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1. INTRODUCTION 

When a solid sphere accelerates in a fluid, a force, which is not present in steady flow conditions, 

must be accounted for in the general equation of the conservation of momentum. This force is called 
the virtual or added mass force. It arises from accelerating the fluid around the sphere. 

The drag force and buoyancy for the submerged sphere are not sufficient. In addition, the fluid has the 

same effect as  increasing the mass of the sphere by one-half the mass of the displaced fluid.  

The virtual mass of the sphere derived earlier (Milne-Thomson [1], p.491)was based on potential 

flow. One may note that in these derivation the streamline flow persists around the entire surface of 

the sphere. It can be concluded that the one- half virtual mass coefficient is not always constant, as  

the author showed that the virtual mass coefficient of the rotating sphere is equal to five [2]. 

The importance of the virtual mass concept was appreciated by Lahey et al. [3] who demonstrated that 

the inclusion of the virtual mass effects into the numerical solution of the transient two-phase 

evapoative flow appears to improve numerical stability and efficiency and to achieve accurate results 

in many cases of  practical concern. 

Thorley and Wiggert [4] found that the addition of virtual mass provides more accurate and 

generalized expressions for the accoustic propagation velocity of two-phase glass bead-water flow. 

Magnaudet et al. [5] studied numerically the forces acting on a sphere ebedded in accelerated flows. 

They concluded that a virtual mass coefficient equal to 0.5 is used for ceeping flow. They 

demonstrated the existence of the separation angle, S  of  the boundary layer and they showed that 

the separated region is much more reduced in accelerated flow than in uniform flow. The influence of 

the accelerated flow on the evolution of the separation angle was manifested by the shift of the critical 

Reynolds number, CRe to a higher than 20. For rigid sphere in uniform flow, it is well known (see 

e.g. Batchelor [6] that a separated region and eddy first appear at 20Re C
). 

Sano [7] solved the unsteady flow past a sphere and found a crtical time for the first appearance of 

eddy at the wake corresponding to CRe . 

Luneau [8], Batailler [9] and McNown and Keulegan [10] attempted to show experimentally that the 

virtual mass could be explained physically by the wake of the body being accelerated with it. 
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There is uncertainty in the reported values of Cm . For example, Iverson and Balent [11] showed that 

Cm  ranges from 0.5 to 2 as reported by many experimental and theoretical investigators.  

The aim of the present paper is to derive an equation for the virtual mass coefficient of a solid sphere 

accelerating at high speed. Boundary layer separation and wake formation are normally associated 

with high-speed flow. 

The flow field around the solid sphere will be divided into distinct regions the forward and the wake 

regions separated by the separation ring of the boundary layer as shown in Fig.1. This technique have 

been used before by the author [12] and [13]. 

 

Fig1. Accelerating sphere in a fluid. 

(Reporoduced with permission of Elsevier) 

2. THE FORWARD REGION OF THE SPHERE 

Consider a solid sphere of radius a  moving with speed U  through an incompressible nonviscous 

fluid of density  . Assume that the fluid is stationary at infinity. The potential    is the dipole 

potential given in spherical coordinates with the origin at the center of the sphere by the following 

 cos
2

1
2

3

r

a
U                                                                                                                                         (1) 

The velocity field u


is given by 





i

r
i

r
u r













1
                                                                                                                                  (2) 

The kinetic energy KE1 of the flow around the sphere from the forward stagnation point up to the 

separation ring is given by 
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where V  denotes the volume occupied by the sphere. The volume dV of an elementary annular 

region about the “ 0 ” line through the sphere is given by the product of its perimeter )sin2( r , 

width )( rd  and depth ( dr ), Thus 
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The upper limit of the second integral is the angle of separation that will be denoted as 𝜃𝑠 𝑟, 𝑡  as it 

varies spatially and temporally in the accelerated flow. Substituting Eq.(2) and performing the 

integration, we get 

𝐾𝐸1 = −
𝜋

12
𝜌𝑈2𝑎3 𝑐𝑜𝑠𝜃𝑠 𝑟, 𝑡 + 𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 − 2                                                                                     (5) 

As 𝜃𝑠 𝑟, 𝑡 → 𝜋, we recover the expression given by Milne-Thomson [1] (page 491) for the kinetic 

energy of the complete sphere, that is 𝐾𝐸 =
1

3
𝜋𝜌𝑈2𝑎3. 

The above method of solution was adopted by the author [14] for the derivation of the virtual mass of 

the spherical-cap bubble. The forward region of this bubble is always spherical with an almost flat base. 

3. THE WAKE REGION OF THE SPHERE 

Consider the  reverse flow in the wake region of the sphere to be similar in pattern and streamline to 

that around the forward region of a stagnant sphere in a flow, particularly in the vicinity of the 

surface.This assumption is not far from reality if we examine the photographs of the streamlines of the 

flow past the sphere taken by Taneda [15] and shown in Batchelor [6], plate 3.  

The method of the solution used here starts from the rear stagnation point and proceeds backward to 

the stagnation ring. The above assumption means that 0  will be at the rear stagnation point, and 

the origin of the r,  coordinates is still at the center of the sphere. 

Now we analyze the wake of the sphere with a main reverse flow velocity WU  (Fig. 1), hence the 

velocity potential becomes (Milne- Thomson [1], P.488) 
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According to the above assumption, we get the following equation for the kinetic energy of the fluid 
in the wake region (Lamb[16], p.123) 
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where dA is the differential area of the sphere surface facing the wake, and  

 dadA sin2 2                                                                                                                              (8) 

Substituting  Eq.(6) , its differential, and Eq.(8) into Eq.(7)yields the following 

𝐾𝐸2 = −𝜋𝜌𝑎3𝑈𝑊
2  𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜃𝑠 𝑟 ,𝑡 

0
                                                                                              (9) 

which becomes the following after the integration 

𝐾𝐸2 =
1

3
𝜋𝜌𝑎3𝑈𝑊

2  𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 − 1                                                                                                  (10) 

Lee and Barrow [17] found that the ratio 077.0/ UUW for the Reynolds number 

)/2(Re Ua range of 10-1000. These Re number limits dictated the range of applicability of the 

present model. The transformation to the original ,r  coordinates requires the replacement of every 

𝜃𝑠 𝑟, 𝑡  in Eq.(10) by  𝜋 − 𝜃𝑠 𝑟, 𝑡  ,so that Eq.(10) becomes 

𝐾𝐸2 = −
1

3
𝜋𝜌𝑎3 0.077𝑈 2 𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 + 1                                                                                  (11)  

The total kinetic energy (KE) of the fluid around the sphere would be sum of the forward and the 

wake contributions, thus 

21 KEKEKE                                                                                                                                   (12) 

or by substituting Eqs.(5) and 11 into Eq.(12), we get 

𝐾𝐸 =
1

2
𝜋𝑎3𝜌𝑈2  −

1

6
 𝑐𝑜𝑠𝜃𝑠 𝑟, 𝑡 + 𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 − 2 −

2

3
 0.005929  𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 + 1                          (13) 

If we now use the classical form of the kinetic energy as  
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2

2

1
MUKE                                                                                                                                            (14) 

where M denotes the mass of fluid moving with a uniform speed U which has the same kinetic energy 

as the unbounded fluid around the sphere.Clearly, from Eqs.(13) and (14) we get 

𝑀 = −𝜋𝜌𝑎3  𝑐𝑜𝑠𝜃𝑠 𝑟, 𝑡 + 𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 − 2 −  0.003953  𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 + 1                            (15) 

This equation represents the “virtual mass” of the sphere . The virtual mass coefficient could be 

defined according to Cheng, Drew and Lahey [18] by the following 

    𝐶𝑚 =                  Volume of  “virtual mass”                                                                                      (16) 

               Volume of fluid displaced by the sphere                                            

Applying Eq.(15) into the above ratio, we get 

𝐶𝑚 =
−𝜋𝑎3 

1

6
 𝑐𝑜𝑠𝜃𝑠 𝑟 ,𝑡 +𝑐𝑜𝑠 3𝜃𝑠 𝑟 ,𝑡 −2 + 0.003953   𝑐𝑜𝑠 3𝜃𝑠 𝑟 ,𝑡 +1  
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or the following simplified form 

𝐶𝑚 = −
3

4
 

1

6
 𝑐𝑜𝑠𝜃𝑠 𝑟, 𝑡 + 𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 − 2 +  0.003953  𝑐𝑜𝑠3𝜃𝑠 𝑟, 𝑡 + 1                                       (17) 

as  s  we recover the classical value of 𝐶𝑚= 1/2 for the accelerating sphere at low Reynolds 

number with no boundary layer separation. However, the wake contribution in Eq.(17) is too small in 

comparison to the forward portion. Figure 2 shows the variation of 𝐶𝑚  with respect to 𝜃𝑠 𝑟, 𝑡  where 

𝐶𝑚  approahes the value half at 𝜃𝑠 𝑟, 𝑡 = 𝜋. 

 

Fig2. The variation of the virtual mass coefficient with the separation angle.  

The separation angle can be obtained from the correlations of Linton and Sutherlands [19] as follows 

2/1Re66083 s                                      For Re>100                                                                 (18) 

and 

3/1Re19183 s                                             For 15< Re<1000                                                   (19) 

Both expression are asymptotic to 
83s  for large Re number. Accordingly, Eq.(17) becomes the 

following 

𝐶𝑚= 0.2316                                                      For 
83s                                                                (20) 

The variation of Cm  with Re is shown in Fig. 3 which was based on Eqs. (17), (18),(19), and (20). At 

low Re number flow, the value of Cm  approaches the classical value of half. 
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Fig3. The variation of the virtual mass coefficient with Reynolds number 

4. DISCUSSION 

It should be pointed out that the use of potential flow is quite legitimate in virtual mass formulation, 
but the use of boundary layer flow is the novelty of this work. To further validate the present results, a 

comparison was made with the experimental data of Moorman [20] where the agreement is fair as 

shown in Fig. 4. 

 

Fig4. Comparison of the present analytical solution (Eqs. (23) and (24)) with the experimental data of 

Moorman [20]. 7782o kg/m3,  = 876.1kg/m3,  =1.0776x10-5m2/s, a = 6.355x10-3 m. 

The following equation of motion was used to calculate the instantaneous velocity of the solid sphere 

         DgaUCa
dt

d
omo   33 3434                                                                                 (21) 

The first term on the right side of this equation represents the buoyancy and gravity forces. Here D is 
the drag force given as follows (Kendoush [13]). 

 sUfaD                                                                                                                                      (22) 

Where 

     ,693.09 sWsfs HHf    

      sssfH  coscos3132 3   

And 

      sssWH  coscos3132 3   
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Substituting Eqs.(17) and (22) into Eq.(21) yields a first order differential equation that was solved 

readily by the integrating factor method to get the solution  shown in Fig. 4. The solution of Eq. (21) 
was done at every time step of run number 1 of Table 1 of Moorman [20]. For the particular case of 

Re = 62, 𝐶𝑚=0.3652, 7782o kg/m
3
,  = 876.1kg/m

3
,  =1.0776x10

-5
m

2
/s, a = 6.355x10

-3
 m and 

for the initial conditions of  0U  at 0t , the solution of Eq.(21) is given as follows 

 teU 24087.017138.34                                                                                                                    (23) 

In Fig. 4,    𝑈𝑇 is the terminal velocity of the solid sphere (shown by the ratio U/UT of the ordinate of 

Fig. 4), and given by the following 

      182
2

 oT gaU                                                                                                                 (24) 

The parameter T in Fig. 4 is a dimensionless time equals  2
2at . 

The history term was neglected in Eq. [21] as being small by several orders of magnitude in 
comparison to the other terms. Raju and Meiburg [21] reached the same conclusion.  

The present model is agreable with the following authors who compared well with Moorman’s data, 

as well, as it is shown in Fig. 4 of Chang and Yen [22]: 

 Mei and Adrian [23] 

 Basset [24] 

 Karafilian and Kots [25] 

 Odar and Hamilton [26] 

The present results contradicts those of Hamilton and Lindell [27] who showed that for spheres falling 

under gravity the added-mass coefficient was almost always very nearly equal to the value of 0.5 for 

Reynolds numbers up to 35000. 

Takahashi et al. [28] showed a Reynolds number dependence in their experimental investigation of 

the virtual mass coefficient of an oscillating spherical particle. They produced the following 

correlation 

𝐶𝑚 = 0.7 + 15𝑅𝑒−0.75                                                                                                               (25) 

5. CONCLUSIONS 

Based on the preceding analysis and discussion, the following conclusions were abstracted: 

 The virtual mass coefficient value of 0.5 is to be applied to the solid spherical particle in an 

impulsive Stokesi an flow. 

 Boundary-layer separation has a profound effect on the virtual mass coefficient of the solid 

spherical particle at high speed accelerated flow.  

 The virtual mass coefficient given by Equation 17 is to be applied to the spherical particle in an 

impulsive high-speed particulate flows. 

Notation 

A surface area of sphere, m
2 

a sphere radius, m  

VC virtual mass coefficient  

D  drag force, N 

KE kinetic energy, J 

M mass of fluid displaced by sphere, kg 

Re Reynolds number, )/2(Re Ua  
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r polar coordinate, m  

t time, s 

T   dimensionless time (  2
2at )  

U sphere velocity, m/s  

u


flow velocity field, m/s 

Greek Symbols 

 density of fluid, kg/m
3
  

  dynamic viscosity of fluid, Ns/m
2
  

   kinematic viscosity of fluid, m
2
/s  

   velocity potential, m
2
/s 

Subscripts 

o solid  

r  radial direction 

s   separation of boundary layer 

w  wake region 

   angular direction 
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