
International Journal of Innovative Research in Electronics and Communications (IJIREC)

Volume 1, Issue 7, October 2014, PP 25-30

ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online)

www.arcjournals.org

©ARC Page 25

Design of 64point Fast Fourier Transform by Using Radix-4

Implementation

N.Omkar

M.Tech(VLSI)

GokaRaju RangaRaju College of Engg & Tech

Dr.T.C. Sarma

H.O.D ECE
GokaRaju RangaRaju College of Engg & Tech

Abstract: The Fast Fourier Transform (FFT) is very significant algorithm in signal processing, to obtain
environmental status and wireless communication. This paper explains the high performance 64 point FFT

by using Radix-4 algorithm. Radix-4 has the advantage of parallel computations. This is simulated using

VHDL, using Xilinx ISE 10.1 and simulated using ModelSIM6.5e. Here we shown the architectures of 32

point FFT withradix-2 and 64-point FFT with radix-4. Finally, the high performance 64-point FFT

processor their architecture and simulation graphs are shown.

Keywords: FFT, radix-2, radix-4

1. INTRODUCTION

Fast Fourier rework (FFT) processor is wide used in different applications, like local area
network, image method, spectrum measurements, measuring device and transmission

communication services [1]. However, the FFT formula is a hard task and it should be exactly

designed to urge an efficient implementation. If the FFT processor is created flexible and quick
enough, a transportable device equipped with wireless transmission is possible. Therefore, an

efficient FFT processor is needed for period of time operations [2] and planning a quick FFT

processor may be a matter of nice significance.

A fast Fourier transform (FFT) is the advanced version of discrete fourier transform (DFT).
A Fourier transform converts time (or space) to frequency and vice versa. An FFT rapidly

computes such transformations. As a result, fast Fourier transforms are widely used for many

applications in engineering, science, and mathematics. The basic ideas were popularized in 1965,
but some FFTs had been previously known as early as 1805[2]. Fast Fourier transforms have been

described as "the most important numerical algorithm of our lifetime"

There are many different FFT algorithms involving a wide range of mathematics, from
simple complex-number arithmetic to group theory and number theory; this article gives an

overview of the available techniques and some of their general properties, while the specific

algorithms are described in subsidiary articles linked below.

The DFT is obtained by decomposing a sequence of values into components of different
frequencies. This operation is useful in many fields (see discrete Fourier transform for properties

and applications of the transform) but computing it directly from the definition is often too slow

to be practical. An FFT is a way to compute the same result more quickly: computing the DFT
of N-points in the naive way, using the definition, takes O(N

2
) arithmetical operations, while a

FFT can compute the same DFT in only O(N log N) operations. The difference in speed can be

enormous, especially for long data sets where N may be in the thousands or millions. In practice,

the computation time can be reduced by several orders of magnitude in such cases, and the
improvement is roughly proportional to N / log(N). This huge improvement made the calculation

of the DFT practical. FFTs are of great importance to a wide variety of applications, from digital

http://en.wikipedia.org/wiki/Fourier_analysis
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Group_theory
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Orders_of_magnitude
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Digital_signal_processing

N.Omkar & Dr.T.C. Sarma

International Journal of Innovative Research in Electronics and Communications (IJIREC) Page 26

signal processing and solving partial differential equations to algorithms for quick multiplication
of large integers.

The best-known FFT algorithms depend upon the factorization of N, but there are FFTs with

O(N log N) complexity for all N, even for prime N. Many FFT algorithms only depend on the fact

that is the twiddle factor, an N
th
 primitive root of unity, and thus can be applied to

analogous transforms over any finite field, such as number-theoretic transforms. Since the inverse

DFT is the same as the DFT, but with the opposite sign in the exponent and a 1/N factor, any FFT

algorithm can easily be adapted for it.

An FFT computes the DFT and produces exactly the same result as evaluating the DFT definition

directly; the only difference is that an FFT is much faster. (In the presence of round-off error,

many FFT algorithms are also much more accurate than evaluating the DFT definition directly, as
discussed below.)

Let x0,, xN-1 be complex numbers. The DFT is defined by the formula

Evaluating this definition directly requires O(N
2
) operations: there are N outputs Xk, and each

output requires a sum of N terms. An FFT is any method to compute the same results in

O(N log N) operations. More precisely, all known FFT algorithms require Θ(N log N) operations
(technically, O only denotes an upper bound), although there is no known proof that a lower

complexity score is impossible[3](Johnson and Frigo, 2007).

To reduction the computations of complex multiplications and additions FFT is used. Calculating

the computations using DFT involves N
2
 number of complex multiplications and N(N−1)

complex additions [of which O(N) operations can be saved by eliminating trivial operations such

as multiplications by [1]. The well-known radix-2 Cooley–Tukey algorithm, for N a power of 2,

can compute the same result with only (N/2)log2(N) complex multiplications (again, ignoring
simplifications of multiplications by 1 and similar) and Nlog2(N) complex additions. In practice,

actual performance on modern computers is usually dominated by factors other than the speed of

arithmetic operations and the analysis is a complicated subject (see, e.g., Frigo& Johnson, 2005),
but the overall improvement from O(N

2
) to O(N log N) remains.

The native implementation of the N-point digital Fourier transform involves calculating the scalar

product of the sample buffer (treated as an N-dimensional vector) with N separate basis vectors.

Since each scalar product involves N multiplications and N additions, the total time is
proportional to N

2
 (in other words, it's an O(N

2
) algorithm). However, it turns out that by cleverly

re-arranging these operations, one can optimize the algorithm down to O(N log(N)), which for

large N makes a huge difference. The optimized version of the algorithm is called the fast Fourier
transform, or the FFT.

The standard strategy to speed up an algorithm is to divide and conquer. We have to find some

way to group the terms in the equation

P[k] = Σn=0..N-1 WN
kn

 p[n]

Let's see what happens when we separate odd ns from even ns (from now on, let's assume that N

is even):

P[k] = Σn even WN
kn

 p[n] + Σn odd WN
kn

 p[n]

= Σr=0..N/2-1 WN
k(2s)

 p[2s] + Σr=0..N/2-1 WN
k(2s+1)

 p[2s+1]

= Σs=0..N/2-1 WN
k(2s)

 p[2s] + Σs=0..N/2-1 WN
k(2s)

 WN
k
 p[2s+1]

= Σs=0..N/2-1 WN
k(2s)

 p[2s] + WN
k
 Σr=0..N/2-1 WN

k(2s)
 p[2s+1]

= (Σs=0..N/2-1 WN/2
ks

 p[2s]) + WN
k
 (Σs=0..N/2-1 WN/2

ks
 p[2s+1])

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Factorization
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primitive_root_of_unity
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Number-theoretic_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Round-off_error
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Big_O_notation#Use_in_computer_science
http://en.wikipedia.org/wiki/Upper_bound
http://en.wikipedia.org/wiki/Fast_Fourier_transform#Cooley.E2.80.93Tukey_algorithm

Design of 64point Fast Fourier Transform by Using Radix-4 Implementation

International Journal of Innovative Research in Electronics and Communications (IJIREC) Page 27

where we have used one crucial identity:

WN
k(2s)

 = e
-2πi*2ks/N

 = e
-2πi*ks/(N/2)

 = WN/2
ks

Notice an interesting thing, the two sums are nothing else but N/2-point Fourier transforms of,

respectively, the even subset and the odd subset of samples. Terms with k greater or equal N/2

can be reduced using another identity:

WN/2
m+N/2

 = WN/2
m
WN/2

N/2
 = WN/2

m

Which is true because Wm
m
 = e

-2πi
 = cos(-2π) + i sin(-2π)= 1.

If we start with N that is a power of 2, we can apply this subdivision recursively until we get
down to 2-point transforms.

We can also go backwards, starting with the 2-point transform:

P[k] = W2
0*k

 p[0] + W2
1*k

 p[1], k=0,1

The two components are:

P[0] = W2
0
 p[0] + W2

0
 p[1] = p[0] + W2

0
 p[1]

P[1] = W2
0
 p[0] + W2

1
 p[1] = p[0] + W2

1
 p[1]

We can represent the two equations for the components of the 2-point transform graphically using
the, so called, butterfly

Fig.1.1. Butterfly calculation

Furthermore, using the divide and conquer strategy, a 4-point transform can be reduced to two 2-

point transforms: one for even elements, one for odd elements. The odd one will be multiplied by
W4

k
. Diagrammatically, this can be represented as two levels of butterflies. Notice that using the

identity WN/2
n
 = WN

2n
, we can always express all the multipliers as powers of the same WN (in this

case we choose N=4)

Fig 1.2. Diagrammatical representation of the 4-point Fourier transforms calculation

I encourage the reader to derive the analogous diagrammatical representation for N=8. What will

become obvious is that all the butterflies have similar form.

Fig 1.3. Generic butterfly graph

N.Omkar & Dr.T.C. Sarma

International Journal of Innovative Research in Electronics and Communications (IJIREC) Page 28

2. RADIX 4 FFT

The decimation-in-time (DIT) radix-4 FFT recursively partitions a DFT into four quarter-length
DFTs of groups of every fourth time sample. The outputs of these shorter FFTs are reused to

compute many outputs, thus greatly reducing the total computational cost. The radix-4

decimation-in-frequency FFT groups every fourth output sample into shorter-length DFTs to save

computations. The radix-4 FFTs require only 3/4
th
 as many complex multiplies as the radix-2

FFTs.

The radix-2, radix-4 decimation-in-time and decimation-in-frequency fast Fourier transforms

(FFTs) gain their speed by reusing the results of smaller, intermediate computations to compute

multiple DFT frequency outputs. The radix-4 decimation-in-time algorithm rearranges the discrete

Fourier transform (DFT) equation into four parts, sums over all groups of every fourth discrete-
time index n=[0,4,8,…,N−4], n=[1,5,9,…,N−3], n=[2,6,10,…,N−2] and n=[3,7,11,…,N−1] as

in Equation 1. (This works out only when the FFT length is a multiple of four.) Just as in

the radix-2 decimation-in-time FFT, further mathematical manipulation shows that the length-
N DFT can be computed as the sum of the outputs of four length-N4 DFTs, of the even-indexed

and odd-indexed discrete-time samples, respectively, where three of them are multiplied by so-

called twiddle factors WkN=e−(i2πkN), W2kN, and W3kN.

This is called a decimation in time because the time samples are rearranged in alternating groups,

and a radix-4 algorithm because there are four groups. Figure 1 graphically illustrates this form of
the DFT computation

It is this reuse that gives the radix-4 FFT its efficiency. The computations involved with each
group of four frequency samples constitute the radix-4 butterfly, which is shown in 1.2. Through

further rearrangement, it can be shown that this computation can be simplified to three twiddle-

factor multiplies and a length-4 DFT! The theory of multi-dimensional index map shows that this
must be the case, and that FFTs of any factorable length may consist of successive stages of

shorter-length FFTs with twiddle-factor multiplications.

3. IMPLEMENTATION

FPGA

The Field Programmable Gate Array is majorly used for generation ASIC IC’s to the
computations. They offer more speed in execution process. So, for generation ASIC IC’s FPGA’s

are majorly used. The 64 FFT with radix 4 is simulated and synthesized as well as implemented

on the FPGA of below configuration.

Table 3.1. Configuration of FPGA

Property Name Value

Family Spartan 3E-250

Device XC3SAN

Package TQG144

Speed Grade -3

4. SIMULATION RESULTS

The RTL view of the butterfly structure obtained after the simulation of the 64-point FFT block,

Decimation in time domain is shown next and also the internal architecture of the butterfly block
is shown.

Fig 3.1. Waves forms View of A Butterfly Component Used In 64-Point FFT

http://cnx.org/content/m12016/latest/
http://cnx.org/content/m12018/latest/
http://cnx.org/content/m12026/latest/
http://cnx.org/content/m12026/latest/
http://cnx.org/content/m12019/latest/
http://cnx.org/content/m12019/latest/
http://cnx.org/content/m12019/latest/
http://cnx.org/content/m12027/latest/#eq1
http://cnx.org/content/m12016/latest/
http://cnx.org/content/m12027/latest/#fig1
http://cnx.org/content/m12027/latest/#fig2
http://cnx.org/content/m12025/latest/

Design of 64point Fast Fourier Transform by Using Radix-4 Implementation

International Journal of Innovative Research in Electronics and Communications (IJIREC) Page 29

Fig 3.2. Internal Architecture of The Butterfly Component

Fig 3.3. Simulation result of 64 FFT

Fig 3.4. Simulation result of 64 FFT

Fig 3.5. Synthesis report

Fig 3.6. Timing Report of 64FFT

N.Omkar & Dr.T.C. Sarma

International Journal of Innovative Research in Electronics and Communications (IJIREC) Page 30

5. CONCLUSION

In this paper, a 32 point FFT with radix-2 and 64point with radix-4 processor was designed using

FPGA System successfully. The processor use VHDL language to describe the circuit, use Xilinx

ISE8.1i software to build the model, and use ModelSim SE 6.2e software for simulation.

REFERENCES

[1] R. W. Chang, “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data

Transmission,” Bell System Tech. J., vol. 45, pp. 1775–1796, Dec. 1966.

[2] ETS 300401, ETSI, “Digital Audio Broadcasting (DAB);DAB to mobile, portable and fixed
receivers,” 1995.

[3] ETSI EN 300 744, “Digital video broadcasting (DVB);framing structure, channel coding,
and modulation for digital terrestrial television,” 2001.

[4] European IST Project, “Power Aware Communications for Wireless OptiMised personal
Area Networks (PACWOMAN),” http://www.imec.be/pacwoman/.

[5] S.B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing
using the discrete Fourier transform,” IEEE Transactions on Communications, vol. 19, pp.

628–634, Oct. 1971.

[6] A.Peled and A. Ruiz, “Frequency domain data transmission using reduced computational

complexity algorithms,” in Int. Conf. Acoustic, Speech, Signal Processing, Denver, CO,

1980, pp. 964–967.

[7] L.J. Cimini, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal
Frequency Division Multiplexing ,” IEEE Transactions on Communications, vol. 33, pp.

665–675, July 1985.

[8] ETSI TS 101 475, “Broadband Radio Access Networks (BRAN); HIPERLAN Type 2

Physical (PHY) layer, v1.1.1,” 2000, http://portal.etsi.org/bran/.

[9] IEEEstd 802.11a, “High-speed Physical Layer in 5 GHz Band,” 1999, http://ieee802.org/.

[10] IEEEstd 802.11g, “High-speed Physical Layer in 2.4 GHz Band,” 2003, http://ieee802.org/.

[11] J. Bingham, “Multicarrier Modulation for Data Transmission: An Idea Whose Time Has
Come,” IEEE Communications Magazine, vol. 8, pp. 5–14, May 1990.

[12] O. Edfors, M. Sandell, J. van de Beek, D. Landström and F. Sjöberg, “An introduction to
orthogonal frequency-division multiplexing,” TULEA 1996:16, Div. of Signal Processing,

Luleå, Tech. Rep., a University of Technology, Luleå 1996.

[13] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Calculation of Complex Fourier

Series,” Math. Comput., vol. 19, pp. 297–301, Apr. 1965.

[14] R. Grunheid, E. Bolinth, and H. Rohling, “A blockwise loading algorithm for the adaptive

modulation technique in OFDM systems,” in Proc. of Vehicular Technology Conference,
VTC 2001 Fall, Atlantic City, NJ, USA, Oct. 7-11 2001, pp. 948–951.

[15] J. G. Proakis, Digital Communications. McGraw-Hill, 2001.

[16] M. Russel and G. Stuber,“Interchannel interference analysis of OFDM in a mobile

environment,” in Proc. IEEE Vehic. Technol. Conf., vol. 2, Chicago, IL, 1995, pp. 820–824.

[17] N. Petersson, “Peak and power reduction in multicarrier systems,” 2002, licentiate thesis,

Lund University, Sweden.

[18] S.Johansson, “ASIC Implementation of an OFDM Synchronization Algorithm,” 2000,
Licentiate Thesis, Lund University, Sweden.

[19] R. Morrison, L. J. Cimini, and S. K. Wilson, “On the Use of a Cyclic Extension in OFDM,”
in Proc. of Vehicular Technology Conference, VTC 2001 Fall, vol. 2, Atlantic City, NJ,

USA, Oct. 7-11 2001, pp. 664–668.

