Design of 64point Fast Fourier Transform by Using Radix-4 Implementation

N.Omkar
M.Tech(VLSI)
GokaRaju RangaRaju College of Engg & Tech

Dr.T.C. Sarma
H.O.D ECE
GokaRaju RangaRaju College of Engg & Tech

Abstract: The Fast Fourier Transform (FFT) is very significant algorithm in signal processing, to obtain environmental status and wireless communication. This paper explains the high performance 64 point FFT by using Radix-4 algorithm. Radix-4 has the advantage of parallel computations. This is simulated using VHDL, using Xilinx ISE 10.1 and simulated using ModelSIM6.5e. Here we shown the architectures of 32 point FFT withradix-2 and 64-point FFT with radix-4. Finally, the high performance 64-point FFT processor their architecture and simulation graphs are shown.

Keywords: FFT, radix-2, radix-4

1. INTRODUCTION

Fast Fourier rework (FFT) processor is wide used in different applications, like local area network, image method, spectrum measurements, measuring device and transmission communication services [1]. However, the FFT formula is a hard task and it should be exactly designed to urge an efficient implementation. If the FFT processor is created flexible and quick enough, a transportable device equipped with wireless transmission is possible. Therefore, an efficient FFT processor is needed for period of time operations [2] and planning a quick FFT processor may be a matter of nice significance.

A fast Fourier transform (FFT) is the advanced version of discrete fourier transform (DFT). A Fourier transform converts time (or space) to frequency and vice versa. An FFT rapidly computes such transformations. As a result, fast Fourier transforms are widely used for many applications in engineering, science, and mathematics. The basic ideas were popularized in 1965, but some FFTs had been previously known as early as 1805[2]. Fast Fourier transforms have been described as "the most important numerical algorithm of our lifetime"

There are many different FFT algorithms involving a wide range of mathematics, from simple complex-number arithmetic to group theory and number theory; this article gives an overview of the available techniques and some of their general properties, while the specific algorithms are described in subsidiary articles linked below.

The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields (see discrete Fourier transform for properties and applications of the transform) but computing it directly from the definition is often too slow to be practical. An FFT is a way to compute the same result more quickly: computing the DFT of N-points in the naive way, using the definition, takes \(O(N^2)\) arithmetical operations, while a FFT can compute the same DFT in only \(O(N \log N)\) operations. The difference in speed can be enormous, especially for long data sets where N may be in the thousands or millions. In practice, the computation time can be reduced by several orders of magnitude in such cases, and the improvement is roughly proportional to \(N / \log(N)\). This huge improvement made the calculation of the DFT practical. FFTs are of great importance to a wide variety of applications, from digital
signal processing and solving partial differential equations to algorithms for quick multiplication of large integers.

The best-known FFT algorithms depend upon the factorization of N, but there are FFTs with \(O(N \log N)\) complexity for all N, even for prime N. Many FFT algorithms only depend on the fact that \(e^{-2\pi i/N}\) is the twiddle factor, an \(N^{\text{th}}\) primitive root of unity, and thus can be applied to analogous transforms over any finite field, such as number-theoretic transforms. Since the inverse DFT is the same as the DFT, but with the opposite sign in the exponent and a \(1/N\) factor, any FFT algorithm can easily be adapted for it.

An FFT computes the DFT and produces exactly the same result as evaluating the DFT definition directly; the only difference is that an FFT is much faster. (In the presence of round-off error, many FFT algorithms are also much more accurate than evaluating the DFT definition directly, as discussed below.)

Let \(x_0, \ldots, x_{N-1}\) be complex numbers. The DFT is defined by the formula

\[
X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i kn/N}, \quad k = 0, \ldots, N - 1.
\]

Evaluating this definition directly requires \(O(N^2)\) operations: there are N outputs \(X_k\), and each output requires a sum of N terms. An FFT is any method to compute the same results in \(O(N \log N)\) operations. More precisely, all known FFT algorithms require \(\Theta(N \log N)\) operations (technically, O only denotes an upper bound), although there is no known proof that a lower complexity score is impossible[3](Johnson and Frigo, 2007).

To reduce the computations of complex multiplications and additions FFT is used. Calculating the computations using DFT involves \(N^2\) number of complex multiplications and \(N(N-1)\) complex additions [of which \(O(N)\) operations can be saved by eliminating trivial operations such as multiplications by \(1\)]. The well-known radix-2 Cooley–Tukey algorithm, for \(N\) a power of 2, can compute the same result with only \((N/2)\log_2(N)\) complex multiplications (again, ignoring simplifications of multiplications by \(1\) and similar) and \(N\log_2(N)\) complex additions. In practice, actual performance on modern computers is usually dominated by factors other than the speed of arithmetic operations and the analysis is a complicated subject (see, e.g., Frigo & Johnson, 2005), but the overall improvement from \(O(N^2)\) to \(O(N \log N)\) remains.

The native implementation of the N-point digital Fourier transform involves calculating the scalar product of the sample buffer (treated as an N-dimensional vector) with N separate basis vectors. Since each scalar product involves \(N\) multiplications and \(N\) additions, the total time is proportional to \(N^2\) (in other words, it’s an \(O(N^2)\) algorithm). However, it turns out that by cleverly re-arranging these operations, one can optimize the algorithm down to \(O(N \log(N))\), which for large \(N\) makes a huge difference. The optimized version of the algorithm is called the Fast Fourier Transform, or the FFT.

The standard strategy to speed up an algorithm is to divide and conquer. We have to find some way to group the terms in the equation

\[
P[k] = \sum_{n=0}^{N-1} W_N^{kn} p[n]
\]

Let’s see what happens when we separate odd ns from even ns (from now on, let’s assume that \(N\) is even):

\[
P[k] = \sum_{n \text{ even}} W_N^{kn} p[n] + \sum_{n \text{ odd}} W_N^{kn} p[n]
\]

\[
= \sum_{n=0, N/2-1} W_N^{k(2s)} p[2s] + \sum_{n=0, N/2-1} W_N^{k(2s+1)} p[2s+1]
\]

\[
= \sum_{s=0, N/2-1} W_N^{k(2s)} p[2s] + \sum_{s=0, N/2-1} W_N^{k(2s)} W_N^{-k} p[2s+1]
\]

\[
= \sum_{s=0, N/2-1} W_N^{k(2s)} p[2s] + W_N^{k} \sum_{s=0, N/2-1} W_N^{k(2s)} p[2s+1]
\]

\[
= (\sum_{s=0, N/2-1} W_N^{k/2} p[2s]) + W_N^{k} (\sum_{s=0, N/2-1} W_N^{k/2} p[2s+1])
\]
Design of 64-point Fast Fourier Transform by Using Radix-4 Implementation

where we have used one crucial identity:
\[W_N^{k(N/2)} = e^{-2\pi i k N / N} = e^{-2\pi i k N / (N/2)} = W_{N/2}^{k} \]

Notice an interesting thing, the two sums are nothing else but N/2-point Fourier transforms of, respectively, the even subset and the odd subset of samples. Terms with k greater or equal N/2 can be reduced using another identity:
\[W_{N/2}^{m+N/2} = W_{N/2}^{m} W_{N/2}^{N/2} = W_{N/2}^{m} \]

Which is true because \(W_m^m = e^{-2\pi i} = \cos(-2\pi) + i \sin(-2\pi) = 1 \).

If we start with N that is a power of 2, we can apply this subdivision recursively until we get down to 2-point transforms.

We can also go backwards, starting with the 2-point transform:
\[P[k] = W_2^0 k p[0] + W_2^1 k p[1], \quad k=0,1 \]

The two components are:

We can represent the two equations for the components of the 2-point transform graphically using the, so called, butterfly

![Butterfly calculation](image)

Fig.1.1. Butterfly calculation

Furthermore, using the divide and conquer strategy, a 4-point transform can be reduced to two 2-point transforms: one for even elements, one for odd elements. The odd one will be multiplied by \(W_4^k \). Diagrammatically, this can be represented as two levels of butterflies. Notice that using the identity \(W_{N/2}^n = W_N^{2n} \), we can always express all the multipliers as powers of the same \(W_N \) (in this case we choose N=4)

![Diagrammatical representation of the 4-point Fourier transforms calculation](image)

Fig 1.2. Diagrammatical representation of the 4-point Fourier transforms calculation

I encourage the reader to derive the analogous diagrammatical representation for N=8. What will become obvious is that all the butterflies have similar form.

![Generic butterfly graph](image)

Fig 1.3. Generic butterfly graph
2. RADIX 4 FFT

The decimation-in-time (DIT) radix-4 FFT recursively partitions a DFT into four quarter-length DFTs of groups of every fourth time sample. The outputs of these shorter FFTs are reused to compute many outputs, thus greatly reducing the total computational cost. The radix-4 decimation-in-frequency FFT groups every fourth output sample into shorter-length DFTs to save computations. The radix-4 FFTs require only 3/4th as many complex multiplies as the radix-2 FFTs.

The radix-2, radix-4 decimation-in-time and decimation-in-frequency fast Fourier transforms (FFTs) gain their speed by reusing the results of smaller, intermediate computations to compute multiple DFT frequency outputs. The radix-4 decimation-in-time algorithm rearranges the discrete Fourier transform (DFT) equation into four parts, sums over all groups of every fourth discrete-time index \(n = [0,4,8,\ldots,N-4] \), \(n = [1,5,9,\ldots,N-3] \), \(n = [2,6,10,\ldots,N-2] \) and \(n = [3,7,11,\ldots,N-1] \) as in Equation 1. (This works out only when the FFT length is a multiple of four.) Just as in the radix-2 decimation-in-time FFT, further mathematical manipulation shows that the length-N DFT can be computed as the sum of the outputs of four length-N/4 DFTs, of the even-indexed and odd-indexed discrete-time samples, respectively, where three of them are multiplied by so-called twiddle factors \(W_kN = e^{-(i2\pi kN/N)} \), \(W_2kN \), and \(W_3kN \).

This is called a decimation in time because the time samples are rearranged in alternating groups, and a radix-4 algorithm because there are four groups. Figure 1 graphically illustrates this form of the DFT computation.

It is this reuse that gives the radix-4 FFT its efficiency. The computations involved with each group of four frequency samples constitute the radix-4 butterfly, which is shown in 1.2. Through further rearrangement, it can be shown that this computation can be simplified to three twiddle-factor multiplies and a length-4 DFT! The theory of multi-dimensional index map shows that this must be the case, and that FFTs of any factorable length may consist of successive stages of shorter-length FFTs with twiddle-factor multiplications.

3. IMPLEMENTATION

FPGA

The Field Programmable Gate Array is majorly used for generation ASIC IC’s to the computations. They offer more speed in execution process. So, for generation ASIC IC’s FPGA’s are majorly used. The 64 FFT with radix 4 is simulated and synthesized as well as implemented on the FPGA of below configuration.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Spartan 3E-250</td>
</tr>
<tr>
<td>Device</td>
<td>XC3S250AN</td>
</tr>
<tr>
<td>Package</td>
<td>TQG144</td>
</tr>
<tr>
<td>Speed Grade</td>
<td>-3</td>
</tr>
</tbody>
</table>

4. SIMULATION RESULTS

The RTL view of the butterfly structure obtained after the simulation of the 64-point FFT block, Decimation in time domain is shown next and also the internal architecture of the butterfly block is shown.

Fig 3.1. Waves forms View of A Butterfly Component Used In 64-Point FFT
Design of 64-point Fast Fourier Transform by Using Radix-4 Implementation

Fig 3.2. Internal Architecture of The Butterfly Component

Fig 3.3. Simulation result of 64 FFT

Fig 3.4. Simulation result of 64 FFT

Fig 3.5. Synthesis report

Fig 3.6. Timing Report of 64FFT
5. CONCLUSION
In this paper, a 32 point FFT with radix-2 and 64 point with radix-4 processor was designed using FPGA System successfully. The processor use VHDL language to describe the circuit, use Xilinx ISE8.1i software to build the model, and use ModelSim SE 6.2e software for simulation.

REFERENCES