Studies on Henneguyosis Infecting Wild African Catfish, *Clarias Gariepinus* from Behera Governorate, Egypt

Riad H. Khalil, Talaat T. Saad, Mahmoud El-Tanekhy, Hany M.R. Abdel-Latif*, Wafaa S.A. El-Swsaney

Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University
Edfina, Egypt

*Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University
Edfina, Behera, Egypt

healthyfish.20@gmail.com, hmhany@alexu.edu.eg

Abstract: During a recent investigation of parasites infecting fishes inhabiting different Canals at Behera governorate (Egypt), a total of 200 sharptooth catfish, *Clarias gariepinus* were examined for the presence of Myxosporidian infections. The clinical signs, postmortem lesions, histopathological and parasitological examinations were investigated. It was noted that the infected fish were off food and had respiratory manifestations, sluggish swimming, and congestion of the gills as well as the presence of cyst like structures on the gill filaments, in the cartilage of the accessory breathing organ. Parasitological examinations revealed great numbers of spores in the milky fluid inside the cysts, which identified the presence of plasmodia of *Henneguya branchialis* (Ashmawy et al., 1989) in the gills and accessory respiratory organ of the infected fish. Ultrastructure of *H. branchialis* was successfully identified by scanning electron microscopy (SEM). The prevalence of *H. branchialis* revealed that (20.5 %) of the examined fish were infected. It was also noted that the highest rate of infestation was found in spring and summer seasons and in female specimens more than males.

Keywords: *Henneguya* - *Plasmodia* - *Clarias gariepinus* - scanning electron microscopy (SEM).

1. INTRODUCTION

The African sharptooth catfish, *Clarias gariepinus* (Burchell, 1822) (Siluriformes: Claridae) is probably the most widely distributed fish species in Africa; it has also many names such as *C. mossambicus* (Peters, 1852) and *C. lazera* (Valenciennes, 1840) that being recognized as its junior synonyms (Skelton, 1993). Its economic importance has been increased markedly in recent years as a result of its extensive use in pisciculture (Skelton and Teugels, 1992).

Myxozoans are considered to be one of the most economically important groups of microscopic metazoan parasites, as they infect food fish. Myxosporidia are almost exclusively fish parasites world-wide (Lom and Dykova, 1994) and have a great importance in ichthyopathology (Sakiti et al., 1990, 1996; Diamant, 1992; Lom and Dyková, 1992; Fomena et al., 1993; Voronin and Chernysheva, 1993 & Eiras, 1994). Some species are very harmful and can weaken or kill their hosts, leading to significant economic losses (Okaeme et al., 1988).

Up to now, 2180 Myxosporean species have been demonstrated to a total of 62 genera that have been established (Lom and Dykov, 2006). In Africa, approximately 200 species of Myxosporidia were identified today, to infect freshwater, brackish and marine fishes (Fomena and Bouix 1997, Kostoingué et al., 2001 & Abakar-Ousman, 2006). Specifically, in Egypt, the fish of river Nile were firstly examined for Myxosporidian parasites by Fahmy et al. (1975), then by Abed (1987), Iman et al. (1987), Abdel-Ghaffar et al. (1995a, b, 1998) and Ali (1998, 1999).

New Myxosporidian pathogens are continually emerging and threatening the development of pisciculture all over the world, and novel species are being described every year (Schlegel et al., 1996), that also parasitize a wide variety of fish tissues and produce pseudocysts that contain hundreds of thousands of small spores.

Among the Myxosporidea, the genus Henneguya, which includes at least 126 species (Lom and Dykova, 1992), is one of the most important pathogens of fresh water and marine fishes and mainly
the catfishes. *Henneguya clariae* (Abolarin, 1971) was the first species to be described from the gills of *C. lazera* in Nigeria (Abolarin, 1971). This description also appears to be the first record of the genus *Henneguya* Thélohan, 1892 in Africa. Several years later Landsberg (1987) described *H. laterocapsulata* (Landsberg, 1987) and *H. suprabranchiae* (Landsberg, 1987) from the skin and suprabranchial organs, respectively, of the same host in Israel. Furthermore, *H. branchialis* (Ashmawy et al., 1989) was described from the gills of *C. lazera* in Egypt. Most recently, *H. fusiformis* (Kostoïngue, Fall, Faye et Toguebaye, 1999) was described from the gills of *C. anguillaris* in Chad (Kostoïngue et al. 1999).

Furthermore, Sabri et al. (2009) had studied the hematological picture of cultured *C. gariepinus* infected with *H. branchialis*. Also, Sabri et al. (2010) had studied the prevalence and histopathological findings of *H. branchialis* in cultured *C. gariepinus* at Ismailia governorate (Egypt). Therefore, the present work was mainly focused to spot light on the prevalence, light and electron microscopic studies of *H. branchialis* and histopathological findings of the infected the sharptooth catfish, *Clarias gariepinus* in Egypt.

2. MATERIAL AND METHODS

2.1. Fish Sampling

A total of two hundred (200) live African catfish (*Clarias gariepinus*) were captured randomly from different Canals at Behera governorate, Egypt and examined for the presence of Myxosporidian infections. Fish specimens of both sexes and with average body weight of 200 to 350 g, were transferred alive in polyethylene bags to the laboratory for further investigation.

Fish specimens were kept in glass aquaria (44 × 38 × 86 cm) with continuous aeration and chlorine free tap water (Innes, 1966) and they were fed on commercial diet pellets containing 30% protein as 3% of the body weight twice a day (Eurell et al., 1978). Further investigations were carried out after 24 hrs of acclimation.

2.2. Clinical and Postmortem Examinations

Captured fish were killed using an overdose of tricaine methane sulphonate (MS-222), and then clinical examination was performed (Conroy and Hermann, 1981) to determine any clinical abnormalities.

2.3. Parasitological Examination

Gills and accessory respiratory organs were exposed and were removed to be examined separately in order to detect and identify the *Henneguya* sp. infections. For permanent preparations, air dried smears from cysts were fixed in absolute methanol and stained with Giemsa (light microscopic examination).

2.4. Identification of Henneguya Spores

Complete description of the species was prepared according to the guidelines of Lom and Arthur (1989). The spore characteristics such as shape and size of the spores and polar capsules, presence or absence of an intercapsular process and iodinophilous vacuole…. etc was taken into consideration. Fresh spores were photomicrographed with an Olympus DP10 digital camera or recorded on videotapes; spores collected were studied and photographed with LOMO microscope. All measurements are given in micrometer.

2.5. Scanning Electron Microscopic (SEM) Studies

Cysts were fixed in phosphate buffer 3.5% gluteraldehyde at pH 7.4 for 3-4 hours, post fixed in 1% Osmium tetraoxide for 2 hrs, washed in Na-phosphate buffer (pH 7.4). Fixed cysts were gently crushed in phosphate buffer to dislodge the spores that were transferred to glass cover slips which were mounted on copper sluds, gold coated and examined in the EM unit in faculty of Science, Alexandria University, Egypt.

2.6. Histopathological Examination

For histopathological examination, some infected portions of the secondary respiratory organ were immediately fixed in 10% neutral phosphate-buffered formalin for at least 24 hrs then processed through the conventional paraffin embedding technique. Sections of 5 µm thickness were stained with
hematoxyline and eosin (H&E) according to the method described by Culling (1983) and was examined under light microscope.

3. **RESULTS AND DISCUSSION**

Henneguyosis is one of the most dangerous diseases, which render the heavily infested fish to be unmarketable, because of the large visible cysts on the gills and the dendritic organs (Eissa, 2002 & Wagner, 2002), which are ineligible for consumption according to food hygiene regulations (Betke et al., 2001).

3.1. **Results of Clinical Examination**

The infected fish were off food and exhibit respiratory manifestations in the form of gasping with rapid opercular movements, sluggish swimming, and congestion of the gills with excessive sliminess. Additionally, Small creamy white cyst structures were found on the gill filaments, the cartilage of the accessory breathing organ (dendritic organs) (Figs 1 & 2) (arrows) and in the gill arch (Fig 3) (arrow). These cysts were ovoid to round and with different sizes in both sites and the intensity of nodular parasites infection ranged from 3-10 cyst / fish.

![Figs 1-3](image-url).

Figs(1-3). Infected *C. gariepinus* with cysts of *H. branchialis*, yellow cysts were found in the accessory respiratory organ (Figs. 1 & 2) and in the gill arch (Fig. 3).

The respiratory manifestations recorded were occurred as a result of the structural damage and surface inflammation of gills leading to difficulties in osmoregulation and respiration causing decrease in oxygen uptake that causes hypoxia (Kabata, 1985; Lebelo et al., 2001) and many other physiological alterations such as reduction in RBCs count and hemoglobin (Hb) value that often cause anemia (Sabri et al., 2009).

The presence of these cysts was combined with congestion of the gills with excessive sliminess as inflammatory response of irritations on gills caused by fixation of the parasite (Meyer, 1968). All such damages make gills and accessory respiratory organs less functioning by reducing the respiratory surface (Eissa, 2002 & Sabri et al., 2010).
3.2. Results of Parasitological Examination

Henneguya Branchialis (Ashmawy, Abu-Elwafa, Imam and El-Otify, 1989)

Host: *Clarias gariepinus* (Burchell, 1822) (Siluriformes: Clariidae).

Site of Infection: The gills arch and within the tips of cartilage in the accessory breathing organ.

Locality: different Canals at Behera governorate, Egypt.

Prevalence: 20.5 % (41/200).

Description: oocysts were ovoid, whitish and measured 1 to 2 mm. The spore body (Figs. 4 -8) was lanceolated, elongated with anterior end more or less blunt and measured 14.3 ± 0.5 (12-16) x 5.1 ± 0.2 (4-7) µm.

The two polar capsules were equal, pyriform and measured 5.7 ± 0.6 (4-6) x 1.4 ± 0.2 (1-2) µm. The polar filaments were not apparent. The sporoplasm was finely granular. The length of the two caudal appendages, which are of equal size, was 19.1 ± 0.9 (18-20) µm. The total length of the spore was 33.7 ± 0.8 (30-36) µm.

![Figure 4](image) **Fig4.** Wet mount preparation of *Henneguya* spores from dendritic organ of *C. gariepinus* stained with Giemsa.

![Figs(5-8)](image) **Figs(5-8).** SEM micrograph of mature spores of *Henneguya branchialis*; Fig. (5): SEM micrograph showing the site, size, and shape of *H. branchialis* cyst on the accessory breathing organ of infected *C. gariepinus*. Fig. 6 and 7: SEM micrograph of *H. branchialis* showing the spermatozoa like shape of the parasite. Fig. 8: is an enlarged spore showing the cyst wall, the anterior groove, the posterior groove, and the edges of spore of *H. branchialis*.
3.3. Results of Seasonal Prevalence of H. Branchialis in Catfish, C. Gariepinus

It was noted that about (20.5%) of a total of 200 catfish examined were infested with *H. branchialis*, with seasonal prevalence 8, 30 and 4% in winter, summer and autumn, respectively. The highest rate of infestation (40%) was recorded in spring (Table 1).

<table>
<thead>
<tr>
<th>Season</th>
<th>No. of examined fish</th>
<th>No. of infected fish</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>50</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Summer</td>
<td>50</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Autumn</td>
<td>50</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Winter</td>
<td>50</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>41</td>
<td>20.5</td>
</tr>
</tbody>
</table>

The prevalence of the parasite showed seasonal cycle of *H. branchialis* development, as parasite start forming nodules from winter reaching the maximum number in spring then starting decrease by the rupture of the cysts to release the spores in the environment to start infestation.

Seasonal reproductive cycles have also been reported earlier for other species of Henneguya (Molnàr, 1998; Cone, 1994 & Barassa et al., 2003).

It was noted also that the rate of infection with *H. branchialis* was higher in fish specimens with body weight between 220-240 g and in female than in male fish specimens. Higher rate of infestation with Henneguyosis in fish specimens with body weight between 220-240 g and in female fish recorded in the current study has also been reported by Barassa et al. (2003).

3.4. Results of Histopathological Findings

Fig(9-12). Longitudinal sections in the accessory respiratory organ of infected C. gariepinus with *H. branchialis* showing plasmodium establishing within a large size habitat within the hyaline cartilage at the tips of the accessory respiratory organ and surrounded with thin layer of connective tissue. The plasmodium containing huge number of *H. branchialis* resulting in pushing and compressing the endothelial cells lining of cartilaginous tissue. Moreover, severe atrophy of the hyaline cartilaginous tissue due to large mass of plasmodium was clearly observed. In addition, dilatation of the blood vessels is seen within the bronchirole epithelium and damage, destruction, sloughing and necrosis of epithelial cells lining were shown.
REFERENCES

Studies on Henneguyosis Infecting Wild African Catfish, *Clarias Gariepinus* from Behera Governorate, Egypt

AUTHORS’ BIOGRAPHY

Riad H. Khali, is a senior professor of Fish diseases, Department of Poultry and Fish diseases, Faculty of Veterinary medicine in Alexandria University. He has over 15 years working experience fish microbiologist and research focusing on fish diseases and water resource management. He has contributed more than 75 articles in local and international scientific journals and has supervised 45 PhD and 85 master students.

Talaat T. Saad, is associate professor of Fish diseases, Department of Poultry and Fish diseases, Faculty of Veterinary medicine in Alexandria University. He has published more than 60 papers in reputed journals.

Mahmoud T. Amer, is a lecturer of Fish diseases, Department of Poultry and Fish diseases, Faculty of Veterinary medicine in Alexandria University. He has published more than 20 papers in reputed journals.

Hany M. R. Abdel-Latif, has completed his PhD at the age of 28 years from Alexandria University and postdoctoral studies from Michigan State University School of Veterinary Medicine. He is a Senior Lecturer of Fish diseases, Department of Poultry and Fish diseases, Faculty of Veterinary medicine in Alexandria University. He has published more than 11 papers in reputed journals.

Wafaa Salah Ali El-Swsaney, has born 1st September 1991 - in Damanhur city, El-Behira governorate, Egypt. She has graduated from Faculty of Veterinary Medicine, Alexandria University (2013) with a general grade (Very Good).