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1. INTRODUCTION 

As important as to price financial derivative contracts is to hedge them. Financial institutions and 
investors want to know how instruments prices behave due to changes in market conditions. 

Additionally, they need to quantify it and manage the associated risks. 

There is a large body of literature examining the pricing tools of various models for different markets. 

Usually, the issue of managing price risk in options is treated in basic and intermediary books such as 
[13] and [2] by simply taking the first numerical partial derivative of the contract's price with respect 

to the price of the underlying asset in continuous-time models. This leads to a delta-neutral strategy, 

where the position in the underlying asset is continuously rebalanced in order to make the portfolio 
insensitive to changes in the price of the option. 

In fixed income markets, the standard practice is numerical calculating the first partial derivative of 

the contract's price with respect to the price of a prescribed zero coupon - which stands as the 

underlying asset (see, e.g, [13]). However, securities in these markets are sensitive to changes in the 
term structure of the interest rates as a whole, so this approach can actually lead to incorrect results. 

Our analysis focuses on the impact in the prices of derivatives caused by changes in the whole yield 

curve. Higher order derivatives, such as bond options and swaptions, are sensitive to these changes, as 
they depend on more than one point of the curve (in contrast, bonds and caps do not). Such impact of 

changes becomes even more relevant if we choose partial differential equations as a pricing tool. In 

fact, different from options subscribed on stocks - where the state variable is the stock price, options 
subscribed on bonds have the interest rate process as their stochastic variable, which cannot be bought 

and sold as an asset. 

Therefore, to establish the delta hedging strategy for higher order interest rate derivatives, we need to 

consider the option's sensitivity to all points of the term structure which influences its price. We do 
this perturbing the underlying stochastic variable that stands for the market's non-tradable asset, 

namely the short rate process, by which means we build a much more accurate delta-neutral hedging 

portfolio composed by a quantity of bonds that subscribe the option and money in the money market 
account. This is different from simply recalculating the first numerical partial derivative of the 

contract price with respect to the price of the zero-coupon bond, as the numerical results herein 

strongly suggest. Indeed, a numerical example we performed shows that the difference between our 
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term structure delta hedging strategy and the standard delta hedging procedure may be of the order of 

100% better. We consider bond options to build our numerical results. However, they can be easily 
extended to delta hedge a payer swaption. The construction here is possible even in the absence of 

closed-form expressions for the price of the derivative. 

2. DYNAMIC HEDGING 

2.1. A Short Rate Model and the Feynman-Kac Theorem 

The economy we consider has the trading interval [0, 𝑆]. The uncertainty involved in this economy is 

completely specified by the measurable space (Ω, ℱ, 𝔽 ≡   ℱ𝑡 0≤𝑡≤𝑆 ,ℱ𝑡 ⊆ ℱ, where Ω denotes the set 

of all possible outcome elements 𝜔 ∈ Ω, and 𝔽 denotes a filtration containing all relevant information. 

This space is equipped with a probability measure ℙ reflecting the real world probability law. 

We consider the economy driven by the Vasicek short-term interest rate model [10]1, with the 

associated diffusion process a mean-reverting version of the Ornstein-Uhlenbeck process. Namely, the 

short-term interest rate process 𝑟𝑡  is defined as the unique strong solution of the stochastic differential 

equation (SDE) 

𝑑𝑟𝑡 = 𝑎 𝑏 − 𝑟𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡
ℚ

                                                       (1) 

where 𝑎, 𝑏 and 𝜎 are strictly positive constants, 𝑏 designates the mean reversion level, 𝑎 is the 

reversion speed and 𝜎 is the volatility of the short rate (see, e.g., [8] ). Under the probability measure 

ℚ, equivalent to ℙ, the process 𝑊ℚ is a one-dimensional Brownian motion and the price process of 

any ℱ𝑇-measurable derivative in this economy is a Martingale. 

In order to price a derivative via PDE, we use 

Theorem 1 (Feynman-Kac). Let 𝑇 > 0, ℎ:ℝ → ℝ and 

𝑈 𝑡, 𝑟𝑡 = 𝔼ℚ  𝑒−  
𝑇
𝑡  𝑟𝑢 𝑑𝑢 ℎ 𝑟𝑇 ∣ ℱ𝑡                                             (2) 

where 𝑟 is the solution of the SDE (1) with initial condition 𝑟0 at 𝑡 = 0. Then ([0, 𝑇] × ℝ) ∋ (𝑡, 𝑥) ↦
𝑈(𝑡, 𝑥) ∈ ℝ solves 

∂𝑈

∂𝑡
+ 𝑎(𝑏 − 𝑥)

∂𝑈

∂𝑥
+

𝜎2

2

∂2𝑈

∂𝑥2
= 𝑥𝑈                                                (3) 

with terminal condition 

𝑈(𝑇, 𝑥) = ℎ(𝑥).                                                                 (4) 

2.2. Financial Instruments; Pricing Bond Options via PDEs 

Pricing derivative instruments of second (or higher) order is computationally much more expensive 

than pricing those of first order (see order classification in [12]). For instance, the price of a zero-

coupon bond option is found firstly by solving the PDE (3) backwards in time from 𝑆 to 𝑇 to obtain 

the price at time 𝑇 of a zero-coupon bond, where 𝑇 is the maturity of the option, 𝑆 is the maturity of 

the bond and 𝑁 is the notional value of the contract. Then, using the bond price at time 𝑇 as the new 

terminal condition, we solve again (3) in [0, 𝑇] to obtain the price of the option at time zero. 

Denoting 𝑃(𝑡, 𝜂) the price of the zero coupon bond at time 𝑡 ∈ (0, 𝑆), where 𝜂 is the maturity of the 

bond, the arbitrage free price 𝐶𝑡  of a zero-coupon bond call option with strike price 𝐾, at time 

𝑡 ∈ (0, 𝑇), 𝑇 < 𝑆, is 

𝐶𝑡 = 𝑁𝔼ℚ  𝑒−  
𝑇
𝑡  𝑟𝑠𝑑𝑠max(𝑃(𝑇, 𝑆) − 𝐾, 0) ∣ ℱ𝑡                                    (5) 

Under the Vasicek model, a closed-form expression to the above conditional expectation was found in 

[7]2 : 

𝐶𝑡 = 𝑁𝑃(𝑡, 𝑆)Φ 𝑑1 − 𝐾𝑃(𝑡, 𝑇)Φ 𝑑2                                            (6) 

                                                        
1 Our results are easily extensible to other Markovian short rate processes, such as that in [3]. 
2The work in [7] also includes a trick to extend the above result to price options on couponbearing bonds. 
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Where 

                                                                                                                          (7) 

and 

𝜎𝑝 = 𝜎  
1−𝑒−𝑎(𝑆−𝑇)

𝑎
  1−𝑒−2𝑎(𝑇−𝑡)

2𝑎
.                                                 (8) 

The function Φ(𝑑) corresponds to the probability of a standard normal random variable being less 

than 𝑑, namely 

Φ(𝑑) =   
𝑑

−∞
𝜙(𝑥)𝑑𝑥, 𝜙(𝑥) =

1

 2𝜋
𝑒

−𝑥2

2 .                                         (9) 

2.3. Delta Sensitivity 

The sensitivity of the derivative instrument due to changes in the market price of the underlying is 

known as delta, defined below
3
.  

Definition 1. Delta is the infinitesimal change of an instrument's price 𝑈 given an infinitesimal change 

in the underlying's price 𝑃, all other quantities assumed to be fixed: 

Δ =
∂𝑈

∂𝑃
.                                                                       (10) 

The approach often used to dynamically hedge a short position is that given by (10). We claim that, in 

the case of higher-order interest rate derivatives, such approach, in general, will not work, for the 

main reason that no consideration is taken to the changes that occur in the term structure of interest 
rates as a whole. 

In this section we provide an accurate process to dynamically hedge a short position for a zero-coupon 

bond option, namely the quantity Δ  satisfying 

𝑑𝐶𝑡 = Δ ⋅ 𝑑𝑃(𝑡, 𝑆) +
∂𝐶𝑡

∂𝑃(𝑡,𝑇)
⋅ 𝑑𝑃(𝑡, 𝑇).                                            (11) 

The above expression captures the sensitivity of the derivative's price with respect to the change in the 

term structure of interest rates, in which case the representation given via 𝑃(𝑡, 𝑆) and 𝑃(𝑡, 𝑇) suffices. 

The theorem that follows shows that Δ  can still be analytically obtained and that calculation is 
computationally simple. 

This approach also serves as a guide for the case of any second order fixed income derivative. 

Theorem 2. Let us consider that only parallel shifts in the term structure occurs (e.g., the Vasicek 

model). Then the quantity Δ  of zero-coupon bonds expiring at time 𝑆, to be continuously rebalanced 
in the portfolio that hedges the zero-coupon bond call option, as given in (11), reads as 

Δ =

𝑑𝐶𝑡
𝑑𝑟

−
𝑑𝑃 (𝑡,𝑇)

𝑑𝑟

𝐶𝑡
𝑃(𝑡,𝑇)

𝑑𝑃 (𝑡,𝑆)

𝑑𝑟

.                                                      (12) 

Proof. We have that 

∂𝐶𝑡

∂𝑃(𝑡,𝑇)
=𝑃(𝑇, 𝑆)Φ 𝑑1 − 𝐾Φ 𝑑2 + 𝑁𝑃(𝑡, 𝑆)

∂Φ 𝑑1 

∂𝑃(𝑡,𝑇)

−𝐾𝑃(𝑡, 𝑇)
∂Φ 𝑑2 

∂𝑃(𝑡,𝑇)

=𝑃(𝑇, 𝑆)Φ 𝑑1 − 𝐾Φ 𝑑2 + 𝑁𝑃(𝑡, 𝑆)𝜙 𝑑1 
∂𝑑1

∂𝑃(𝑡,𝑇)

−𝐾𝑃(𝑡, 𝑇)𝜙 𝑑2 
∂𝑑2

∂𝑃(𝑡,𝑇)

                       (13) 

                                                        
3An explanation of the static hedging strategy using gamma (the derivative of delta with respect to the 

underlying) and vega (the derivative of price with respect to the volatility) can be found in [6]. 
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After some algebraic manipulation and reminding that 

∂ 𝑑2 

∂𝑃(𝑡,𝑇)
=

∂ 𝑑1 

∂𝑃(𝑡,𝑇)
                                                        (14) 

it follows that 

                                                   (15) 

Hence, 

∂𝐶𝑡

∂𝑃(𝑡,𝑇)
= 𝑃(𝑇, 𝑆)Φ 𝑑1 − 𝐾Φ 𝑑2 =

𝐶𝑡

𝑃(𝑡,𝑇)
                                    (16) 

where the last term of (16) is justified by multiplying and dividing the second term by 𝑃(𝑡, 𝑇). 

Substitution of (16) in (11) completes the proof. 

Expression (12) naturally applies to pricing bond options via PDEs, since sensitivity of the price 

solution to (3) is with respect to 𝑟, not with respect to the zero coupon bond prices. 

Expression (12) clearly differs from the numerical derivative of the bond option price with respect to 

the underlying 𝑃(𝑡, 𝑆). This naive approach, found e.g. in [2], [11] and [13], disregards the role of the 

term structure of the interest rates in pricing derivatives, as it picks out only the current underlying 

price. It actually boils down to an analogous of the Black & Scholes delta ([6]). Namely, we have 

that(see, e.g., [13], page 66 and page 152): 

Δ =
𝐶[𝑃(𝑡,𝑆)+𝛿𝑃(𝑡,𝑆)]−𝐶[𝑃(𝑡,𝑆)]

𝛿𝑃(𝑡,𝑆)
                                                       (17) 

Prices of bond options for instance depend on the maturity of the option and the maturity of the 

underlying bond. When we perturb the underlying bond price as suggested by [13], we are assuming a 

fixed yield curve in order to evaluate the option's sensitivity due to changes in the short rates. But 

typically, this is not true. Perturbations in the short rate process, in turn, cause perturbations in the 

overall yield curve. Both procedures only coincide when one tries to find the delta of a first-order 

derivative. These aspects are illustrated in Section 3, which shows significative effects in terms of 

hedging errors. In fact, a conjecture is that the hedging quantity Δ  we provide is exact, i.e., the 

corresponding portfolio produces zero hedging error in the continuous rebalance scheme. 

3. NUMERICAL RESULTS 

We devised some examples which illustrate the fact that Equation (12) - which stands for the term 

structure delta, duly captures the sensitivity of zero-coupon bond call options prices with respect to 

the underlying. In contrast, the naive approach is unable to create a perfect replicating portfolio of the 

option price. 

Figures 1 and 2 respectively stems from (12) and (17), and correspond to a 1-year call option to buy a 

2-year zero-coupon bond with strike 0.85 and the following parameters: initial rate = 0.095 per year, 

𝑎 = 0.5𝑏 = 0.1, 𝜎 = 0.02. We performed daily rebalances assuming no transaction costs. In figure 2 

the lower curve (in red) corresponds to the portfolio value while the upper curve (in blue) corresponds 

to the option value. In Figure 1 the curves almost coincide. This already suggest a poor tracking of the 

price under the naive approach and a good one under the new approach. 
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Figure1. Call option replication with the (correct) term structure delta 

 

Figure2. Attempt to replicate call option with the naive delta 

We consider the Vasicek short-term interest rate model to build, as in [4], dynamically a hedging 

portfolio and check if the delta hedging strategy is in fact able to recast the derivative trading in a 

zero-sum game. Simulations are performed via an explicit discretization of the stochastic differential 

equation(1). The antithetic variate technique is used, which aim to reduce the variation of the 
simulations [5]. 

The histograms in Figures 3 and 4 were produced generating 10.000 simulation paths of the interest 

rate, where we consider a daily delta hedge of a zero-coupon bond call option with strike 0.85 and 
option and bond maturities equal to one and two years, respectively. The interest rate dynamic is the 

one of figures 1 and 2, i.e., initial interest rate 0.095 per year, 𝑎 = 0.5, 𝑏 = 0.1 and 𝜎 = 0.02. 

The histograms provide the frequency of the hedging error (or hedging cost), a random variable which 

corresponds to the option value at time of maturity 𝑇 𝑍𝐶𝐵𝑐,𝑇  minus the portfolio value also at time 

of maturity. We denote it 𝑒𝑎  in the case of our term structure delta strategy (Figure 3) and 𝑒𝑛  in the 
case of the naive delta strategy (Figure 4). 
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Figure3. Bond Option term structure delta-hedging histogram 

 

Figure4. Bond Option naive delta-hedging histogram 

The classical hedging error measure is given by (see, e.g., [1] and the references therein) 

𝑣𝜄 = 𝐸  𝑒𝜄 
2 1/2                                                              (18) 

where 𝜄 stands for 𝑎 or 𝑛. In the example, the initial price of each contract is $0,92 per thousand 

contracts, and we observe a hedging cost measure of $0,048 per thousand contracts for the term 

structure delta and $0,098 for the naive delta, i.e., the latter quantity is twice greater than the former. 

A relevant aspect to be perceived in the naive approach is that the hedging costs are biased (negatively 
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from the perspective of the option seller). The bias is a main cause for such difference in performance 

between the strategies. It would perhaps be possible for the trader to evaluate beforehand the value of 

the bias. However, it would be difficult to introduce the information properly in the naive strategy in 

order to eliminate the bias and produce competitive hedging costs. Even considering the cancelation 

of the bias, a hedging cost measure of $0.048 per thousand contracts for the term structure delta and 

$0.054 for the naive delta would appear. Still, the term structure delta would perform 12.5% better 

that the naive procedure, in terms of the magnitude of the hedging error. 

We also refer to the hedging cost measure offered in [1] - denoted exposure to risk index - which 

expresses the proportion of risk that is assumed by the trader to that absorbed by the discrete hedging 

strategy. It assigns a measure of quality of a given strategy per se and reads 

𝑣Π,𝜄 =
𝐸  𝑒𝜄  

2 
1/2

𝐸  𝑒Π 2 1/2
                                                                  (19) 

In the above expression, Π denotes a strategy characterized by the fact that the trader hedges his / her 

position with the portfolio valued at the price of the option at time zero  𝐶0 , totally invested in the 

money market account and do nothing more. Notice that the exposure to risk index of the strategy Π 

itself (i.e., with 𝜄 ≡ Π ) equals 100%. 

In the above exercise, the exposure to risk index gives us the following picture: the term structure 

delta absorbs 66% of the risk affecting the trader's liability, leaving 34% for the trader to cope with 

(which is his / her exposure to risk). In turn, the naive delta only absorbs 28% of the risk leaving an 

exposure of 72% ! 
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5. CONCLUSIONS 

We provide an analysis of dynamic hedging interest rate derivatives in the fixed income markets. We 

showed that the standard (or naive) approach of taking the numerical derivative of an option's price 

with respect to the underlying asset leads to a wrong delta value for higher order derivatives. In fact, 

this equals to assuming that we can fix the remainder points of the yield curve to evaluate the option's 

sensitivity, which is not true in the case of such derivatives. In the numerical examples, we use zero-

coupon bond options - a representative of the class of higher order derivatives. Such examples unveil 

the fact that the difference between the naive (or standard) delta hedging procedure and the term 

structure one devised in the paper can breach the mark of 100% in favor of the latter, in terms of 

hedging error. 
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