanics of 

reducing drag due to the presence of peripheral layer. Therefore incorporation of a cell free layer 

of plasma and a central core of thickly concentrated suspension of cells with higher viscosity 

(μ2>μ1) describes the simplest representation of blood in small diameter vessels. The results 

obtained in this study consist of the expression for resistance to flow ( ) in equation (14), 

expression for apparent viscosity (μapp) in equation (15) and expression for shear stress in equation 

(18) and displayed graphically. Fig (2) and (3) depict the variation of resistance to flow with 

stenosis size, stenosis length, stenosis shape parameter and peripheral layer viscosity. It is 

observed from the figures that the resistance to flow decreases as stenosis shape parameter 

increases while it increases as stenosis size and peripheral layer viscosity increases. A slight 

change in the stenosis size (radius of the artery) brings about a noticeable change in the resistance 

to flow [4]. It is found by [15] that the peripheral layer viscosity of blood in diabetic patients is 

higher than in non-diabetic patients, resulting higher resistance to blood flow. Thus diabetic 

patients with higher peripheral layer viscosity are more prone to high blood pressure. Therefore 

the resistance to blood flow in case of diabetic patients may be reduced by reducing viscosity of 

the plasma. This can be done by injecting saline water to such patients the process is called 

dilution in medical terms. Fig (4) and (5) consist the results for wall shear stress for different 

values of stenosis size and stenosis length, stenosis shape parameter and peripheral layer  
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viscosity. It is observed from the figures that the wall shear stress decreases as stenosis shape 

parameter increases but in the case of increasing stenosis size, stenosis length and peripheral layer 

viscosity wall shear stress is increasing. Fig (6) and Fig (7) highlighted the results for apparent 

viscosity with the variation of stenosis size, stenosis length, stenosis shape parameter and 

peripheral layer viscosity. These figures depict that apparent viscosity increases as stenosis size, 

stenosis length and peripheral layer viscosity increases. It has also been seen from the graphs that 

the apparent viscosity decreases as shape parameter increases. These results are qualitative 
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agreement with the observation of [14, 18]. In normal human artery, apparent viscosity is found to 

decrease with the artery radius
 
and is called Fahraeus-Lindquist effect. One may conclude that 

peripheral layer viscosity plays an important role in lowering the resistance to flow and wall shear 

stress along the increasing stenosis thickness. In medical practice several medicines are prescribed 

to lower the plasma viscosity and by injecting saline water intra-venously [19]. 

 

 

6. CONCLUSION  

The effect of peripheral layer viscosity on the blood flow in the presence of mild stenosis in the 

lumen of the artery has been investigated by using Power law fluid model. It has concluded that 

the resistance to flow, apparent viscosity and wall shear stress have been found to increases with 
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viscosity of peripheral layer but the same are not found to increase as the shape of stenosis 

increases. The model predicts increase in wall shear stress with peripheral layer viscosity. 

Predicted trends are found to exist in artery and hence validate the model. More experimental 

results are required for further development from clinical point of view. 
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