Phytochemical Screening and Quantitative Determination of Phytochemicals in Leaf Extracts of Hannoa undulata

Longbap, B.D¹, Ushie, O A¹*, Ogah, E.¹, Kenderson, A. C², Nyikyaa, J. T¹

¹Department of Chemical Science, Federal University Wukari Nigeria
²Department of Chemical Science, Federal University Kashere, Nigeria

*Corresponding Author: Ushie, O A, Department of Chemical Science, Federal University Wukari Nigeria

Abstract: Preliminary phytochemical screening on the dried leaf extracts of Hannoa undulata using cold maceration by serial exhaustive extraction method with solvents of increasing polarity (Hexane, chloroform, ethylacetate, acetone and ethanol) was investigated. The phytochemical screening of the crude leaf extracts revealed the presence of alkaloids, flavonoids, phenols, saponins and glycosides in all extracts. Quantitative analysis on some detected phytochemicals reveals high content of saponins (1.033%/g), followed by flavonoids (0.77%/g) and alkaloids (0.72%/g).

Keywords: Phytochemical screening, Hannoa undulata, Polarity, cold maceration, leaf extracts

1. INTRODUCTION

Medicinal plants form an important component of flora and are widely distributed in the world. The pharmacological evaluation of substances from plants is an established method for the identification of lead compounds which can result to the development of novel and safe medicinal agents. Medicinal plants are composed of some certain organic compounds called phytochemicals which produce definite physiological actions in the human body and these bioactive substances include but are not limited to tannins, alkaloids, terpenoids, steroids and flavonoids (Edoega et al., 2005). The development of pharmaceutical products necessitates an exhaustive investigation of medicinal plants to improve our knowledge about their biological activities and the phytoconstituents responsible for them (Jothy et al., 2012). Furthermore, the need for comprehensive investigations in this area is more evident owing to the fact that only a limited number of medicinal plant species have received complete scientific inspection (Mazumder et al., 2008).

Hannoa undulata belongs to the family simaroubaceae. Hannoa undulata is locally known as “Gbur” in the Tiv dialect of Benue State (Shomkegh et al., 2016). It is used as a cure for various ailments in this area. Air dried roots bark are used for treating stomach ache and the bark and leaves for jaundice and malaria. The leaves are very coriaceous (leathery), obovate and are narrowed or cuneate at the base. It is a fast growing plant and usually grows up to 6-8 meters tall. It has a woody bark that is longitudinally fissured. Prot and Kornprobst reported in 1985 that quassinoid fractions extracted from the seeds of H. undulata prevented the penetration of juveniles of meloidogyne javanic into tomato roots. According to the report, full inhibition of penetration occurred during three days of continuous exposure to a 5 ppm quassinoid solution in the soil water. Quassinoids are highly oxygenated triterpenes which have attracted much attention because of their wide spectrum of biological activities.

2. MATERIALS AND METHODS

2.1. Sample Collection and Preparation

The leaves of Hannoa undulata were collected from its natural habitat in Wukari local Government area of Taraba state, Nigeria. The samples were air dried and pulverized into a coarse powder. This was to increase the surface area to facilitate extraction.

2.2. Extraction

Cold maceration was used in the extraction by serial exhaustive extraction method which involves successive extraction with solvents of increasing polarity (n-hexane, chloroform, ethylacetate, acetone
and ethanol. The extracts of the leaves were prepared by soaking 200g of the coarsely powdered leaves in n-hexane in a stoppered container for a defined period (4 days) with frequent agitation. The resulting mixture was filtered and concentrated using rotary evaporator. The procedure was repeated on the residues using chloroform, ethyl acetate, acetone and ethanol sequentially in order of polarity. The extracts were kept in the refrigerator until required for analysis.

2.3. Phytochemical Screening

Preliminary phytochemical screening was carried out on all the crude leaf extracts (hexane, chloroform, ethyl acetate, acetone and ethanol) of *Hannoa undulata* using standard procedures as described by Trease and Evans (1989), Sofowora (1993), Ushie *et al.*, 2016) and Santhi *et al.*, 2016).

2.4. Detection of Alkaloids

Extracts were dissolved individually in dilute hydrochloric acid and filtered. The filtrates were used to test the presence of alkaloids.

2.5. Mayer’s Test

Filtrates were treated with Mayer’s reagent. Formation of a yellow cream precipitate indicates the presence of alkaloids.

2.6. Wagner’s Test

Filtrates were treated with Wagner’s reagent. Formation of brown/ reddish brown precipitate indicates the presence of alkaloids.

2.7. Detection of Flavonoids

2.7.1. Lead Acetate Test

Extracts were treated with few drops of lead acetate solution. Formation of yellow color precipitate indicates the presence of flavonoids.

2.7.2. Alkaline Test

Extracts were treated with few drops of dilute sodium hydroxide solution. Formation of a yellow color, which turned colorless on addition of dilute acid, indicated the presence of flavonoids.

2.7.3. Detection of Steroids

2 mL of acetic anhydride was added to 0.5 mL of each extract in a test tube, followed by the addition of 2 mL of sulfuric acid. A color change from violet to blue or green indicated the presence of steroids.

2.8. Detection of Phlobatannins

2 mL of each extract of the plant sample was boiled with 1% aqueous hydrochloric acid. Disposition of red precipitate indicated the presence of phlobatannins.

2.9. Detection of Anthraquinones

2.9.1. Borntrager s Test

0.5 mL of each extract was boiled with 2 mL of 10% HCl for few minutes in a water bath. The resultant solution was filtered and allowed to cool. Equal volume of chloroform was added to the filtrate. Few drops of 10% NH₃ solution was added to the mixture and heated. Formation of rose pink color indicated the presence of anthraquinones in the extracts.

2.10. Detection of Terpenoids

2.10.1. Salkowski s Test

0.5 mL of each extract was mixed with 2 mL of chloroform, and 3mL of concentrated H₂SO₄ was carefully added to form a layer. An appearance of a reddish brown color interface indicated the presence of terpenoids.

2.11. Detection of Phenols

2.11.1. Ferric Chloride Test

10 mL of each extract was treated with few drops of ferric chloride solution. Formation of bluish black color indicates the presence of phenol.
2.12. Detection of Glycosides

*Glycoside Test*

0.5 mL of each extract was dissolved in 1 mL of water and then aqueous NaOH solution was added. Formation of yellow color indicates the presence of glycosides.

2.13. Detection of Tannins

1 mL of each of the extracts was mixed with water and heated on a water bath. The mixture was filtered and ferric chloride was added to the filtrate. Formation of a dark green color indicated the presence of tannins.

2.14. Detection of Saponins

*Foam Test*

1 mL of each of the extracts was shaken with 5 mL of distilled water. Formation of stable persistent foam indicated the presence of saponins.

*Quantitative Phytochemical Analysis*

The phytochemicals detected in the extracts of *Hannoa undulata* were quantified using standard procedures as described by Harborne (1973), Obdoni and Ochuko (2001), Krishnaiah *et al.*, 2009) and Sathya *et al.*, 2013).

*Estimation of Alkaloids*

Determination of alkaloids was done by using Harborne (1973) method. To 5 g of the sample, 200 mL of 10% acetic acid in ethanol was added and covered and allowed to stand for 4 h. It was filtered and the filtrate was concentrated on a water bath to one quarter of the original volume. Concentrated NH₄OH was added drop wise to the filtrate until precipitation was complete. The whole solution was allowed to settle and the precipitate was collected and washed with dilute NH₄OH and then filtered. The residue is the alkaloid, which was dried and weighed.

*Estimation of Flavonoids*

10 g of plant sample was repeatedly extracted with 100 mL of 80% aqueous methanol at room temperature. The whole solution was filtered through a Whatman No.42 filter paper into a pre weighed 250 mL beaker. The filtrate was transferred into a water bath and allowed to evaporate to dryness and weighed (Krishnaiah *et al.*, 2009).

*Estimation of Total Saponins*

The method used was that of Obdoni and Ochuko (2001). To 20 g of the ground sample, 100 mL of 20% aqueous ethanol was added. The samples were heated over a hot water bath for 4 h with continuous stirring at about 55°C. The mixture was filtered and the residue re-extracted with another 200 mL 20% ethanol. The combined extracts were reduced to 40 mL over water bath at about 90°C. The concentrate was transferred into a 250 mL separation funnel and 20 mL of diethyl ether was added and shaken vigorously. The aqueous layer was recovered while the ether layer was discarded. The purification process was repeated. 60 mL of n-butanol was added. The combined n-butanol extracts were washed twice with 10 mL of 5% aqueous sodium chloride. The remaining solution was heated in a water bath for evaporation and were further dried in the oven to a constant weight; the saponin content was calculated.

3. RESULTS

3.1. Preliminary Phytochemical Screening of Leaves Extracts of *Hannoa undulata*

The extracts (hexane, chloroform, ethyl acetate, acetone and ethanol) of the leaves of *Hannoa undulata* were screened for the presence of some phytochemicals. Table 1 presents the results of phytochemical screening of crude leaf extracts of *Hannoa undulata*.
Table 1. Preliminary Phytochemical Screening of the Various crude Leaf Extracts of Hannoa undulata.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Name of test</th>
<th>Test applied/Reagent used</th>
<th>HE</th>
<th>CE</th>
<th>EAE</th>
<th>AE</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>Mayer’s reagent</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wagner’s reagent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>Lead acetate test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alkaline reagent test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Terpenoids</td>
<td>Salkowski test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Phenols</td>
<td>Ferric chloride test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Steroids</td>
<td>Extract + acetic anhydride + H₂SO₄</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Saponins</td>
<td>Foam test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Anthraquinones</td>
<td>Borntrager’s test</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Glycosides</td>
<td>Extract + H₂O + NaOH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Phlobatannins</td>
<td>Extract + 1%HCl + heat</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: HE=hexane extract, CE=chloroform extract, EAE=ethylacetate extract, AE=acetone extract, EE= ethanol extract, (+) = Present, (-) = Absent

3.2. Quantitative Analysis of Some Detected Phytochemicals

The result of quantitative Phytochemical analysis is presented in Table 2 below.

Table 2. Quantitative Phytochemical Analysis of Hannoa undulata

<table>
<thead>
<tr>
<th>S/N</th>
<th>Test Phytochemical</th>
<th>Weight of sample (g)</th>
<th>Weight of dried filtrate (g)</th>
<th>% Crude calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flavonoids</td>
<td>10.00</td>
<td>0.77</td>
<td>7.70</td>
</tr>
<tr>
<td>2</td>
<td>Alkaloids</td>
<td>5.00</td>
<td>0.18</td>
<td>3.60</td>
</tr>
<tr>
<td>3</td>
<td>Saponins</td>
<td>20.00</td>
<td>4.13</td>
<td>20.65</td>
</tr>
</tbody>
</table>

4. DISCUSSION

Hannoa undulatais used as traditional medicine in different parts of Nigeria. The present study was conducted on preliminary phytochemical and quantitative analysis of the leaf extracts of the plant.

4.1. Preliminary Phytochemical Analysis

The phytochemical analysis of the hexane, chloroform, ethyl acetate, acetone and ethanol extract of the leaves of Hannoa undulata revealed the presence of anthraquinones, steroids, terpenoids and terpenes, phlobatannins, phenols, saponins, tannins, flavonoids, glycosides and alkaloids.

The results obtained revealed the absence of anthraquinones in hexane, ethyl acetate, ethanol and acetone extracts. However, this substance was found to be present in chloroform extract. Tannins were present in all extracts except hexane and chloroform extracts. Phlobatannins were absent in all the extracts except ethanol extract. Steroids were present in all extracts except ethanol extract. Terpenoid was absent in all extracts except the ethanol extract. Phenols, alkaloids, saponins, flavonoids and glycosides were found to be present in all extracts as shown in Table 1. Quantitative analysis carried out on three detected phytochemicals; alkaloids, flavonoids and saponins reveals that these secondary metabolites are present in different amount in the leaves of the plant (Table 2). Amongst the quantified phytochemicals, Saponin content of the leaves of H. undulata was found to be 1.033 %
Saponins are very important as they are shown to have hypolipidemic and anti-cancer activity. The natural anti-cancer agent saponin reacts with cholesterol rich plasma membrane of various cancer cells and arrests their proliferation (Rao et al., 1995). This high level of saponin present in the leaves of Hannoaundulata indicates that the plant can be used to produce anti-cancer drugs. Alkaloids and flavonoids contribute various medicinal properties such as analgesic, anti-oxidant and astringent activity (Chung et al., 1998).

These classes of phytochemical compounds are known to show therapeutic activity against several bacteria and it is not surprising that these plant extracts are used traditionally by herbalist to cure bacteria related ill-health (Njoku and Obi, 2009).

Hannoaundulata can be used as anti-inflammatory, antispasmodic, anti-cancer and analgesic agent. This is attributed to the presence of flavonoids, alkaloids, steroids, glycosides and saponins in their compositions (Savithramma et al., 2011). Saponins are precursors of important therapeutic drugs such as cortisone and contraceptive estrogens (Kareruet al., 2008). There is tremendous, commercially driven promotion of saponins as dietary supplements and nutriceuticals (Ushie et al., 2016). Saponins are a mild detergent used in intracellular histochemistry staining to allow antibody access to intracellular proteins. The saponins are used in hypercholesterolaemia, hyperglycemia, antioxidant, anticancer, anti-inflammatory activity and weight loss (Manickam et al., 2014). Saponin are also known to cause complexion with cholesterol to form pores in cell membrane bilayers, e.g., in red cell (erythrocyte) membranes, where complexion leads to red cell lysis (hemolysis) on intravenous injection (Francis et al., 2002). Hannoaundulata can be used as an analgesic, anaesthetic and as social drugs in view of the fact that it contains alkaloids. The alkaloids contained in plants are used in medicine as anaesthetic agents (Herour et al., 1988), Harborne (1988) also reported on the analgesic properties of alkaloids. Alkaloids has contributed to the majority of the poisons, neurotoxins and traditional psychedelics and social drugs [e.g. nicotine, caffeine, methamphetamine (ephedrine) cocaine, and opiates] consumed by humans (Zenj and Juenger, 2007). Flavonoids were detected in all the extract. According to Okoli and Okere (2010), flavonoids are potent water soluble super antioxidants and free radical scavengers which prevent oxidative cell damage, have strong anticancer activity and inhibit tumor growth. The beneficial effects of fruit, vegetables, and tea or even red wine have been attributed to flavonoid compounds rather than to known nutrients and vitamins (Félicien, 2008). Hannoaundulata is important in pharmacy because it contains steroidal compounds. Okwu (2001) reported that steroidal compounds are of importance and interest in pharmacy due to their relationship with sex hormones. They are known to effect the development and control of the reproductive tract in humans and molt insects. Other function includes inducing sexual reproduction in aquatic fungi (Ushie et al., 2016). Hannoaundulata can be used as an anti-inflammatory, antiseptic, antioxidant agent due to the presence of tannins. De Bruyn et al., (1999) reported that in medicine, especially in Asian (Japanese and Chinese) natural healing, tannin-containing plant extracts are used as astringents, against diarrhoea, as diuretics, against stomach and duodenal tumours and as anti-inflammatory, antiseptic, antioxidant and haemostatic pharmaceuticals (Dolara et al., 2005). Saxena et al., (2013) pointed out that recently, tannins have attracted scientific interest, especially due to the increased incidence of deadly illnesses such as acquired immune deficiency syndrome (AIDS) and various cancers (Blyttet al., 1988). Pharmacologically, glycosides have been found to be useful in treatment of several illnesses for instance cardiac glycoside have long been employed as important ingredient for arrow poisons and drugs (Treon and Evans 1989). The presence of terpenoids that have carboxylic acid groups could also be responsible for the activity of the organic extracts of Hannoaundulata (Njoku and Obi 2009). Langenheim, 1994 and Dudareva, 2004 also reported that terpenoids have medicinal properties such as anti-carcinogenic (e.g. perilla alcohol), anti-malarial (e.g. artemisinin), anti-ulcer, hepaticidal, antimicrobial or diuretic (e.g. glycyrrhizin) activity. Anthraquinones are extensively applied in medicine. In the pharmaceutical industry, the natural and synthetic derivatives of 9, 10 anthraquinone are beneficial to mammals and humans as they can display antibacterial, antitrypanosomal and antineoplastic activities (Heyman et al., 2009;Tarus et al., 2002; Velez-Cruz and Osheroff, 2004). Phlobatannins have been reported for its wound healing properties. They also have anti-inflammatory and analgesic (Ayinde et al., 2007) and anti-oxidant properties (Okwu et al., 2004)
REFERENCES


Phytochemical Screening and Quantitative Determination of Phytochemicals in Leaf Extracts of Hannoa undulata


Citation: Longbap, B.D et al., "Phytochemical Screening and Quantitative Determination of Phytochemicals in Leaf Extracts of Hannoa undulata", International Journal of Medicinal Plants and Natural Products (IJMPNP), vol. 4, no. 2, pp. 32-38, 2018. http://dx.doi.org/10.20431/2454-7999.0402005
Copyright: © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.