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1. INTRODUCTION 

Stress testing provides information on the stability of a system or entity for risk management 

purposes. Regulators and senior management of major US banks rely on stress testing to guarantee 

that the bank holding company has sufficient capital to continue operations throughout times of 

economic and financial stress. For example, the Comprehensive Capital Analysis and Review is an 

annual exercise by the Federal Reserve to assess whether the largest bank holding companies have 

sufficient capital to continue operations under stressful economic conditions (see Federal Reserve, 

2020).  

Scenario forecasting of adverse events is the main analytical foundation of stress testing.  Statistically, 

the modeling of uncertain adverse events relates to capturing a tail of the distribution event. In 

contrast to the prediction of expected events, the prediction of adverse events could be very sensitive 

to distributional assumptions, e.g., the Gaussian (Normal) assumption.  

Indeed, it is to be expected that the distributional error uncertainty is a main source of estimation error 

of capital estimates in stress testing. The aim of this paper is to incorporate uncertainties of model risk 

in stress scenarios.  

Our approach consists of mapping the Gaussian (or other alternative) distribution quantiles to the 

quantiles of the empirical distribution using a statistical criterion:  the mapping is implemented if the 

transformation factors are statistically significant and increase a penalized goodness of fit measure. 

The mapping corrects for the presence of fatter tails (relative to the Gaussian distribution) into the re-

parameterized distribution.   

Our mapping also provides a statistical measure or confidence intervals to stress testing. The 

confidence intervals that pertain to the tail of the distribution extrapolation can then be conciliated 

with the quantile estimate of the distribution to generate a more comprehensive measure of risk. 

Importantly, we show the generation of a stress scenario based on the joint distribution of the model 

risk of tail risk extrapolation and the adverse condition assumptions. 
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The focus of our proposed method consists of a stress scenario for house prices.
1
  Specifically, we 

start with the data generating process of house prices and then derive a stress scenario. The testing 

results illustrate the relevance of fatter tails in house price modeling and the effect of model risk on 

tail risk extrapolation in an adverse scenario.  

2. MODELING THE HOME PRICE DISTRIBUTION 

Stress testing of home prices is a main factor in regulators evaluation of banks’ balance sheets. While 

home price declines at a national level were considered a low probability event prior to the great 

recession, it is now considered a plausible adverse event in most stress testing across the financial 

service industry.  The underlying empirical basis for a stress scenario for house prices stems from the 

data generating process (stochastic differential equation) underlying home prices. 

To model home price dynamics, we start with an Ornsten-Uhlenbeck process that embeds the family 

of stochastic processes with a mean reversion component. The Ornsten-Uhlenbeck process have been 

successfully adapted from physics to the modeling of financial series (e.g., Vasicek, 1977). More so, 

the Ornsten-Uhlenbeck process is the most often referenced stochastic differential equation in finance. 

The Ornsten-Uhlenbeck process, specifically, models the velocity of a massive Brownian particle 

under the influence of friction: 

 1 𝐻𝑃𝑡 = 𝑏(𝐻𝑃𝑡−1 − 𝑐) + 𝜎ℎ 𝑡   

where the long-run mean level of home prices,HPt,is c; the speed of reversion to the mean is b; and σ 

is the instantaneous volatility. The underlying structure, in particular, underscores the tendency of the 

dynamic process to drift toward its long-term mean such that the velocity of the particle tends to mean 

revert. 

A Weiner process with drift is an Ornsten-Uhlenbeck process with the added restriction that b =1: 

 2 𝐻𝑃𝑡 =  𝐻𝑃𝑡−1 − 𝑐 + 𝜎ℎ 𝑡. 

For the modeling of house price dynamics, an extended Ornsten-Uhlenbeck process that incorporates 

the presence of fat tails (e.g., a lognormal distribution) is: 

 3      ln(𝐻𝑃𝑡/𝐻𝑃𝑡−1) = −𝑏𝑐 + (𝑏 − 1)𝑙𝑛(𝐻𝑃𝑡−1) +  𝑎𝑠 ln (𝐻𝑃𝑡−𝑠/𝐻𝑃𝑡−𝑠−1) + 𝜎ℎ
𝑡

𝑡
𝑠=1   

where ht ~ N(0,1), and  𝑎𝑠  ln (𝐻𝑃𝑡−𝑠/𝐻𝑃𝑡−𝑠−1
𝑡
𝑠=1 ) are short term deviations from the long-term 

trend. 

As in (1), the dynamic process in (3) exhibits a stochastic trend if b = 1(a Weiner process with drift).  

3. SCENARIO FORECASTS FOR HOME PRICES: ADVERSE SCENARIO 

Estimation of equation 3 uses annual data from the post-War period (1947 to 2018). The use of post-

War data is consistent with Federal Reserve Economic Data (FRED) reporting periods for most 

economic series. The data source is Robert J. Shiller, Irrational Exuberance, 3
rd

. Edition, Princeton 

University Press, 2015 (http://www.econ.yale.edu/~shiller/data.htm). 

Selection of lag length in (3) uses penalized goodness of fit criteria (AIC, BIC). Specifically, the 

application of such criteria to (3) yields the following more parsimonious structure: 

 4 (𝐻𝑃𝑡/𝐻𝑃𝑡−1) = 𝑑 + (𝑏 − 1) 𝑙𝑛(𝐻𝑃𝑡−1)+𝜎ℎ 𝑡 . 

Maximum likelihood estimation of equation 4yields the coefficient estimates in Table 1. 

Table1. Maximum Likelihood Estimation 

Coefficient Estimate Standard Error t Stat P-value 

D 0.042 0.028 1.544 0.128 

B 0.999 0.007 144.77 <0.001 

To determine the final model structure, we implement the Augmented Dickey Fuller.
2
The results of 

the test cannot reject the null hypothesis that d> 0 and b = 1. Therefore, the selected model 

                                                           
1
More than any other sector, housing is the most visible and relevant asset value. Housing is the asset that has the largest impact on 

household wealth (Case, Quigley, and Shiller, 2001) and housing is a leading indicator of economic activity (Stock and Watson, 1989). As 

housing goes down, so goes the economy.  Lastly, a cyclical period of home price declines is associated with 

macro instability and a spike on loan defaults (Holt, 2009; Sarmiento, 2012). 
2
The Augmented Dickey-Fuller test is a widely used to test for the presence of a stochastic trend.  
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representation for year-over-year change in home prices is a stochastic process (unit root with drift), 

and the final model structure is: 

 5        𝑙𝑛(𝐻𝑃𝑡/𝐻𝑃𝑡−1) = 𝑑 + 𝜎ℎ 𝑡 = .042 +  0.048ℎ 𝑡 .  

Scenario forecasting uses the parameter estimates in (5) to project a probabilistic path of home prices 

over a specific (one year) time horizon. Different from the projection of the conditional mean, 

however, scenario forecasting focuses on a quantile of the distribution.  

For a one-year ahead forecast, Figure 1 shows a scenario forecasting for house prices that stems from 

(5). The horizontal axis represents the quantile of the distribution, and the vertical axis reports the 

expected change in home prices for the respective quantile. For example, for the 50
th
 quantile, the 

change in home price expected for the next 12months is 4 percent. 

From the Figure, Table 2extracts estimates of house prices under adverse scenarios. For example, 

under the 96
th
 quantile (1-in-25 event), home prices are expected to decline 4.6 percent in the next 

12months.National home price declines are, therefore, a plausible occurrence, and a stress event may 

involve a significant decline in home prices at the national level. 

 

Figure1. 12-Month Scenario Forecast for Home Prices 

Table2. Adverse Scenario Forecasting 

Adverse Event Odds 1-in-7 Event 1-in-25 Event 1-in-50 Event 

HP Growth over 12 Months -1.0% -4.6% -5.8% 

4. MODEL RISK ADD-ON TO STRESS TESTING 

The characterization of tail risk in Table 2implicitly embeds high uncertainty in regard to whether the 

Gaussian parameterization of the data captures the actual tail risk, and whether the sampleavailable 

from historical data is sufficient to infer tail events. For example, there are large differences in the 

projection of adverse scenarios in Table 2 relative to adverse scenarios that stem from historical 

simulation (seePérignon and Smith, 2010; Sarmiento, 2020) in Table 3. Historical simulation extracts 

the empirical distribution of home prices, and the projected adverse scenario in the empirical 

distribution captures the 9.5 percent declines in home prices observed in 2008 and 2009, while the 

Gaussian parameterization does not. 

Table3.  Adverse Scenario Forecasting Based on the Empirical Distribution 

Adverse Event Odds 1-in-7 Event 1-in-25 Event 1-in-50 Event 

HP Growth over 12 Months 0.1% -3.7% -9.2% 

Still there are no guarantees that the characterization of tail risk in Table 3 is more accurate than the 

Gaussian assumption in Table 2.  We do know, however, that the quantification of home price 

declines in Table 2 under stress has two main shortcomings. First, it appears to underestimate the 

likelihood of large home price declines embedded in the data generating process of home prices. 

Second, Table 2 does not provide information on the reliability or uncertainty embedded in the 

estimate.  
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Our proposed method combines the informational value from Tables2 and 3. In effect, our method 

corrects for the presence of fatter tails (relative to the Gaussian distribution) into a re-parameterized 

distribution.  

In particular, to create a mapping of the Gaussian (or other alternative) distribution quantiles to the 

quantiles of the empirical distribution using a statistical criterion, we take the residual ℎ 𝑡  of the data 

generating process in (5) and index the series in terms of error size (rather than time). That is, 

 6 ℎ 𝑘 = ℎ 𝑓 𝑡  

where k= 𝑓 𝑡  𝑖𝑓 ℎ 𝑡is the kth largest residual error in the sample. 

Once we re-indexed the series in terms of size of the residual term, we map the factor in (6)to the 

standarized normal distribution: 

 7 ℎ 𝑘 = 𝑧𝑘 + 𝑢𝑘  

where 𝑧𝑘 = 𝑓−1(𝑁 0,1 ) is the inverse function of the distribution function of the Gaussian 

distribution.  

The mapping in (7) holds only if the underlying distribution in (5) follows a Gaussian distribution; 

and a more general mapping of the standardized Normal distribution to the empirical distribution is: 

 8 ℎ 𝑘 = 𝑏𝑘 +  𝑎 ∗ 𝑧𝑘  +  𝑢𝑘   

were the introduction of a fatter tail stems from 𝑏𝑘 . Specifically, the parameter 𝑏𝑘adds a factor that 

varies the kurtosis of the distribution and allows for a distribution with fatter tails. The outcome is 

thus a generalization of the normal distribution fitted to the empirical distribution. The testing of the 

normal distribution assumption would encompass the condition that bk = 0 and 𝑎= 1. 

Lastly, confidence intervals that pertain to the level of uncertainty can be constructed from the 

variance associated with the estimate of ℎ 𝑘 .  That is,  

 9      𝑉𝑎𝑟 ℎ 𝑘 = Var(𝑢𝑘). 

The next section shows the estimation methodology of the structure in (8), and the derivation of 

model risk bounds that uses (9). 

5. PARAMETRIZATION OF HOME PRICE DYNAMICS WITH FAT TAILS 

The empirical application of (8) combines the informational value results from Tables 2 and 3. In 

effect, the method corrects for the presence of fatter tails (relative to the Gaussian distribution) into a 

re-parameterized distribution. Nonetheless, estimation of (8) requires a choice of a functional structure 

for𝑏𝑘   in terms of 𝑘.  For maximum flexibility, the rank varying intercept, 𝑏𝑘 , is assumed to follow a 

step function, and the final specification is pinned down using stepwise regression. 

The initial model specification uses 20 levels in the step function, and each step is a quantile of the 

rank order of the observation, i.e., the intercept parameter jumpssequentially across 20 quantiles. For 

example, observations that determine the intercept in the first quantile correspond to those at the 

bottom of the distribution, the lower 5
th
 percentile. The second quantile corresponds to those 

observations that fall between the 5
th
 and 10

th
 percentile of the distribution, and so on for the other 

quantiles. 

Therefore, the econometric specification of (8) in terms of a rank varying intercept parameter is: 

(10)ℎ 𝑘 = 𝑏𝑆 𝑘 +  𝑎 ∗ 𝑧𝑘 +  𝑢𝑘 , 𝑖𝑓 k ∈S quantile, 

where𝑏𝑆 𝑘 = 𝑏𝑛 , 𝑖𝑓 0.05  𝑛 − 1 𝐾 < 𝑘 ≤ 0.05𝑛𝐾, for 𝐾 =number of observationsand n ϵ{1,…, 

20}. For example, 𝑏𝑆(𝑘) = 𝑏1 , 𝑖𝑓 𝑘 ∈ ≤ .05 𝐾.  

After application of stepwise regression, the model specification in (10) reduces to: 

 11 ℎ 𝑘 = 𝑏20 𝑘 +  𝑎 ∗ 𝑧𝑘 + 𝑢𝑘 , for k >  0.95𝐾; and  

ℎ 𝑘 = 𝑎 ∗ 𝑧𝑘  +  𝑢𝑘 , otherwise. 

Overall, equation (11) encompasses an estimable representation of the rank varying intercept 

parameter, 𝑏𝑘 , in (8).  Table 4 presents the parameter estimates of the final specification in (11). 
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Table4. Mapping of Normal Distribution to the Empirical Distribution 

 Model 

 

Coefficients 

 

Standard 

Error 

t Stat 

 

P-value 

 

Lower 95% 

 

Upper 95% 

 

Standard 

Normal 

 

0.925 

 

0.026 

 

35.486 

 

<0.001 

 

0.872 

 

0.977 

 

95
th 

Per-

centile 

Dummy  

-0.535 

 

 

0.104 

 

 

-5.145 

 

 

<0.001 

 

 

-0.743 

 

 

-0.327 

 

 

Adjusted R Square = .97 

The results in Table 4 indicate that the Normal distribution does not statistically capture the 95
th
 

percentile of the distribution, and the introduction of the mapping in (8) increases model fit, and it is 

statistically significant at the <.001 percent significant level.  Effectively, the mapping reweights the 

distribution toward the negative tail of the distribution increasing the kurtosis of the distribution.  

Figure 2 shows the effect of the reweighting on the model fitat the tail (which in the figure we refer as 

the modified Normal). The horizontal axis represents the quantile of the distribution, and the vertical 

axis reports the expected change in home prices for the respective quantile. 

 

Figure2. 12-Month Scenario Forecast for Home Prices under the Modified Normalversus the Normal 

Distribution 

Despite the refinement provided in the derivation of stress testing in the figure, it is unclear whether the stress 

estimate provides a reliable forecast relative to an expected probability event. To provide a sense of the 

reliability of the forecast, Figure 3 shows the 95
th

percent confidence intervals of the forecast of the modified 

Normal based on the model risk variance in (9). 

 

Figure3. 12-Month Scenario Forecast Confidence Intervals for Home Prices under the Modified Normal 

Distribution 
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From Figure 3, the 95
th
 percent confidence intervals of the modified normal projections (derived from 

Equation 11) embed both the Normal distribution and the empirical distribution.   

The confidence intervals in Figure 3also provide buffers for model risk. For example, while 

regulatory capital may use the point estimate of the quantile of the distribution, risk management 

organizations may use this confidence intervals to bolster resilience of financial institutions to home 

price declines.  Table 5shows projections of home price declines under adverse scenarios after 

factoring in a buffer for model risk. 

Table5. Adverse Scenario Forecasting Based on the Modified Normal 

Adverse Event Odds 1-in-7 Event 1-in-25 Event 1-in-50 Event 1-in-75 Event 

HP Growth over 12 Months -0.5% -5.3% -6.6% -7.5% 

HP Growth over 12 Months 

Model Risk Buffers Based on 

95% CI 

-2.1% -7.3% -8.8% -9.5% 

Besides the use of confidence intervals to construct model risk buffers, the model risk can be mapped 

in terms of confidence intervals that map the inferred quantile from the sample to lower quantiles but 

with  a lower tolerance for model risk. That is, 

 12 ℎ 𝑘 =  ℎ 𝑘−𝑠 +  𝑐𝑖𝑠 𝑠𝑞𝑟𝑡(𝑉𝑎𝑟 𝑢𝑘 ) 

where 𝑐𝑖𝑠  is the level of model risk percentile tolerance that makes the adverse scenarios of 

ℎ 𝑘𝑎𝑛𝑑 ℎ 𝑘−𝑠  equivalent.   

For example, Table 6 maps the stress scenario assumption under the Normal distribution relative to 

the equivalent risk gradient (stress testing percentile) for home price declines under the modified 

Normal distributions with and without accounting for the model risk. 

Table6. Mapping the Stress Test Assumption under the Normal to a Distribution with Model Risk Tolerance 

Stress Testing Quantile Assumption under the 

Normal Distribution 

Equivalency Percentile to the Normal Distribution Stress 

Testing Assumption 

Modified Normal Modified Normal Upper 95 CI 

0.99 0.97 0.94 

0.95 0.94 0.90 

0.92 0.93 0.8 

Therefore, the definitions of stress scenarios can directly incorporate levels of model risk tolerance. 

Overall, the testing results show the while the Normal distribution provides a reasonable 

representation of the data generating process of home prices on the body of the distribution, however, 

the Normal distribution differs fromthe empirical distribution at the tail. Our method generates a 

distribution that conciliates differences between the Normal and the empirical distribution.  The 

method also generates confidence intervals for stress scenarios, and stress testing under different 

tolerance levels for model risk. 

6. GENERALIZATION OF THE METHOD 

So far, we have confined the application of the re-parameterization method in (8)to the Gaussian 

distribution, but it applies to other distributions. In this section, we consider the case of the t-

distribution. 

The finance literature has explored alternative distributions to the Gaussian distribution (e.g., Akgiray 

and Booth, 1988; Jansen and De Vries,1991;Pérignon and Smith, 2010), and the most commonly used 

distribution to capture fat tails in finance is the Student t distribution (see Blattberg and Gonedes, 

1974).  The use of leptokurtic distribution (such as the t-distribution), however, has had limited 

application for low frequency applications such as home price modelling.  The reason is that the t-

distribution fails to capture the shape of the distribution. 

Under the home price model in (5), Table 7 shows the results from the calibration of the degrees of 

freedom of the t-distribution for the residual. From the table, a t-distribution with 20 degrees of 

freedom minimizes the prediction error of the underlying distribution.  

about:blank#P�rignon_Smith_2010
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Table7. Calibration of Degrees of Freedom under the Assumption of t-Distribution    

Degrees of Freedom (DF) 10 15 17 20 22 30 50 

Sum of square of the 

errors  

0.04482

3 

0.04267

3 

0.04247

7 

0.04238

3 

0.04238

4 

0.04254

2 

0.04296

1 

The effect to stress testing from the use of a t-distribution rather than a Gaussian distribution is 

relatively small, and application of the mapping in equation 8 to the t-distribution generates the results 

in Table 8. 

Table8. Mapping of t-Distribution Distribution to the Empirical Distribution 

 Model 

 

Coefficients 

 

Standard 

Error 

t Stat 

 

P-value 

 

Lower 95% 

 

Upper 95% 

 

Standard 

Normal 

0.90 0.023 35.433 <0.001 0.846 0.945 

95
th 

Per-

centile 

Dummy  

-0.501 

 

 

0.102 

 

 

-4.921 

 

 

<0.001 

 

 

-0.704 

 

 

-0.297 

 

 

Adjusted R Square = .97 

Inspection of Table 8 and a comparison with Table 4 reveals that the mapping in (8) from a 

parametric distribution to the empirical distribution is quite similar under both the Gaussian and the t-

distribution distribution assumption for the residual term in Equation 5.  

Overall, the resultant distribution from the application of the mapping in (8) is largely robust to the 

use of either the Gaussian or a t-distribution and, therefore, the use of a Gaussian distribution as the 

basis from our mapping for a distribution with fatter tails (and its associated confidence interval) 

appears to be appropriate for the modeling of stress scenarios for home prices. 

7. CONCLUDING REMARKS 

This paper incorporated uncertainties of model risk in stress scenarios for house prices.  Our approach 

consisted of mapping the Gaussian (or other alternative) distribution quantiles to the quantiles of the 

empirical distribution using a statistical criterion. The mapping corrected for the presence of fatter 

tails (relative to the Gaussian distribution) into the re-parameterized distribution.   

Our method also provided measures of model risk uncertainties that stem from both the presence of 

limited samples for projecting home price dynamics at the tail of the distribution and the uncertainties 

related to fitting the tail of the distribution to the data.  
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