Sphere in Heracletean Dynamics

Janez Špringer*
Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: The wave propagation and particle spinning of matter in Heracletean dynamics could be coordinated on the elliptic sphere at $m \geq \sqrt{\frac{h}{c}}$ and on the hyperbolic sphere at $m \leq \sqrt{\frac{h}{c}}$.
Keywords: Heracletean dynamics, elliptic and hyperbolic sphere, nominal equality of Compton wavelength and mass, touchable and untouchable mass

1. Introduction

To coordinate the wave propagation and particle spinning in Heracletean dynamics the matter has to be manifested according to its mass m in the appropriate time sphere, determined by the radius $R_{\text {time }}$, as well as in the appropriate space sphere, determined by the radius $R_{\text {space }}$, both obeying the spherical and hyperbolic law of cosines in the elliptic and hyperbolic sphere, respectively[1]. Hyperbolic time and space sphere has been taken into account in this article to cover the needs of matter at a very low mass, too, including that one originated from the imaginary ground mass.

2. The Elliptic Sphere

On the elliptic sphere holds the spherical law of cosines. [1] For time:
$\cos \frac{\sqrt{\frac{h}{c^{3}}}}{R_{\text {elliptic time }}}=\cos \frac{\frac{h}{m c^{2}}}{R_{\text {elliptic time }}} \cosh \frac{\frac{h}{m c^{2}}}{R_{\text {elliptic time }}}$.
And consequently for space:
$\cos \frac{\sqrt{\frac{h}{c}}}{R_{\text {elliptic space }}}=\cos \frac{\frac{h}{m c}}{R_{\text {elliptic space }}} \cos h \frac{\frac{h}{m c}}{R_{\text {elliptic space }}}$.
Where h denotes Planck's constant. The elliptic time sphere radius $R_{\text {elliptic time }}$ and the elliptic space sphere radius $R_{\text {elliptic space }}$ are related by the speed of light c as follows:
$\frac{R_{\text {elliptic space }}}{R_{\text {elliptic time }}}=c$.
Taking into account $\lambda=\frac{h}{m c}$ the relation (2) can be written in the next form:
$\cos \frac{\sqrt{\frac{h}{c}}}{R_{\text {elliptic space }}}=\cos \frac{\lambda}{R_{\text {elliptic space }}} \cos h \frac{\lambda}{R_{\text {elliptic space }}}$.
The above equation (4) is defined in the next interval of elliptic space sphere radii (See appendix 1):
$\frac{2}{\pi} \sqrt{\frac{h}{c}} \leq R_{\text {elliptic space }} \leq \infty$.
In the next interval of Compton wavelengths:
$0 \leq \lambda \leq \sqrt{\frac{h}{c}}$.
And because of $\lambda=\frac{h}{m c}$ in the next interval of masses:
$\sqrt{\frac{h}{c}} \leq m \leq \infty$.

3. The Hyperbolic Sphere

On the hyperbolic sphere holds the hyperbolic law of cosines [1]. For time:
$\cosh \frac{\sqrt{\frac{h}{c^{3}}}}{R_{\text {hyperbolic time }}}=\cos \frac{\frac{h}{m c^{2}}}{R_{\text {hyperbolic time }}} \cosh \frac{\frac{h}{m c^{2}}}{R_{\text {hyperbolic time }}}$.
And consequently for space:
$\cosh \frac{\sqrt{\frac{h}{c}}}{R_{\text {hyperbolic space }}}=\cos \frac{\frac{h}{m c}}{R_{\text {hyperbolic space }}} \cos h \frac{\frac{h}{m c}}{R_{\text {hyperbolic space }}}$.
Where h denotes Planck's constant. The hyperbolic time sphere radius $R_{\text {hyperbolic time }}$ and the hyperbolic space sphere radius $R_{\text {hyperbolic space }}$ are related by the speed of light c as follows:
$\frac{R_{\text {hyperbolic space }}}{R_{\text {hyperbolic time }}}=c$.
Taking into account $\lambda=\frac{h}{m c}$ the relation (9) can be written in the next form:
$\cosh \frac{\sqrt{\frac{h}{c}}}{R_{\text {hyperbolic space }}}=\cos \frac{\lambda}{R_{\text {hyperbolic space }}} \cos h \frac{\lambda}{R_{\text {hyperbolic space }}}$.
The above equation (11) is defined in the next interval of hyperbolic space sphere radii (See appendix 2):
$\frac{1}{2 \pi} \sqrt{\frac{h}{c}} \leq R_{\text {hyperbolic }} \leq \infty$.
In the next interval of Compton wavelengths:
$\sqrt{\frac{h}{c}} \leq \lambda \leq \infty$.
And because of $\lambda=\frac{h}{m c}$ in the next interval of masses:
$0 \leq m \leq \sqrt{\frac{h}{c}}$.

4. The Space Between

The matter of the nominal equality of Compton wave length and mass $\lambda_{\text {nominal }}=m_{\text {nominal }}=\sqrt{\frac{h}{c}}$ exists in the space between of the next minimal space sphere radii (5), (12):
$R_{\text {minimal hyperbolic }}=\frac{1}{2 \pi} \sqrt{\frac{h}{c}} \ldots R_{\text {space between }} \ldots \sqrt{\frac{h}{c}}=R_{\text {minimal elliptic }}$.
And the corresponding space sphere circumferences:
$2 \pi R_{\text {minimal hyperbolic }}=\sqrt{\frac{h}{c} \ldots 2 \pi R_{\text {space between }} \ldots 4 \sqrt{\frac{h}{c}}=2 \pi R_{\text {minimal elliptic }} . ~ . ~ . ~ . ~}$

5. The Space Sphere Radius and Circumference

The elliptic space sphere radius of any matter is greater or at least equal the elliptic radius of the space between (5):
$R_{\text {elliptic space }} \geq \frac{2}{\pi} \sqrt{\frac{h}{c}}$.
And the corresponding elliptic circumference is greater or at least equal the elliptic circumference of the space between:
$2 \pi R_{\text {elliptic space }} \geq 4 \sqrt{\frac{h}{c}}$.
The hyperbolic space sphere radius of any matter is greater or at least equal the hyperbolic radius of the space between (12):
$R_{\text {hyperbolic space }} \geq \frac{1}{2 \pi} \sqrt{\frac{h}{c}}$.
And the corresponding hyperbolic circumference is greater or at least equal the hyperbolic circumference of the space between:
$2 \pi R_{\text {hyperbolic space }} \geq \sqrt{\frac{h}{c}}$.

6. COMPTON WAVELENGTH AND TYPE OF SPHERE

The elliptic sphere is reserved for Compton wavelengths equal or shorter than $\sqrt{\frac{h}{c}}$. The hyperbolic sphere is reserved for Compton wavelengths equal or longer than $\sqrt{\frac{h}{c}}$.

7. MASS and Type of Sphere

The elliptic sphere is reserved for masses equal or heavier than $\sqrt{\frac{h}{c}}$. The hyperbolic sphere is reserved for masses equal or lighter than $\sqrt{\frac{h}{c}}$.

8. The Untouchable and Touchable Mass

The matter of the nominal equality of Compton wavelength and ground mass $\lambda=m_{0}=\sqrt{\frac{h}{c}}$ possesses luminal ground speed $v_{0}=c$.[2] In Heracletean dynamics the kinetic energy at ground speed is zero and the kinetic energy at luminal speed is maximal.[2] A matter with mass $\sqrt{\frac{h}{c}}$ at the speed of light can neither offer nor receive any kinetic energy.[2] It is thus anyway untouchable:
$m_{\text {untouchable }}=m=m_{0}=\sqrt{\frac{h}{c}}$.
A touchable matter should have the ground mass m_{0} heavier or lighter than $\sqrt{\frac{h}{c}}$:
$m_{0}^{\text {touchable }} \neq \sqrt{\frac{h}{c}}$.

And consequently the ground speed v_{0} of a touchable matter should be subluminal or superluminal:
$v_{0}^{\text {touchable }} \neq c$.
Masses heavier than $\sqrt{\frac{h}{c}}$ are subluminal, and masses lighter than $\sqrt{\frac{h}{c}}$ are superluminal. Energy equivalents greater than 0.834 PeV are subluminal, and energy equivalents smaller than 0.834 PeV are superluminal. The subluminal world is elliptic and superluminal world is hyperbolic. The ground mass and ground speed of touchable matter could be in Heracletean dynamics even imaginary.[2]. To reach the luminal speed the input of kinetic energy is needed to the subluminal elliptic matter as well as to the superluminal hyperbolic matter.[2] More touchable mater has a greater kinetic energy storage capacity of its mass. Sphere characteristics of matter in Heracletean dynamics are collected in Table1.

Table1. Sphere characteristics of matter in Heracletean dynamics

Ground Speed	Ground mass	Wavelength	Energy equivalent	Sphere radius	Sphere circumference	Sphere type	Touch
$v_{0}<c$	$\begin{aligned} & m_{0} \\ & >\sqrt{\frac{h}{c}} \\ & \hline \end{aligned}$	$\lambda<\sqrt{\frac{h}{c}}$	$\begin{aligned} & m c^{2}>0.834 \\ & \mathrm{PeV} \end{aligned}$	$R_{\text {elliptic }}>\frac{2}{\pi} \sqrt{\frac{h}{c}}$	$>4 \sqrt{\frac{h}{c}}$	Elliptic	Touchable
$v_{0}=c$	$=\sqrt{\frac{m_{0}}{}}$	$\lambda=\sqrt{\frac{h}{c}}$	$\begin{aligned} & m c^{2}= \\ & 0.834 \mathrm{PeV} \end{aligned}$		$4 \sqrt{\frac{h}{c} \cdots \cdots \sqrt{\frac{h}{c}}}$	Elliptichyperbolic space between	Untouchable
$v_{0}>c$	$\begin{aligned} & m_{0} \\ & <\sqrt{\frac{h}{c}} \\ & \hline \end{aligned}$	$\lambda>\sqrt{\frac{h}{c}}$	$\begin{aligned} & m c^{2}<0.834 \\ & \mathrm{PeV} \end{aligned}$	$R_{\text {hyperbolic }}$ $>\frac{1}{2 \pi} \sqrt{\frac{h}{c}}$	$>\sqrt{\frac{h}{c}}$	Hyperbolic	Touchable

9. CONCLUSION

In Heracletean dynamics the matter of macro and micro world can coexist with the help of elliptichyperbolic sphere diversity.

DEDICATION

To an unexpected life since it is miracle

Figure1. Miracle

REFERENCES

[1] Janez Špringer, (2021). Uncertainty in Heracletean Dynamics. International Journal of Advanced Research in Physical Science (IJARPS) 8(1), pp.14-16, 2021.
[2] Janez Špringer, (2020). Neutrino Mass and Energy Obeying Heracletean Dynamics (Third time's a charm). International Journal of Advanced Research in Physical Science (IJARPS) 7(11), pp.1-3, 2020.

APPENDIX 1

$\cos \frac{\sqrt{\frac{h}{c}}}{R_{\text {elliptic space }}}=\cos \frac{\lambda}{R_{\text {elliptic space }}} \cos h \frac{\lambda}{R_{\text {elliptic space }}}$.
Function $\cos y=\cos x \cosh x$ is defined in the range $[0,1]$.
a) The zero value of $\cos y$ is achieved in the next case:
$\cos \frac{\pi}{2}=\cos \frac{\pi}{2} \cosh x$.
Taking into account (4) we have:
$\frac{\sqrt{\frac{h}{c}}}{R_{\text {elliptic space }}}=\frac{\pi}{2}=\frac{\lambda}{R_{\text {elliptic space }}}$.
And consequently $R_{\text {elliptic space }}=\frac{2}{\pi} \sqrt{\frac{h}{c}}$ and $\lambda=\sqrt{\frac{h}{c}}$.
b) The unit value of $\cos y$ is achieved in the next case:
$\cos 0=\cos 0 \cosh 0=1.1=1$.
Taking into account (4) we have:
$\frac{\sqrt{\frac{h}{c}}}{R_{\text {elliptic space }}}=0=\frac{\lambda}{R_{\text {elliptic space }}}$.
And consequently $R_{\text {elliptic space }}=\infty$ and $\lambda=0$.
ApPENDIX 2
$\cos h \frac{\sqrt{\frac{h}{c}}}{R_{\text {hyperbolic space }}}=\cos \frac{\lambda}{R_{\text {hyperbolic space }}} \cos h \frac{\lambda}{R_{\text {hyperbolic space }}}$.
Function $\cosh y=\cos x \cosh x$ is defined in the range [$1, \cosh 2 \pi]$.
a) The unite value of $\cosh y$ is achieved in the next case:
$\cosh 0=\cos 4.730040745 . \cosh 4.730040745=0,017650848 x 56,654502383=1$.
Taking into account (11) we have:
$\frac{\sqrt{\frac{h}{c}}}{R_{\text {hyperbolic space }}}=0$.
And consequently $R_{\text {hyperbolic space }}=\infty$.
Taking into account (11) again we have:
$\frac{\lambda}{R_{\text {hyperbolic space }}}=4.730040745$.
And consequently $\lambda=\infty$.
b) The value $\cosh 2 \pi$ is achieved in the next case:
$\cosh 2 \pi=\cos 2 \pi \cosh 2 \pi$.
$1=\cos 2 \pi$.
$1=1$.

Taking into account (11) we have:
$\frac{\sqrt{\frac{h}{c}}}{R_{\text {hyperbolic space }}}=2 \pi=\frac{\lambda}{R_{\text {hyperbolic space }}}$.
And consequently $R_{\text {hyperbolic space }}=\frac{1}{2 \pi} \sqrt{\frac{h}{c}}$ and $\lambda=\sqrt{\frac{h}{c}}$.

Citation: Janez Špringer (2021). Sphere in Heracletean Dynamics. International Journal of Advanced Research in Physical Science (IJARPS) 8(3), pp.23-28 2021.

Copyright: © 2021 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

