Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

Elsayed M. A. Elbashbeshy1*, Hamada Galal Asker2, Khaled Mohamed Abdelgaber2, Emad Elsayed2

1Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
2Department of Physics & Engineering Mathematics, Faculty of Engineering - Mataria, Helwan University, Cairo, Egypt

*Corresponding Author: Elsayed M. A. Elbashbeshy, Mathematics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

Abstract: The flow of Maxwell dusty fluid over a stretching surface with variable thickness subjected to a magnetic field are considered. We consider the viscous dusty fluid, where the velocity of the dust particle is everywhere parallel to that of the fluid with velocity magnitude of the fluid is constant along each individual streamline. Also it is assumed that density of the dust particle is constant and the dust particles are uniform in size and shape and bulk concentration of the dust is small. The governing partial differential equations are transformed to a system of ordinary differential equations. These equations are solved numerically by RKBS-45 method. The effects of various physical parameters such as magnetic parameter, fluid particle interaction parameter, and wall thickness parameter are presented and discussed. The comparison with previous results shows an excellent agreement.

Keywords: Maxwell Fluid, Dusty fluid, Stretching surface, Variable thickness, Magnetic field

1. INTRODUCTION

The investigation of flow over a stretching surface takes place in a lot of industrial applications such as tap manufacturing, plastic and glass forming…etc., a lot of researches considered the Newtonian fluids and others considers the non-Newtonian fluids. A lot of mathematical models simulate the non-Newtonian fluids. From the technology point of view, the study of non-Newtonian fluid flow is more reliable than the Newtonian one. The non-Newtonian fluid takes different models such as third grade model, viscoelastic, micro polar, dusty…. etc. Studies on the third grade non-Newtonian fluid can be seen in refs. [1-3] to show the shear thickening and shear thinning characteristics. Hayat et al. [1] considered the effect of MHD flow over an exponentially stretching sheet in the presence of first order chemical reaction, while Salahuddin et al. [2] examined the effects of temperature dependent viscosity and thermal conductivity on MHD stagnation point flow over a stretching cylinder. Rashidi et al. [3] studied the convective flow due to a linearity stretching sheet subjected to magnetic field.

The viscoelastic non-Newtonian fluid introduces the viscous and elastic approaches. These approaches are investigated in refs [4-6]. Baag et al. [4] analyzed the entropy generation of an electrically conducting viscoelastic liquid over a stretching flat surface, Babu and Sandeep [5] presented the cross-diffusion effects on the MHD Williamson fluid flow across a variable thickness stretching sheet by viewing velocity slip, and Elbashbeshy et al. [6] considered the effects of unsteadiness and micro polar on the Maxwell fluid.

The study of dusty fluid introduces the effect of the fluid-particle interaction as in refs. [7-16]. Vajravelu and Nayfeh [7] analyzed the hydro magnetic flow of a dusty fluid over a stretching sheet showing the effects of fluid-particle interaction, particle loading, and suction on the flow characteristics, while Gireesha et al. [8] considered the flow of dusty fluid over a vertical stretching surface, Gireesha et al. [9] extended the study for the unsteady flow of a dusty fluid over stretching surface in the presence of non-uniform heat source/sink, and Gireesha et al. [10]considered the viscous dissipation while studying the dusty fluid flow over a flat stretching surface.
Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

<table>
<thead>
<tr>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
</tr>
<tr>
<td>(B_0)</td>
</tr>
<tr>
<td>(C_f)</td>
</tr>
<tr>
<td>(f, F)</td>
</tr>
<tr>
<td>(G, H)</td>
</tr>
<tr>
<td>(K)</td>
</tr>
<tr>
<td>(n)</td>
</tr>
<tr>
<td>(\alpha, \sigma)</td>
</tr>
<tr>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\rho)</td>
</tr>
<tr>
<td>(\sigma)</td>
</tr>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td>(\eta)</td>
</tr>
<tr>
<td>(\lambda)</td>
</tr>
<tr>
<td>(\nu)</td>
</tr>
<tr>
<td>(\psi)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(\phi)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(\phi)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(\phi)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(\phi)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(\phi)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(\phi)</td>
</tr>
</tbody>
</table>

A lot of researches included the effect of nanoparticles on the dusty fluid such in refs. [17-23]. Sandeep et al. [17] analyzed the unsteady MHD radioactive dusty nanofluid over an exponentially permeable stretching flat surface in the presence of volume fraction of dust and nanoparticles. Also, Manjunatha and Gireesha [18] studied the flow of MHD dusty fluid over an unsteady stretching flat surface. Sandeep and Sulochana [19] analyzed the flow of MHD nanofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of dust particles. Daniel et al. [20] considered the MHD flow of nanofluid over nonlinear stretched surface with variable thickness in the presence of electric field. Bhatti et al. [21] studied the influence of nonlinear thermal radiation on the laminar incompressible, dissipative electro-magneto-hydrodynamic peristaltic propulsive flow of non-Newtonian dusty fluid through a porous planar channel. Reddy et al. [22] studied the flow with heat and mass transfer of Williamson nanofluid over a stretching surface with variable thickness and variable thermal conductivity under the radiation effect. Hayat et al. [23] studied the MHD flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness.

The present study introduces the influence of the magnetic field and the variable thickness on the flow of a Maxwell dusty fluid over a stretching surface. The schematic of the industrial process concerning this study is shown in Fig. 1(a) where the melted material is extruded from a die to be stretched by wind-up roll. The thickness of the stretching surface is assumed to be decreased gradually until getting a uniform thickness as shown in Fig. 1(b). The mathematical formulation and the mathematical solution will be introduced next.

Fig1: Schematic for flow above stretching surface
2. Mathematical Formulation

Consider a two-dimensional boundary layer flow of steady laminar Maxwell dusty fluid over a stretching surface subjected to a vertical magnetic field. The surface profile is described by \(y = a(x + b)^{(1-n)/2} \) and is stretched by the velocity \(U_w = a(x + b)^n \) where \(a \) and \(b \) are constants, \(n \) is the power index of the stretching velocity. The surface is assumed to be impermeable (\(\nu_w = 0 \)). The \(x \)-axis is chosen along the stretching surface in the direction of the motion and \(y \)-axis is taken normal to it. A uniform transfer magnetic field \(B_o \) is applied in the \(y \)-direction. Induced magnetic field for small magnetic Reynolds number is neglected. The mathematical model governing this type of flow can be formulated as follows [6, 13]:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \lambda \left[u^2 \left(\frac{\partial^2 u}{\partial x^2} \right) + v^2 \left(\frac{\partial^2 u}{\partial y^2} \right) + 2uv \left(\frac{\partial^2 u}{\partial x \partial y} \right) \right] = \frac{\nu}{\rho} \frac{\partial^2 u}{\partial y^2} + \frac{KN}{\rho} (u - u_p) - \frac{\sigma B_o^2}{\rho} u \tag{2}
\]

\[
\frac{\partial u_p}{\partial x} + \frac{\partial v_p}{\partial y} = 0 \tag{3}
\]

\[
u \frac{\partial u_p}{\partial x} + v \frac{\partial u_p}{\partial y} = \frac{KN}{\rho} (u - u_p) \tag{4}
\]

subject to boundary conditions

\[
at y = a(x + b)^{1-n}: u = U_w = a(x + b)^n, \quad v = 0 \quad \text{as} \quad y \to \infty: u \to 0, \quad v_p \to v, \quad u_p \to 0 \tag{5}
\]

where \(u \) and \(v \) are the velocity components along \(x \) and \(y \), respectively, \(u_p \) and \(v_p \) are the velocity components of the dusty particles along \(x \) and \(y \), respectively, \(\lambda \) is the relaxation time parameter, \(\sigma \) is the electrical conductivity, \(B_o \) is the magnetic field. The density is \(\rho \), and the dynamic viscosity is \(\nu \) of the fluid. \(K \) is the Stokes resistance, and \(N \) is the number density of dust particles. The Maxwell dusty fluid is viscous for \(\lambda > 0 \) while it is inviscid when \(\lambda = 0 \).

As suggested in [6, 24], the previous mathematical model is simplified by introducing the following dimensionless similarity variables

\[
u = a(x + b)^n G(\xi); \quad v = -\sqrt{\frac{n+1}{2}} va(x + b)^{n-1} \left(G + \frac{n-1}{n+1} \xi \right) \quad \xi = \frac{\sqrt{\frac{n+1}{2}} a(x + b)^{n-1}}{\nu} y \tag{6}
\]

\[
u = a(x + b)^n H'(\xi); \quad v_p = -\sqrt{\frac{n+1}{2}} va(x + b)^{n-1} \left(H + \frac{n-1}{n+1} \xi H' \right)
\]

to convert the partial differential equations into a nonlinear ordinary differential equations where \(G(\xi) \) and \(H(\xi) \) are dimensionless function and \(\alpha = a\sqrt{a(n + 1)/2\nu} \) is the wall thickness parameter describes the wall profile of the stretched surface. The equations (2-5) are transformed into ordinary differential equations using the similarity transformation technique. The equation of continuity is satisfied if a stream function \(\psi \) is chosen such that

\[
u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}
\]

\[
; \psi = \sqrt{\frac{n+1}{2}} va(x + b)^{n+1} G(\xi)
\]
Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

to guarantee that α and ν in Eq.(6) satisfying Eq.(1). Substituting equations (6) in equations (2-5) obtains the following ordinary differential equations.

\[
G'' + G'G'' - \frac{2n}{n+1}G'^2 + \beta \left((3n-1)GG'' - \frac{2n(n-1)}{n+1}G^3 + \frac{n-1}{2} \eta G^2 G'' - \frac{n+1}{2} G^2 G'' \right) \\
- \frac{n+1}{2} \beta \nu (H' - G') - MG' \\
= 0
\]
(8)

\[
nH'' - \frac{n+1}{2} H G'' + \beta \nu (H' - G') \\
= 0
\]
(9)

Subject to the boundary conditions

\[
G(\alpha) = \alpha \left(\frac{1-n}{1+n} \right), \quad G'(\alpha) = 1, \\
\lim_{\xi \to \infty} G'(\xi) = 0, \quad \lim_{\xi \to \infty} H'(\xi) = 0, \quad \lim_{\xi \to \infty} G(\xi) = \lim_{\xi \to \infty} H(\xi),
\]
(10)

where $\beta = Ka(x + b)^{n-1}$ is the elasticity number [24] and $\beta \nu = KN/\rho \alpha$ is fluid particle interaction. Let $G(\xi) = f(\xi - \alpha) = f(\eta)$ and $H(\xi) = F(\xi - \alpha) = F(\eta)$. Therefore, the similarity equations (8), (9) in combined with the boundary conditions (10) becomes

\[
f'' + ff' - \frac{2n}{n+1}f'^2 + \beta \left((3n-1)ff'f'' - \frac{2n(n-1)}{n+1}f^3 + \frac{n-1}{2} \eta f^2 f'' - \frac{n+1}{2} f^2 f'' \right) \\
- \frac{n+1}{2} \beta \nu (F' - f') - Mf' \\
= 0
\]
(11)

\[
nF'^2 - \frac{n+1}{2} F'G'' + \beta \nu (F' - f') = 0
\]
(12)

subject to the boundary conditions

\[
f(0) = \alpha \left(\frac{1-n}{1+n} \right), \quad f'(0) = 1, \\
\lim_{\eta \to \infty} f'(\eta) = 0, \quad \lim_{\eta \to \infty} F'(\eta) = 0, \quad \lim_{\eta \to \infty} f(\eta) = \lim_{\eta \to \infty} F(\eta),
\]
(13)

The local skin friction is defined as follows

\[
C_f = -2 \sqrt{\frac{n+1}{2}} \text{Re}^{-\frac{1}{2}} \alpha f''(0),
\]
(14)

Where $C_f \sqrt{\text{Re}} = -2 \sqrt{(n+1)/2} f''(0)$ is the modified skin-friction coefficient, C_f is the local skin-friction coefficient, and $\text{Re} = U_\infty (x + b)/v$ is the local Reynolds number [25].

3. RESULTS AND DISCUSSION

Equations (11) and (12) with the boundary conditions (13) are solved numerically by the fourth/fifth Runge-Kutta method. The method is detailed by Elbashbeshy et al. [26] and applied using the software Mathematica. The accuracy of this numerical method was validated by comparison with numerical results reported by [27-28]. It can be seen from Tab. 1 and Tab. 2 that there is a very good agreement achieved between the obtained results. Table 3 presents the influences of elasticity β, wall thickness α, magnetic M parameters on the modified skin friction. Finally, the influences of elasticity β, wall thickness α, magnetic M parameters, and the velocity power index n on the velocity profiles are shown in the graphs from Fig. 2 to Fig. 6. Table 1 discloses that the present numerical results for $-f'(0)$ at different α (neglecting the effect of the porous medium) show an excellent agreement with the results in [27-28] for four digits at different values of n.

International Journal of Modern Studies in Mechanical Engineering (IJMSME) Page | 33
Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

Fig 2a: Effect of n for Newtonian dusty fluid

Fig 2b: Effect of n for Maxwell dusty fluid

Fig 3a: Effect of α for $n < 1$

Fig 3b: Effect of α for $n > 1$

Fig 4a: Effect of β for $n < 1$

Fig 4b: Effect of β for $n > 1$

Fig 5a: Effect of M for $n < 1$

Fig 5b: Effect of M for $n > 1$
Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

Table 1. A comparison with other published results for the value of $-f''(0)$ at different α

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.1433</td>
<td>1.1433</td>
<td>1.14332</td>
<td>1.0603</td>
<td>1.0603</td>
<td>1.06032</td>
</tr>
<tr>
<td>9</td>
<td>1.1404</td>
<td>1.1404</td>
<td>1.14039</td>
<td>1.0589</td>
<td>1.0588</td>
<td>1.05891</td>
</tr>
<tr>
<td>7</td>
<td>1.1323</td>
<td>1.1322</td>
<td>1.13228</td>
<td>1.0550</td>
<td>1.0551</td>
<td>1.05504</td>
</tr>
<tr>
<td>5</td>
<td>1.1186</td>
<td>1.1186</td>
<td>1.11859</td>
<td>1.0486</td>
<td>1.0486</td>
<td>1.04861</td>
</tr>
<tr>
<td>3</td>
<td>1.0905</td>
<td>1.0904</td>
<td>1.09049</td>
<td>1.0359</td>
<td>1.0358</td>
<td>1.03586</td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.00000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.00000</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9338</td>
<td>0.9337</td>
<td>0.9382</td>
<td>0.9799</td>
<td>0.9798</td>
<td>0.97994</td>
</tr>
<tr>
<td>0</td>
<td>0.78439</td>
<td>0.7843</td>
<td>0.78427</td>
<td>0.9576</td>
<td>0.9577</td>
<td>0.95764</td>
</tr>
<tr>
<td>-1/3</td>
<td>0.5000</td>
<td>0.5000</td>
<td>0.50000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.00000</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.0833</td>
<td>0.0832</td>
<td>0.08333</td>
<td>1.1667</td>
<td>1.1666</td>
<td>1.16666</td>
</tr>
</tbody>
</table>

The effect of magnetic parameter M is tabulated in table 2 for the dusty fluid. The magnetic parameter M causes the skin friction increases. Physically, the magnetic field induces Lorentz force which delays the transition from laminar to turbulent flow. In combine with the elasticity number for $\beta = 0.2$, the skin friction is larger than for $\beta = 0$ (it means the absence of elasticity parameter).

Table 2. The effect of M on $-f''(0)$ at $\zeta = 1$ and $\alpha = 0.25$

<table>
<thead>
<tr>
<th>M</th>
<th>$n = 0.5$</th>
<th>$n = 1.2$</th>
<th>$n = 0.5$</th>
<th>$n = 1.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.957079</td>
<td>1.032047</td>
<td>0.973317</td>
<td>1.096844</td>
</tr>
<tr>
<td>1</td>
<td>1.394464</td>
<td>1.434380</td>
<td>1.405728</td>
<td>1.479740</td>
</tr>
<tr>
<td>5</td>
<td>2.455566</td>
<td>2.456614</td>
<td>2.464771</td>
<td>2.481023</td>
</tr>
</tbody>
</table>

3.1. Modified Skin-Friction

The ratio of the inertial force to the viscous force in a fluid is defined as dimensionless number called Reynold number, which defines the flow type to be laminar, transient, or turbulent. The friction force between the stretching surface and the adjacent fluid particles called skin-friction, which creates a drag force depending on the value of Reynold number. When it takes different values depending on the value of the Reynold number, it is called the local skin-friction, while considering the effect of the wall profile, it is called modified-skin friction.

Table 3 introduces the influences of the wall thickness, the elasticity, and the magnetic parameters on the modified skin friction. The first part in Tab. 3 shows that the modified skin friction increases with increasing the velocity power index.

Table 3. The modified skin-friction and $-f''(0)$ at different n, α, β, M, and β_v

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
<th>β</th>
<th>M</th>
<th>β_v</th>
<th>$-f''(0)$</th>
<th>C_f/Re_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.315869</td>
<td>1.860919</td>
</tr>
<tr>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.405728</td>
<td>2.434792</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.539216</td>
<td>3.770293</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.373928</td>
<td>2.379713</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.533862</td>
<td>2.656727</td>
</tr>
</tbody>
</table>
Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

<table>
<thead>
<tr>
<th>$n < 1$</th>
<th>0.5</th>
<th>1.2</th>
<th>0.2</th>
<th>1</th>
<th>0.4</th>
<th>1.640389</th>
<th>2.841237</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.489850</td>
<td>3.125135</td>
</tr>
<tr>
<td>$n > 1$</td>
<td>1.2</td>
<td>0.8</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.443712</td>
<td>3.028355</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td>0.4</td>
<td>1.394464</td>
<td>2.415282</td>
</tr>
<tr>
<td>β</td>
<td>0.5</td>
<td>0.25</td>
<td>0.3</td>
<td>1</td>
<td>0.4</td>
<td>1.411522</td>
<td>2.444827</td>
</tr>
<tr>
<td>$n < 1$</td>
<td>0.5</td>
<td>0.25</td>
<td>0.9</td>
<td>1</td>
<td>0.4</td>
<td>1.446480</td>
<td>2.508841</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
<td>0.4</td>
<td>1.434380</td>
<td>3.008780</td>
</tr>
<tr>
<td>β</td>
<td>1.2</td>
<td>0.25</td>
<td>0.3</td>
<td>1</td>
<td>0.4</td>
<td>1.501890</td>
<td>3.150391</td>
</tr>
<tr>
<td>$n > 1$</td>
<td>1.2</td>
<td>0.25</td>
<td>0.9</td>
<td>1</td>
<td>0.4</td>
<td>1.628002</td>
<td>3.414925</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>0</td>
<td>0.4</td>
<td>0.973317</td>
<td>1.685834</td>
</tr>
<tr>
<td>M</td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>0.4</td>
<td>1.405728</td>
<td>2.434792</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>5</td>
<td>0.4</td>
<td>2.464771</td>
<td>4.269108</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
<td>1.405728</td>
<td>2.434792</td>
</tr>
<tr>
<td>β_v</td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>0.5</td>
<td>1.420135</td>
<td>2.459745</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.25</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>1.428803</td>
<td>2.474759</td>
</tr>
</tbody>
</table>

Physically, increasing the power index n increases the effect of the friction between the surface and the adjacent fluid. Part two and three introduce the effect of the wall thickness parameter where the modified-skin friction increase for $n > 1$, while for $n > 1$ it has a vice versa effect.

For high β value, the viscosity and resistivity of the fluid are increased inducing more friction within the fluid and reduces the velocity of the flow. These effects appear in the increasing of the modified-skin friction as tabulated in the fourth and fifth parts of Tab. 3. The modified-skin friction increases for $n > 1$ more than for $n < 1$ with increasing β. Part 6 of Tab. 3 shows the effect of magnetic parameter in increasing the modified-skin friction. Finally, part 7 introduces the effect of fluid-particle interaction parameter β_v in increasing the modified-skin friction.

3.2. The Index Power n

The surface profile of the stretching surface (see Fig. 1b) and the stretching wall velocity are described according to the index power n. Increasing the value for n leads to a greater decreases in the surface thickness. Also, the index power n describes the stretching wall velocity U_w. The effect of this parameter on the dimensionless velocity, is illustrated in Figure 2 for $n = 0, 0.5, 2$ at $\alpha = 0.25$, $\beta = 0; 0.2, \beta_v = 0.4$, and $M = 1$.

It is important to denote that the dimensionless velocity f' represents the ratio of the fluid velocity component u to the stretching velocity U_w. For that, increasing the velocity index power n means an increase in the stretching surface velocity and the curvature of the profile surface. Consequently, it causes a decrease in the dimensionless velocity as shown in Fig. 2b, and so a decrease in the momentum boundary layer. In the same figure, the velocity of the dusty particles decreases. Due to this fact, the increase in this parameter increases the resistive force to inhibit the Maxwell dusty fluid. Figure 2a presented the behavior of the flow for Newtonian dusty fluid where the flow velocity increases with increasing the index power.

3.3. Wall Thickness Parameter α

The effect of wall thickness parameter $\alpha = a\sqrt{a(n + 1)/2\beta v}$ on the velocity for the fluid flow is investigated and the results are shown in Figure 3 for $\alpha = 0.1, 0.8, 1.2$ at $n = 0.5, 1.2$, $\beta = 0.2, \beta_v = 0.4$, and $M = 1$. From Fig 3a, it is clear that for $n < 1$, as α increases the velocity decreases, consequently, the boundary layer becomes thinner and thinner, while Fig. 3b shows that for $n > 1$ the velocity slightly increases and the boundary layer becomes thicker. The same behavior for the velocity of the dusty particles is shown.

3.4. Elasticity Parameter β

The elasticity parameter β of Deborah number is a dimensionless number represents the ratio of the time scale flow to the relaxation time flow. Where, the time scale is used to distinguish the type of the unsteady flow. For instance, when the time scale approaches infinity, the flow becomes steady and the relaxation time is the time required to the viscous fluid to retain after the flow stopped due to the effect of shear stress. The effect of the elasticity parameter on the dimensionless velocity is shown in the Figure 4 for $\beta = 0, 0.3, 0.9$ at $n = 0.5: 1.2$, $\alpha = 0.25, \beta_v = 0.4$, and $M = 1$.

International Journal of Modern Studies in Mechanical Engineering (IJMSME)
Figure 4 shows a decrease in the velocity while an increasing in the elasticity number. This is due to the fact that increasingly β makes the fluid more viscous and so the resistance within the fluid is increased. The effect of the elasticity parameter for $n > 1$ (Figure 4b) is a little significant than for $n < 1$ (Figure 4a). The velocity of the dusty particles does not change with the elasticity parameter.

3.5. The Magnetic Field M

Figure 5 shows that the flow velocity decreases with the increase of the magnetic field M, also the velocity of the dusty particles. Physically, the applied transverse magnetic field produces a drag force called Lorentz force, which induced a decrease in the velocity of the flow, thus the boundary layer thickness decreases. In comparison between Figure 5a and 5b the effect of magnetic field does not change with changing the n parameter.

3.6. Fluid Particle Interaction β_v

Figure 6a shows the effect of β_v for $n < 1$ where the velocity of the dusty particles increases with increasing β_v with no effect on the velocity of the fluid at all. A comparison for the effect of β_v for different values of velocity index n is shown in Figure 6b. The figure shows that the effect of β_v for $n < 1$ is more effective for than $n > 1$.

4. CONCLUSIONS

Mass transfer of a Maxwell dusty fluid over a stretching surface with variable thickness subjected to magnetic field has been investigated numerically. A similarity transformation for the governing boundary layer equations has been done based on wall thickness, elasticity, magnetic, and fluid-particle interaction parameters. The influence of these parameters on the flow velocity has been presented graphically. The results for the modified-skin friction have been tabulated. The observations of the present study can be summarized in the following points.

- The velocity power index n and the wall thickness parameter α control the mechanical properties of the stretching surface. For $n < 1$, the wall thickness parameter α slightly decreases the velocity while, for $n > 1$, it strongly increases them.
- The elasticity parameter β decreases the velocity profile.
- The modified skin-friction $C_F\sqrt{Re_x}$ with increasing α (for $n < 1$), and β. While it is decreased with increasing α (for $n > 1$).

REFERENCES

Effect of Magnetic Field on Flow of a Maxwell Dusty Fluid over a Stretching Surface with Variable Thickness

Copyright: © 2018 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.